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A SUFFICIENT CONDITION FOR ASSOCIATION
OF A RENEWAL PROCESS

BY ROBERT M. BURTON, JR.! AND ED WAYMIRE?

Oregon State University

Let {N(¢): t > 0} be a renewal counting process with lifetime density f(¢).
For each bounded Borel set A contained in [0, o), denote the number of
renewals in A by N(A). The renewal process is called associated if the
corresponding family of random variables, N(A), is associated. The result of
this note is that the renewal process is associated whenever log( f ) is a convex
function (which implies a decreasing failure rate).

Let N = {N(t) = N[0, t): t > 0} be a renewal counting process with lifetime
density f(¢) and reliability function given by F(t) = [°f(u) du. We make the
tacit assumption that the first renewal occurs at 0, so that the lifetime density is
applicable from ¢ = 0, without further specific mention of this point. The lifetime
distribution has decreasing failure rate (DFR), if the failure rate function
f(t)/F(t) is decreasing. Let g(¢) = log f(¢). If g is convex then it is well known
that the lifetime distribution has DFR; see Barlow and Proschan (1975), where,
in addition, examples of such processes from engineering and biology are also
described.

A nonempty, but possibly infinite, family # of random variables is called
associated if, whenever X,..., X, € #, Cov{g(X,,..., X,)), i(X,,..., X,)} = 0,
for any (coordinatewise) nondecreasing real-valued functions g and A for which
the indicated covariance exists. The literature in probability theory is rapidly
becoming rich with results and applications for associated random variables. The
most important recent result is the central limit theorem for associated random
variables originally discovered by Newman (1980). Earlier results and applica-
tions of the notion of association in the context of reliability theory can be found
in Barlow and Proschan (1975).

We extend the definition of N to any bounded Borel set A of nonnegative real
numbers by setting N(A) equal to the number of renewals which occur in A. The
renewal process is then defined to be associated if the corresponding family of
counting variables, N(A), is associated.

Define Bernoulli random variables Y(J), indexed by subintervals o of [0, 0),
by Y(J) = 0if N(J) > 1, and by Y(J) = 1 if N(J) = 0. It is not hard to check
that if N is associated then the family of variables Y(<J) is associated; because
1 — Y(J) = min{1, N(J)} is a nondecreasing function of the N(J)’s. Observe
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that for J, = [0, §) and J, = [§,26),

Cov{Y(d,), Y()}
— P(N(J) = N(,) = 0) = P(N(;) = 0)P(N(J;) = 0)
(0) = F(28) — F*(8)P(N(d,) = 0)

= F(28) — F(8) fo *(F(26 — t)/F(6 — t)}H(dt),

where the ratio F(28 — t)/F(8 — t) is the conditional probability that there
are no renewals in J, given that the last renewal before § is at time ¢, and H(dt)
represents the probability of the last occurrence before § within dt of ¢. If the
lifetime distribution has an increasing failure rate, equivalently, log F¢ is concave
(or f/F°¢ increasing in the case of a density), then, for log F¢ strictly concave in
the neighborhood [0,248) and having no atoms, one can check that the covariance
in (0) is strictly less than zero. In particular, such a process is not associated. The
strict concavity rules out the case of the Poisson renewals which has increasing
failure rate, though degenerately, and is nonetheless associated; see Burton and
Waymire (1985). Our interest in the present note is to get a positive result in the
case of DFR. In particular, we establish the following theorem.

THEOREM 1. Let N be a renewal process whose lifetime density is log-convex.
Then N is associated.

The proof will be given as a consequence of two lemmas. First, though, we
require some special notation for the description of the sample realizations of the
process.

Let T be an arbitrary positive real number and let R = {x,,...,x,} be a
nonempty finite subset of [0, T'], with 0 =x,<x;, <x,< --- <x,<T. R
corresponds in a natural way to a possible sample path of N on the interval
[0,T]. For each i=1,...,n, [x;_,,x;] is called an intermediate segment of
length a; = x;, — x;_,,and [x,, T']is a terminal segment of length a, ., = T — x,,.
We define the absolute product densities by,

) r2(R) = F(a,. ) [T1(a).

In the case R = ¢, take n = 0 and assign the empty product in (1) the value one.
For small enough Ax, r(R)(Ax)" is approximately the probability that there
are renewals in each of the intervals of length Ax about x,,..., x,, and no other
renewals in [0, T'].

A well-known sufficient condition for a family of random variables to be
associated is the “convexity” condition of Fortuin, Kasteleyn, and Ginibre (1971).
In the context of point processes this condition takes the form of (2) below; see
also Burton and Waymire (1985). In particular, the renewal process will be
associated provided that the following relation holds for all 7' > 0 and all finite



1274 R. M. BURTON AND E. WAYMIRE

subsets R and S of [0, T']:
(2) re(RUS)rp(R N S) > rp(R)rp(S).

The inequality (2), and consequently Theorem 1, is established as a conse-
quence of the following two lemmas.

LEMMA 2.  Suppose that R U S consists of thepoints 0 < x, < -+ <x,<T,
and R N S = {x,}. Then inequality (2) holds.

Proor. Label the lengths of the intermediate segments of R U S in nonde-
creasingorderas @, < a, < --- < a,, andlet a,, be the length of the terminal
segment of R U S (as well as that of RN S). Set A = Xa;. It is clear by a
marriage lemma argument [i.e., Philip Hall’s theorem on distinct representatives;
see Mirsky and Perfect (1966)], or by direct construction, that for each i =
1,2,..., n, there is a (distinct) intermediate segment from R or S of length b,
that covers the intermediate segment corresponding to a;. In particular b, > a;
for each i = 1,..., n. The length of the remaining segment is B = 24 — L7b,.
Figure 1 illustrates a partial case.

It now follows that

(RO S)rg(R 0 8) = f(A)1H(@)F(ay,)
and

re(R)r2(S) = ((B)LT1(3)F(a.)"

So it suffices to show that

) HATH(a) = ((B)TTA(b).
Taking logarithms, we will establish the equivalent
(4) g(A) + Yg(a;) = a(B) + ig(b».

First notice that because a,,..., a, are the kth smallest of the a;’s, we have
a,+ - +a,<B+b +- - +b,_,, or a,< B+ TFYb,— a;). Since g is
convex, whenever 0 < A and x <y, we have g(x + A) — g(x) < g(y + A) —
&(y)- Applying this with A = b, — a,, x = a;, and y = B + Z¢~%b; — a;), we
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get,
k

B+E(bi_ai)) -8

1

(6)  &(by) —8(a) <&

k-1
B+ Y (b,— ai)).

Sum (5) over k = 1,2,..., n to get,

Y {8(bs) - g(as)}

1

< }j:[g(B + }’::{b,. - ai}) —g(B‘+ N (- a,.})]

=g(B+2r::{bi_ai}) - &(B) |

=g(A) - g(B),
which is a rearrangement of (4). O

REMARK. It is important for the proof of the next lemma to notice that the
terminal segment probability cancels in the calculation resulting in inequality (3).
This particular inequality is merely a property of log-convex functions for
suitable orderings of the sets of real numbers.

LEMMA 3. Suppose that R N S = ¢ in Lemma 2. Then inequality (2) holds.

ProoF. Let a,,..., a, be the lengths of the intermediate segmentsin R U S,
and let @, be the length of the terminal segment in RU S. Set A = Y1*'a,.
Let b,,..., b, be the lengths of the intermediate segments in R and in S,
respectively. One of R or S has a terminal segment of length @, ,, let B denote
the length of the other terminal segment. By calculations as in Lemma 2, see the
remark following the proof of Lemma 2,

n+1 n

© FA) T f(a) = 1(B)H(a, ) TT1(5).

Since g = log(f) is convex, the failure rate f/F¢ is decreasing. In particular,
f(A)/F(A) < f(B)/F<B). Substituting this into (6) we get,

) FAATi(a) = FB)TTA(b),
which is (2). O

Proor oF THEOREM 1. Let A,,..., A, be the lengths of the intermediate
segmentsin R N S, and let A, , be the length of the terminal segment of R N S.
Fori=1,...,k+1,let a},..., a} be the segments corresponding to A;. Also
let bi,..., b}, be the lengths of the segments in R and S contained in segments
corresponding to A,. Then by Lemma 2 for i = 1,2,..., k, and by Lemma 3 for
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i=k+1,wehaveforeachi=1,2,...,k + 1,

Ji L
(8) f(A)T1H(ar) = TTF(5)-

Therefore, taking the product over i = 1,..., & in (8), one obtains the inequality
). O

NotTe. The authors recently learned from Thomas Liggett (private communi-
cation) that a version of the result presented here can also be established with a
very interesting argument using the machinery of interacting particle systems.
Specifically, log-convexity of the (positive) lifetime density f(¢), for integer lattice
lifetimes, makes the nearest particle system, with constant unit death rate and
with birth rates of the form, B(m, n) = f(m)f(n)/f(m + n), attractive [see
Liggett (1983)]. Under a finite first-moment assumption on f, the distribution of
the renewal process with lifetime density f is the unique time-reversible equi-
librium state for the system concentrated on configurations with infinitely many
occupied sites to the left and right of the origin [see Spitzer (1977)]. Moreover the
system started with all sites occupied will converge time-asymptotically in
distribution to the renewal measure corresponding to f [see Liggett (1983)]. A
version of our result now follows from Harris’ inequality after a suitable finite
system approximation [see Harris (1977) and Cox (1984)]. The case of noninteger
lattice lifetimes is then obtainable by approximations; see Burton and Waymire
(1985) for similar approximations.
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