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ON A COMBINATORIAL CONJECTURE CONCERNING
DISJOINT OCCURRENCES OF EVENTS

By J. vaN DEN BERG! aND U. FIEBIG
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Recently van den Berg and Kesten have obtained a correlation-like
inequality for Bernoulli sequences. This inequality, which goes in the opposite
direction of the FKG inequality, states that the probability that two mono-
tone (i.e., increasing or decreasing) events “occur disjointly” is smaller than
the product of the individual probabilities. They conjecture that the mono-
tonicity condition is immaterial, i.e., that the inequality holds for all events.
In the present paper we try to make clear the intuitive meaning of the
conjecture and prove some nontrivial special cases, one of which, a pure
correlation inequality, is an extension of Harris’ FKG inequality.

1. Introduction. In van den Berg and Kesten (1985) (hereinafter called [2])
a conjecture is stated which has the intuitive interpretation given by the
following example.

(1.1) ExaMpLE. Suppose two children make a list of their wishes for
Christmas. The first child is satisfied if he gets at least one of the combinations
in the following list:

(1) a green teddy-bear and a blue car;
(2) a red teddy-bear;
(3) a blue car and a blue football.

The second child has the following list:

(1)) a blue teddy-bear and a blue car;
(2) a red teddy-bear;

(3) a red football;

(4) a blue football.

Now suppose Santa Claus takes two boxes and puts in each of them a teddy-bear,
a football, and a car. However, he does not consider the colors and chooses the
toys randomly from large sacks, each sack containing one type of toy in several
colors. We assume that this happens in such a way that the six colors in the two
boxes may be considered as independent random variables, and that the contents
of the two boxes are stochastically identical (i.e., the color of the football in the
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first box has the same distribution as that of the football in the second box, etc.).
Consider the following two options:

(a) Santa Claus gives only one box to the two children and they must try to
share the contents of this box in such a way that both are satisfied, i.e., get at
least one of the combinations in their respective lists. It is easy to check that this
is only possible if the box contains at least one of the following compositions of
combinations of the first and second list:

1 X 3’: a green teddy-bear, a blue car, and a red football;
1 X 4’: a green teddy-bear, a blue car, and a blue football;
2 X 3: a red teddy-bear and a red football;

2 X 4’: a red teddy-bear and a blue football;

3 X 2: a blue car, a blue football, and a red teddy-bear.

(b) This option is as follows: Both children receive a box but they are not
allowed to exchange toys. In this case the box given to the first child must
contain at least one of the combinations 1,2,3 and the box given to the second
child must contain at least one of the combinations 1/,2’,3’,4’. (Note that these
events are independent.)

When for each type of toy the probability distribution of its colors is known,
one can calculate, for both options, the probability that both children are
satisfied. The conjecture in [2] is equivalent to saying that this probability for
the first option is not larger than for the second option and that this holds for
arbitrary numbers of different toys and possible colors, for all probability
distributions of the colors, and for any pair of lists of wishes.

The investigations which led to the conjecture in [2] were motivated by the
following percolation problem:

(1.2) ExaMPLE. Let each bond b of a locally finite graph G, independently
of the other bonds be open with probability p, and closed with probability
1 — p,. A path from s to s’ is a sequence s = s,, b, S5, bg,..., b,_;, S, = 8/,
where s, s,,..., s, are sites of G and each b; is a bond of G connecting s; and
$;+15 L =1,...,n — 1. An open path is a path of which all bonds are open. Two
paths are disjoint if they have no bonds in common.

Let V,, V,, W}, and W, be sets of sites of G. Further, let A be the event that
there exists an open path from a site of V, to a site of V,, and B the
corresponding event with respect to W, and W,. It follows from a result of Harris
(1960) that A and B are positively correlated, i.e., P(A N B) > P(A)P(B). (We
come back to Harris’ result in Section 4.) Now the problem is whether, on the
other hand, the probability that there exist two disjoint open paths, one of
which goes from a site of V; to a site of V, and the other from a site of W, to a
site of W,, is at most P(A)P(B). In [2] it is shown that this is indeed the case.
However, the following related problem is unsolved: Consider again the above
graph G. This time the bonds are not randomly open or closed, but they have a
random direction. More precisely, if b is a bond with endpoints s,, s, then it has,
independently of the other bonds, probability p,(s;, s,) to be directed from s, to
s, and probability p,(s,, s;) =1 — p,(s;, S;) to be directed from s, to s;. A
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directed path from s to s’ is a sequence as shown above, with the additional
property that each b, is directed from s; to s; ., i =1,...,n — 1.

The problem, analogous to the one for the open-closed case, is now whether
the probability that there exist two disjoint directed paths one of which goes
from a site of V] to a site of V, and the other from a site of W, to a site of W, is,
again, smaller than or equal to the product of the individual probabilities.

These two problems (the solved open-closed problem and the unsolved ran-
dom-direction problem) represent special cases of the conjecture.

In Section 2 we give a formal description of the conjecture after introducing
the necessary definitions and notation. We also present an attractive special case
which, as shown in Section 3, turns out to be equivalent to the full conjecture. In
Section 3 we also show some other equivalent forms of the conjecture, try to
make clear the relation to the examples in Section 1, introduce additional
definitions and notation, and give some general results concerning the conjecture.

In Section 4 we state our main result, Theorem 4.2, which consists of four
nontrivial, proved, special cases of the conjecture. The first is an extension of the
special case proved in [2], and also contains Harris’ inequality mentioned in
Example 2. In Section 4 we further give some corollaries and examples.

The proofs of the four cases of Theorem 4.2 are rather long and, except for the
first two cases whose proofs are related, completely different. Therefore, they are
given in three different Sections, 5, 6 and 7.

2. Formal statement of the conjecture. Let @ =S, X S, X --- XS, with
S,,S,,...,S, finite subsets of N. Realizations (i.e., elements of §) are denoted
by w = (@i, ..., w,). The support of an event (a subset of ) is defined as the set
of all indices on which it depends. More precisely, if A C Q then

(2.1) supp(A) ={ill<i<n,w, 0 €Q,Vj+iw;=w;weEA, o €A}
Two events A and B are said to be perpendicular to each other, denoted by

A 1 B,if supp(A) N supp(B) = @.Forw € Q and K C {1,..., n} we define the
cylinder

(2.2) [w]gx={«|w €Q, w,=w,forallie K}.

(2.3) REMARKS.

(i) Note that our definition of a cylinder is more restrictive than the usual
one.
(ii) Though [w] depends on £ we omit this parameter.

If A, B C Q we say that w is a disjoint realization of A and B if w is an
element of both A and B but “for disjoint reasons.” Formally, the set AOB of
disjoint realizations of A and B is defined as:

AOB = {we€Q3K,Lc{l,...,n}, KNL=9,

(2.4) [w]lxkC A,and [w], C B).
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(2.5) REMARK. Note that we again omit the parameter €.

Our subject, the conjecture stated in van den Berg and Kesten (1985), is the
following

(2.6) CONJECTURE. Letn € N\ {0}. Let S; be a finite subset of N and p; a
probability measure on S;, i = 1,..., n. Further, define & =S, X S, X -+ XS,
and p=p; X pg X - -+ Xp,. Then

(2.7) VA,BcC X, p(AOB) < p(A)u(B).
The special case in which, for each i, S; = {0,1} and p;(0) = p,(1) = ; gives

(2.8) CoNJECTURE. If @ = {0,1}" (n € N\ {0}), then
(2.9) VA,BcQ, |AOB|2" < |A||B|,
where | - | denotes cardinality.

It will be shown in Section 3 that the above special case is equivalent to the
full conjecture (2.6).

3. General results concerning the [-operation. Several results in this
section, especially in the beginning, are almost trivial. However, they may help
to get familiar with the O-operation and make it possible to shorten the proofs of
the more interesting results.

We start by stating some properties of the O-operation leading to equivalent
definitions of AOB and, subsequently, to the equivalents of (2.7).

Next we show the connection with the examples in Section 1. We also prove,
as announced in Section 2, that the special case (2.8) implies the full (2.6). We do
this with the help of a more general principle which will be used throughout
Sections 5-7 and is therefore presented as a separate lemma (3.4). Finally, we
prove another useful result (Lemma 3.12) and introduce some additional nota-
tion and definitions. It is easily seen that the O-operation has the following
properties and we omit the proof:

(3.1) LEMMA.

(i) ADB cC A N B.

(i) If A L B, then ADB = A N B.

(iii) AOB = BDA.

(iv) (4, U A,)OB > ((A,0B) U (4,0B)).

Using these properties, several definitions of AQB, equivalent to the one in
Section 2, can be given. First we define the following. By “a cylinder of A” we
mean a cylinder contained in A. Further, a set C is called a maximal cylinder of
A if C is a cylinder of A and there is no cylinder C’ of A with C ¢ C".
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(3.2) LEMMA.

(i) AOB=U{C N C’'|C is a cylinder of A, C' is a cylinder of B, and
c.1cCy.
(ii) AOB = U{C n C’|C is a maximal cylinder of A, C’ is a maximal cylinder
of B, and C 1 C'}.
(iii) AODB=U{A’'NB’'|A’Cc A, B CB, and A’ 1 B'}.

Proor. (i) Follows immediately from definition (2.4) and the definition of
113 J_ .”

(ii) It is clear that the r.h.s. of (i) does not change if we restrict ourselves to
maximal cylinders.

(iii) By (i) it is obvious that the Lh.s. of (iii) is contained in the r.h.s. We prove
the other direction as follows: By Lemma 3.1(iii,iv), AOB > U{A'OB’|A’ C A,
B’ c B} which contains, of course, U{A'DB’|A’ C A, B’ c B, A’ L B’} which,
by Lemma 3.1(ii) is equal to the r.h.s. of 3.2(iii). O

Using the above lemma we get several equivalents of conjecture (2.6):

(3.3) LEMMA. The following statements (i, ii, iii, iv) are equivalent to (2.7):

(l) P‘(Ulsism(ci N Cz/)) = “(Ulsigmci)p‘(ulsiSmCi/)’ where m € N \ {0}’
C,,C; c Q are cylinders, C; L C/, i =1,...,m.

(ll) F‘(U1<z<m(A N B, )) < p‘(U1<i<mA')p‘(U1<i<mB‘)’ where m € N \ {0}’
A,B,cQ, A, 1LB,i=1,...,m.

(i) p(U{C;NnCjlied, j e I’ C;LC) < p(U,e,C)y(U,e,C ), where I, I
are finite index sets andC,iel and C' J € I are cylinders in Q.

(iv) p(U{A;NnBjliel, jel, A; L Bj}) < w(U; e 1A, c B,), where I, I'
are finite index sets, and A,, i € I and B;, j € I' are subsets of .

ProoF. (2.7) < (i): (2.7) implies (i) by taking A = U, _;_,,.Ci, B=U, ;. .C/,
and noting that, by (3.2(i)), the Lh.s. of (i) is contained in AOB. Conversely, (i)
implies (2.7) by taking, for (C;, C}),.;.,, all possible pairs (C,C’) with C a
cylinder of A, C’ a cylinder of B, and C L C’, and again using 3.2(i).

(2.7) & (ii): As the above proof; this time use 3.2(iii) instead of 3.2(i).
(2.7) < (iii): Analogous to the first case.
(2.7) < (iv): Analogous to the second case. O

We shall now briefly discuss the Examples 1.1 and 1.2 in light of the above
definitions and results. As to Example 1.1, let, if there are n different types of
toys, S;,S,,...,S, represent the sets of possible colors, and take £ = S; X
S, X -+ X8,

The combinations 1,2,3,...,k on the first list and 1,2,3/,...,1’ on the
second list correspond to cylinders C,, C,,Cs,...,C, and Cj,Cj,Cj,...,Cj, re-
spectively. Further, the set of compositions 1 X 3,1 X 4/,... corresponds exactly
to {C;NCll<i<k,1<j<, C; L Cj} and now, noting Lemma 3.3(iii), it is



DISJOINT OCCURRENCES OF EVENTS 359

clear that the example, in its general setting (i.e., arbitrary number of different
toys, etc.) is indeed an interpretation of the conjecture.

As to Example 1.2, assume that G is a finite graph (otherwise we can use
obvious limit arguments). Now let @ = {0,1}'*!, where E is the set of bonds of G
and take, for w € Q, w; = 1 or 0 according as the bond b; is open or closed (or, in
the random-direction case, according as the direction of b;). Then the events
{there exists an open (directed) path from a site of V, to a site of V,} and {there
exists an open (directed) path from a site of W, to a site of W,} can be
considered as sets A, B C Q. It is easy to check that the event {there exist two
disjoint open (directed) paths one of which goes from a site of V; to a site of V,
and the other from a site of W, to a site of W,} corresponds to AOB, which
clarifies the connection with the conjecture.

Lemma 3.3 yields rather trivial equivalents of conjecture (2.6). More interest-
ing is the equivalence of this conjecture to conjecture (2.8). This equivalence will
be proved by using the following lemma which is also useful in many other
applications.

(3.4) LEMMA. Let, for1<i<n,1<j<m,S; and T; be finite subsets of
N, and p; and v; probability measures on S; and T}, respectively. Further, let
p=p X pyX o Xp, and v=v, X vy X -+ X, be the respective product
measures on @ (= S; X S, X -+ X8,) and @ (=T, X Ty X --- XT,,). Finally,
let A and B be subsets of Q, and f: @' — Q a map with the following properties
(i) and ((ii) or (ii")):

i) p(w)=r(fYw)) forall w € Q.

(i) If C, and C, are cylinders contained in Q, and C, L C,, then
fHCY) L fHGy).

(ii") If C, and C, are maximal cylinders of A and B, respectively, and
C, L C,, then fY(C,) L f7H(Cy).

Then

v(A'OB’) < v(A")v(B’) implies p(AOB) < p(A)p(B),
where A’ = f~YA) and B’ = f~Y(B). |

REMARKS.

(a) Note that we do not in (ii) and (ii’) require that f~'(C,) and f~Y(C,) are
cylinders.

(b) Note that (ii’) is weaker than (ii) so that the latter is superfluous, since we
require (i) and ((ii) or (ii")). However, we also state (ii) because in many cases
treated in this article, this stronger condition does hold.

ProoF. By Lemma 3.2(ii) we have f~1(AOB) = f~Y(U{C,; N C,|C, is a maxi-
mal cylinder of A, C, is a maximal cylinder of B, C; 1 C,}) which, of course,
equals U{f~Y(C)) N f~%C,)|C; is a maximal cylinder of A, C, is a maximal
cylinder of B, C, L C,} which, by property (ii’) of f, is contained in
U{A]; N Bj|A] C A, B{ C B, A} 1 B{} which, by Lemma 3.2(iii), is equal to
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A’'0B’. Hence
n(AOB) = »(f~}(AOB)) < »(ATB’) < v(A)»(B’) = n(A)u(B). O

(3.5) LEMMA. The conjectures (2.6) and (2.8) are equivalent.

ProOOF. We only have to prove that if conjecture (2.8) is true then conjecture
(2.6) is also true, since the other direction is trivial. So suppose conjecture (2.8) is
true. Let @ = S, X §, X --- X8, with S; = {s;,, 8i9,--+,8; 1,}» i = 1,..., n. Fur-
ther let, for 1 <i<n, p, be a probability measure on S;, and p=p; X
pg X -+ Xp,. Define p; ;= p,(s; ;) = p{w; = s; ;}. Since we have a finite sys-
tem, it is clear that, for each A C 9, p(A) is a continuous function of (p; j)
1<i<n,1<j<k, Using this and the fact that every p; y can be approxi-
mated to arbitrary precision by numbers of the form I127M, I, M € N, it is
clearly sufficient to consider the case that there exist mtegers M and C, ;,
1<i<n,1<j<k,;, such that p, ;= C; ;2™ So assume that the p; ;’s are
indeed of this form. Now consider, for each i=12,...,n, the set {0,1}", and
order the elements of this set, e.g., lexicographically (0 0,...,0), (1,0,...,0),
©,1,...,0), 1,1,0,...,0), etc. (we refer to this ordering in Sectlon 5). Deﬁne the
map f 0,1} > S as follows: The first C; , elements (with respect to the above
ordering) are all mapped to s;;, the next C o elements to s; 5, etc. (Note that
X,C; ;= 2™ so that f; is defined on all of {0, 1}.) Now apply Lemma (3.4) with
Q and p as above and @ = {0,1}"¥ (i.e,, T, = {0,1}, 1 < i < nM), » the uniform
distribution on €, and f: &’ — Q as deﬁned by

’ ’ ’ ’ ’ ’
FO@yeney Wty Whritseees Whprseens N N T AR TRRT W)

= (F@heees @)y Fo @hrarseees @hr)seees oees Ful @lnopganse-or @har))- O

We finish this section with some additional notation and with two lemmas
which are useful in the proofs of the results in Section 4.

(3.6) NOTATION. Let n, m be positive integers. Denote, for k; € N, «' € N*;,
A,cNk i=1,...,m:

(3.7) (..., @™) = (wll,...,wlkl,...,w'l",...,w',;‘m).
(3.8) [A,,...,A,]=A XA, X --- XA,,.

Further, for S,,...,S, C N finite, @ =T1~,S,, ,r>0, I+ r<n, AcII!_,S
B C Iy 1Sit

l+r
(3.9) [A,*7,B] = [A, IT s, B].
i=l+1
REMARKS.

(a) Of course, when we use the notation of (3.9), the S;, [+ 1 <i <[+ r, are
assumed to be known.
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(b) If no confusion is possible, we omit the commas in (3.7), (3.8), and (3.9) and
the “r” in (3.9).
(¢) Ifan A,in (3.8) consists of one element w, we write “w” instead of “{w}.”

)

(d) The notation (3.9) can be extended in an obvious way to more * *”’s,

(3.10) LEMMA. Let, for i =1,...,n, S; be a finite subset of N and p; a
probability measure on S;. Let @ =[1",S; and p =11 n,;. Define, for = a
permutation of {1,...,n}, w = (w,...,w,) €Q, and D C Q:

(@) = (@pqys+-+» Opmy) and m(D) = {7n(w)|w € D}.

Further, let S{ = S,-;, and p;=p,-, i=1,...,n, & =1TI"_,S/, and p’ =
[17 ,u'.. Then, for all A, B C Q:

w(7(A)) =n(4), w(=(B))=p(B),

(3.11)
p'(7(A)on(B)) = p(AOB).

ProoF. The proof is straightforward. O

(3.12) LemMmA. Let A,BcTII~,S, K, c {1,...,n}\ supp(B), KzcC

i=1
{1,...,n}\supp(A), K,p=K,U Kz, K={1,...,n}\ K, p. By the preced-
ing lemma we may assume for our purpose that, for certain r,s,t >0, K =
{1,...,r}, Ky={r+1,...,r+s}, Kg={r+s+1,...,r+s+t=n} and
K,p={r+1,...,n}. Define, for o’ €Il;cg,S; and D C Q,

D(&) = {w eIl Sl(ww) D}.

Let p; be a probability measure on S; i =1,2,...,n, p=TI"p; and ji =
ek pi If
(3.13) Vo' e TK] S; i(A(«)0B(w') < i(A(w))iE(B(w")),
1153 AB
then
(3.14) r(AOB) < p(A)u(B).

ProOF. Define, in addition to the above, for w, € Il;cg,S; and
wp €I1;c x,S;

A(wy) = {&‘) € il;;(Sil[C)wA*] c A}
and
B(wg) = {(3 S i];{Sil[é*wB] c B}.

It is easily seen that if v’ = (wywp) € [1;c g, ,S; then A(w,) = A(w'), B(wg) =
B(w), and (AOB)(w’) = A(w))0B(w’) = A(w,)OB(wg).



362 J. VAN DEN BERG AND U. FIEBIG

Let py =Tlcx i p=Tlcx li and pyp = py X pp. If the condition in
(3.13) holds, then

4(ADB) = Tu([(ADB)(@)w']) = Thas(@)i(A()DB(w))
< Than ) AW)E(B()

= Z ZP‘A(“’A)“B( wB)ﬁ(A(wA))ﬁ(E(wB))

Wy wp

= ZP‘A(“’A)-‘I(A(“’A))Z“B(wB)ﬁ(é(wB))
= Yu([A(wq)ws*]) Ep([B(wp) * 0p]) = p(A)u(B),

where «’ is summed over I1;c g, S;, w4 over Il;c ¢, S; and wg over I'l;c,S;. O

4. Statement of the main results. We state in Theorem 4.2 four special
cases of conjecture (2.6) which are proved in Sections 5-7. The theorem is
followed by a short discussion of each of the cases.

(4.1) REMARK. In addition to the cases of Theorem 4.2 we can also prove
(2.6) in the case where the maximal cylinders of A or of B are mutually disjoint.
The proof is straightforward. [Use Lemma 3.2(ii) and the fact that each set is the
union of its maximal cylinders.] Further, we have a (rather complicated) proof
for the case in which Q@ = {0,1}", u is the uniform distribution on §, and A or B
has at most 3 maximal cylinders.

For the first case of Theorem 4.2 we need some definitions. Let, as usual,
S, ..., S, be finite subsets of N and Q@ = [17.,S;. If w, w" € @ then w > &’ means
w, >, i=1,...,n. A set AcCQ is called increasing or positive if v’ € A
whenever «’ € ©, & > w, and w € A. Analogously, A is decreasing or negative if
w € A whenever v €Q, o <w, and w € A. The events A and B in the
open-closed case of 1.2 are examples of increasing events. However, the corre-
sponding events in the random-direction case can be represented neither as
increasing nor as decreasing events.

(4.2) THEOREM. Let, for 1<i<n, S; be a finite subset of N and p;
a probability measure on S,. Let @ =8, X -+ XS,, p=p,; X -+ Xpu,, and
A, B c Q. In each of the following cases we have .

(4.3) r(AOB) < p(A)u(B).

(a) A and B are both an intersection of an increasing and a decreasing event.

(b) @ = {0,1}" and A, B are both permutation invariant [i.e., if the coordi-
nates of an element of A(B) are permuted, the result is again an element of
A(B)].
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(c) There are cylinders C;, i€ I, and C/, j € J, such that A =U,,C,
B=U;.,C andforalli€l, jedJ:C;LC orC;NnC/ = 2.

(d) There are cylinders C;, i € I, such that A =U,.,C;, C; is a maximal
cylinder of A, i € I, and for alli, j € I: C; L C; or supp(C;) = supp(C)).

Proor. The cases (a) and (b) are proved in Section 5, the case (c) in Section
6 and the case (d) in Section 7. O

(4.4) DI1sCUSSION OF THEOREM 4.2.

(a) Note that this result includes the case that A and B are both increasing
and the case that A is increasing and B decreasing. The first has been proved,
for @ = {0,1}" by van den Berg and Kesten (1985), who obtained it as a special
case of a result concerning so-called NBU measures. They had several other
(unpublished) more direct proofs. One of these is closely related to the proof of
the clutter theorem. [This theorem is treated by McDiarmid (1980, 1981) and has
been applied before by Hammersley (1961).] We use a refinement of it (which we
call the splitting method) to prove (a) and (b).

If A is increasing and B decreasing and £ = {0,1}", then AOB = A N B and
we get, by (a), p(A N B) < p(A)u(B). This is equivalent to a correlation
inequality of Harris (1960). In fact, Harris’ inequality says that increasing events
are positively correlated to each other but, since the complement of an increasing
event is decreasing, this is the same as saying that an increasing and a decreasing
event are always negatively correlated to each other. See also the discussion of
(c) which also contains Harris’ inequality as a special case.

(b) In spite of serious attempts we have not been able to prove the permuta-
tion-invariant case more generally, i.e., for @ = {0,1,..., £}*, & > 2. That result
would have the interesting consequence that the multinomial distribution is
SNBU [see van den Berg and Kesten (1985) for a discussion of SNBU].

(c) Note that, in this case, AOB =A N B so that we have a correlation
inequality. As a special case we have € = {0,1}", A increasing and B decreasing
[because the maximal cylinders of an increasing event are always of the form
[@']x and those of a decreasing event of the form [w°] ; where «! is the element
(1,1,...,1) and «° the element (0,0,...,0)]; this reduces again to Harris’
inequality which was also obtained as a special case of (a). Harris’ inequality has
been extended by Fortuin, Kasteleyn, and Ginibre (1971) to a larger class of
probability measures on {0,1}". The FKG inequality in turn is contained in a
rather general theory developed by Ahlswede and Daykin (1979). However, apart
from some common special cases, like Harris’ inequality, there does not seem to
be a relationship between conjecture (2.6) and the results of Ahlswede and
Daykin.

Another example of (c) is the following:

(4.5) ExaMPLE. Define, for positive integers I, m,

B ,={(x,y)€2)0<x<1,0<y<m).
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The boundary of B, ,, is defined as
8(B; ) = {(x, ¥)E€B, ,lx=00rx=1lory=0o0ry= m},
and the interior of B, ,, as
int(B; ,,) = B; ,\ 8(B; ).

The sets B, ,,, [, m € N\ {0}, and their images under translations 72 — z?
are called boxes. Now suppose that each site s € Z?2 is, independent of the other
sites, black with probability p, and white with probability 1 — p,. A box is called
black (white) if its boundary is black (white) and its interior is white (black). Let
V be a finite region in Z2, e.g., for a certain positive integer r,

V={(x,5) € 2%, 15 < r}.

Further, let A be the event {there exists a black box in V} and B the event
{there exists a white box in V'}. It is not difficult to check that this falls under
case (c) in our theorem, so we get P(A N B) < P(A)P(B). Note that Harris’
inequality cannot be applied here because neither A nor B is increasing or
decreasing.

(d) This case has the following interesting consequence:

(4.6) COROLLARY. Let x,, x4,...,x, be independent random variables with
values in R (or another set, it turns out that the set is immaterial). Let, for
1 <i<n, A, B;, and C; be Borel sets. Then

P{there are three different i, j, k such that
(4.7) x; €A, x;€ B;, andx;, € C},}
< P{(3ix; € A;}P{3ix; € B;}P{ix; € C;}.

REMARKS.

(i) The result can be extended to four types of sets or more (i.e., A}’s, B} ’s,
C!’s, D! ’s, etc.). We show how (4.7) follows from our theorem; the above-men-
tioned extension can be proved by induction on the number of different types of
sets.

(ii) For the case with two types of sets, and for the case in which, for each i,
the sets with index i are mutually disjoint, there is a more direct proof. However,
if there are no additional conditions, we do not know a proof of (4.7) which is
more direct than that of the full Theorem 2.1(d) of which it is a corollary.

PROOF OF THE COROLLARY. First we remark that the Lh.s. of (4.7) is
completely determined by the probabilities
P(q,r,s) = P{x;€ A(q) n B(r) n C(s)},
q,r,s € {0‘,1},1 <i<n,
where, for a set V, V(0) denotes V and V(1) denotes V*. Therefore, it is sufficient

(4.8)
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to prove the corollary for the case in which each x; can only have a finite number
of values. Hence it is equivalent to the following:

Let, fori=1,2,...,n, S; be a finite subset of N, p; a probability
(4.9) measure on S, and A, B;,C; subsets of S;. Further, let Q =
S; X - XS, and p=p, XpyX -+ Xp, Then
p{(wy,...,w,)| there exist different i, j, 2 such that w,€ A,
(4.10) w; € B;, and wp € G} < p{(wyy -+, @3 w; € A)
Xp{(@y, .- -5 0,)|3) w; € Bp{(wy, ..., w,)| Ik wp € Cp}.

PrROOF OF (4.9). Define A = {(w,,...,w,)|3i w; € A;}, and define B and C
analogously. It is easy to see that the event of the Lh.s. of (4.10) is a subset of
AO(BOC), and that A, B, and C have the property mentioned in case (d) of
Theorem 4.6. Now the result follows by applying this theorem twice. O

5. Proof of Theorem 4.2, cases (a) and (b). In case (b) we have @ = {0,1}",
and for (a) it is sufficient, by virtue of Lemma 3.4 [take f as in the proof of
Lemma 3.5, noting that f~'(A) is increasing (decreasing) if A is increasing
(decreasing)] to restrict ourselves to the binary case. The proofs are based on the
splitting method mentioned in Section 4, which we shall explain here. First some
definitions [mind the notation (3.6)—(3.9), which will be used frequently]. In the
following we always assume n > 1.

(5.1) DEFINITION. If A C {0,1}", then
A = (oo € {0,1}"7, (w1) € A},
A= {w|w €{0,1}" ", (w0) € A},

A" =A'NA' = {wjw € {0,1}" ", [w x] c A}.

Clearly, for V c {0,1}*"!
VcAls[Vi]cA,
VcA’= [V0]cA,
Vc A" & [Vx] c A.

The following observations are frequently used.

(5.2) OBSERVATIONS.

@) If ¢ € {0,1}*7, Ac (0,1}, w,€ {0,1}, w = (dw,), and
Kc(1,...,n—1)}, then: [w]x CA o [&]x c A"
(i) A* N B'= (A N B)}, where i denotes 0, 1, or 01.
(i) A = [A'1] U [A°0].
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(5.3) LEMMA. For A, B c {0,1}"

(i) (AOB)! = (A'0B%) U (B'DA"Y);
(ii) (AOB)° = (A°0B®™) U (B°0A™);
(iii) (AOB)" = (A'0B” N B°0A™) U (A'DB” N A°0B%)
U (B'0A” N A°0B%) U (B'ODA”™ N B°OA™).

PRrROOF. (i) We prove that the Lhs. is contained in the r.h.s. The reverse can
be proved analogously.

w=(wy,...,0, ;) € (AOB)'=(wl) € AOB
=3K,Lc{1,...,n}KnL=2, [wl]lxcA, [wl],cB.

For K, L as above, at least one of these sets does not contain n. Suppose n & L.
We show that this implies w € A'OB®. [Analogously (note the symmetry),
n¢ K implies w € BlOA®] n¢ L=LC{l,...,n—1} =[w], € B" [see
5.2(i)]. Further, [w1]x € A = [w]g € A', where K’ = K\ {n}. Hence, because
LNK =g, wec AOB™ :

(ii) Analogous to (i) (by 0-1 symmetry).

(iii) Follows from (i), (i), and Definition 5.1. O

(5.4) DEFINITION. For the pair A, B C {0,1}* we define the pair
A* *Bc {0,1}**! by

A* = {(wl,...,wn+l) € {O,l}"“'(wl,...,wn) GA},

*B = {(wl,...,wnH) S {0,1}n+ll(w1,~n’wn—1’ wn+1) € B}'

Further, if p = p, X --+ Xp,, where each p; is a probability measure on {0,1},
then }i is the probability measure p, X - -+ Xp, X g, on {0,1}**'. Note that
A* =[A +] and *B = 7([B *]) (where = is the map which exchanges the last
two coordinates). Also,

(5.5) (i) MA*)=u(4); (i) A*B)=p(B).

Roughly speaking, A * and * B are obtained by “making A and B independent
in the last coordinate by splitting this coordinate.” Analogous operations can be
defined for the coordinates 1,..., n — 1. Intuitively, one would expect that, after
applying one of these split operations, the probability of ADB always increases.
This would imply that conjecture (2.6) is true, because then, after successively
“gplitting” all coordinates 1,...,n we would have, for the “new” A and B
(denoted by A, ‘B),

A'1'B, hence p(AOB) < i(A'0'B) = p(A")a('B) = p(A)u(B).

However, Ahlswede gave a counterexample and since then we have observed that
it goes wrong very often. It appears that the probability of ADB does increase if
(AOB)” = A”0B%, which (as we shall show) holds for case (a) of our theorem.
We shall prove that a weaker condition is also sufficient, which we use to prove
case (b) of the theorem.
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(5.6) LEMMA. Let A, B € {0,1}". Then
A*0*B =[A%0B°00] U [A'OB°10] U [A°0B'01] U [A'OB'11].

PrROOF. Let r,s € {0,1}; we show that for all w € {0,1}*"!, (wrs) e
A*O*B « w € AOB®. (wrs) € A*0*Be 3K, Lc (1,...,n+ 1) s.¢t.
KNnL=g, [wrs]gy € A*, [wrs], € *B. However, because (n + 1) &
supp(A*) and n & supp(*B), the last statement is equivalent to 3K’ C
{,...,n—=1}, L'c{1,...,n—1}st. K'NL' = @, [w]g. € A", and [w],. C
B* e we A’OB®. 0O

(5.7) LEMMA. Let A, B C {0,1}".
@ If
(AOB)” = (A'mB™ N A°0B™) U (B'ODA” N B°OAY),

then [ A*O*B) > u(AOB).
(i) If (AOB)* = A®0B", then [ A*O*B) > u(AOB).

PRrROOF. See Lemma 5.3(iii). We only have to prove (i) because (ii) is weaker.
Suppose the condition in (i) holds. Let & = (w,,..., w,_;) be given. We show
that the conditional probability of A*O*B is always at least the conditional
probability of AOB. We have four cases (a,b,c,d). First let p = p({w|w, = 1}).

(a) w ¢ ((AOB)! U (AOB)°). Then the conditional probability of AOB is 0.

(b) & € (AOB)'\ (AOB)°. Then (&, w,) € AOB iff w, = 1, which has prob-
ability p. On the other hand, by Lemma 5.3, & € A'0B” or & € B'OA%. If
@ € A'OB™ then it is sufficient, in order to have (&w,w,,,) € A*0O*B, that
w, = 1, which has probability p. Analogously, if & € B'OA® it is sufficient that
w, ., = 1, which also has probability p.

(c) @ € (AOB)°\ (AOB)'. This case is analogous to case (b).

(d) & € (AOB)' N (AOB)".

Hence & € (AOB). So the conditional probability of AOB equals 1. We have
to show that also the conditional probability of A*OO*B equals 1. By the
condition in (i),

& € A'OB" N A°0B" or &€ B'DA®™ N B°OA™.

Suppose the first holds (by 0-1 symmetry the reasoning is analogous if the latter
holds).

& € A'OB" = (see Lemma 5.6)[ &1 *] ¢ A*O*B.

€ A’0OB" = [50=+] c A*O*B.
Hence [& * *] € A*O*B, so that, indeed, the conditional probability of A*O*B
equals 1. O

(5.8) PrROOF OF THEOREM 4.2, CASE (a). We show that, if n > 2, A,BC
{0,1}"and A, B have the property mentioned in case (a), then the condition in
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Lemma 5.7(ii) holds. This is sufficient because A* and *B also fall under case (a),
so we can successively split all coordinates. (More formally, the proof can be
completed by induction on the number of “ unsplit” coordinates.)

So, let A, BC {0,1}", A=DnE, B=Fn G, where D and F are increas-
ing, and E and G decreasing subsets of {0, 1}". Suppose « € (AOB)".. We shall
show that this implies w € A”0B%, so that (AOB)™ c A”0OB. The reverse
inclusion is trivial. w € (AOB)" = (w0) € AOB and (wl) € AOB. (w0) €
AUB=3K,Lc {1,...,n—-1} st. KNL=@, w=1 on KUL,
and [w0]x < D, [0w0],CF. (wl)€e AODB=3K',L'c{l,...,n—1} st.
K'NnL'=@, w=0on K'UL, [wl]lg € E, [wl], € G. Fix such K, L,
K’, L’. We have:

w=lonKULandw=0onK'UL'=(KUL)N(K'UL") = g.

Hence K, L, K’, and L’ are mutually disjoint subsets of {1,...,n — 1} and it is
easily seen that [w]x ,x € A% and [w],,, € B®. O

(5.9) ProoF oF THEOREM 4.2, CASE (b). We show that if A, B-C {0,1}" are
permutation invariant, then condition (i) in Lemma 5.7 holds. The proof
can then be completed by induction on n [using Lemma 3.12, noting that
{n, n + 1} & supp(A*) N supp(*B) and that, in the notation of the lemma, for
all i, j € {0,1} the pair A*(i, j), *B(i, j), also falls under Theorem 4.2, case
(b)]. Suppose

(5.10) w € (A'OB® N B°OA™)\ (B'ODA% U A°0B%).

we€ AOB" = 3K, Lc (1,...,n -1} st [w]xC A, [w], < B%, and
KnNnL=g. Fix such K,L. We have [[w]g1] C A, [[w], *] C B. Assume
die L w;=1. Fix such an i. Define K’ = K U {i}, L’ = L\ {i}. Obviously
K’ n L' = @. By the permutation invariance of A and B we have [[w]y *] C A
and [[w]; 1] € B, so that [w] . € A” and [w];, € B!; hence w € B'0A°. This
is in contradiction to (5.10). Hence the assumption “3i € L w; = 1” is false, so
that w = 0 on L. Analogously, because w is in B°0A% but not in A°0B%, we
get that for certain disjoint K, L c {1,...,n — 1}: [w]z € A%, [w]; € B°, and
w=1on K. Hence, since w=0on L and 1 on K, L and K are disjoint.

Summarizing, [w], € B%, [w]gz € A", and LN K = &, ie., v € A%OB.
However, this is in contradiction to (5.10). Therefore, we may conclude that the
r.h.s. of (5.10) equals @, hence

(5.11) (A'OB™) N (B°0A"™) c (B'DA™) U (A°OBY).
Of course, we may replace the r.hs. of (5.11) by its intersection with the Lhs.,
which is ,
((B'DA™) n (A'mB®™) N (B°0A™))
U((A°aB®) n (A'DB") N (B°0A%Y)),

which is contained in the r.h.s. of the condition (i) in Lemma (5.7). Analogously,
by 0-1 symmetry, we can prove also that A°0B® N B'0A% is contained in the
r.h.s. of 5.7(i). The required result now follows from Lemma 5.3(iii). O
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6. Proof of Theorem 4.2, case (¢). We first state some definitions and
lemmas. A representation of an event A is a set {[«'] k|t € I} of cylinders s.t.

tel["" ]K =A.

(6.1) DEFINITION. Let &/= {[w‘]K i€ I} and # = {[wJ]K |7 € J} be sets
of cyhnders The pair .7, % is called semi-disjoint if

Viel,jed:K,nLi=2 or [o]kN[w/]L=

A pair of events A, B is called semi-disjoint if there exists a semi-disjoint pair of
representations of A and B.

REMARK. Note that these pairs of events form exactly case (c) in the
theorem.

The set of maximal cylinders of an event A is denoted by MR(A) Clearly
MR(A) is a representation of A.

(6.2) LEMMA. Let A and B be events and let &/ be a representation of A. If
the property (*) (see below) holds for all w and for all K then the pair <,
MR(B) is semi-disjoint.

(*) ([w]KEM,wGB)-a[w]KcCB.

PrOOF. Let [y], € MR(B), [7]x €, and [9]x N [Y], #* . Then for a
suitable o this intersection can be written as [0] g, ;. (Note that, for such o,
[nlx = [0)k, [¥lL = [0].,) It is not difficult to see that [a]L\K =
U{[w]ke|lw € [0]g 1} Which, by (*), is contained in B. Hence [0],\x is a
cylinder of B. But then, [v],\ x is also a cylinder of B. This is poss1ble only if
IL\N\K=L.Hence KNL=@.0

(6.3) LEMMA. The pair of sets D, E is semi-disjoint if and only if the pair
MR(D),MR(E) is semi-disjoint.

ProoF. The “if-part” is trivial so we only have to prove the other direction:
If the pair D, E is semi-disjoint, then by definition there is a semi-disjoint pair
9, & of representations of D and E. It is not difficult to show that if we take
A=D, /=2, and B=E, then (*) in Lemma 6.2 holds for all w and K.
Hence, by that lemma, the pair 2, MR(E) is semi-disjoint. Applying Lemma 6.2
once more [this time we take A = E, &= MR(E) and B = D] gives the re-
sult. O

(6.4) LEMMA. Let Q@ =T17_{1,..., k;} and let p =T1}_,p;, where p; is the
uniform distribution on {1,...,k;} (z =1,...,n). (Hence p is the uniform
distribution on Q.) If A, Bis a semi-disjoint pair of subsets of 2, then

p(AOB) < p(A)p(B).
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REMARK. By applying Lemma 3.4 (in the same way as we did in the proof of
Lemma 3.5), Lemma 6.4 can be extended to case (c) of Theorem 4.2. (It would
even be sufficient to give a proof for the case in which each &; = 2; however, our
proof for general k; is not more complicated.)

Proor oF LEMMA 6.4. The case n = 1 is trivial. We shall prove that if the
result holds for n — 1 (where n > 2), then it also holds for n. The proof consists
of five parts, (i)—(v). First, let £, A, and B be as in the conditions of the lemma.
By “making A (B) decreasmg (increasing) in the last coordinate” we will obtain
A and B for which we prove in parts (i)—(iii) that: u(A) = u(A), p(B) = p(B),
and p(A N B) = u(A N B). Further, we show in part (iv) that the pair A Bis
also semi-disjoint, so that A n B = AOB. Hence, it is sufficient to prove that
p(AOB) < p(A)u(B). This will be done in part (v) by applying the induction
hypothesis to @’ =TT }1,..., &;}.

First some definitions:

(6.5) DEFINITION.
%" = {C € MR(B)|n € supp(C)},
= {C € MR(B)in & supp(C)},
B*=u%*, B =UZ%.
&t o/, A", and A~ are defined analogously.

(66) DEFINITION. If VC {1,...,k,}, then V= (I, 1+ 1,..., k,}, where [ =
k,— V| +1,and V={(L,...,[V]}.

(6.7) DEFINITION.

(a) B* = w rep{[w V(e 3]} where V(&) = {j|(«’ j) € B*}.
() A" = U, o {[«'W(w)]}, where W(w) = {Jji(«' j) € A*}.
(¢) B=B~U B*.

dA=A"UA"

We are now ready to start the real work.

(i) It is easy to see, by conditioning on w, ..., w,_;, that, for all D for which
supp(D) c {1,...,n—1}

p(DNB*)=pw(DNB*) and w(DNA*)=pu(DnAY).
(i) Using (i), we get
#(B) = p(B~) + n(B*) — p(B~ N BY)
= p(B") + u(B*) —w(B~ N B*) = p(B),

and analogously, u(A) = u(A).
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(iii) Application of Lemma 6.3 yields A* N B* = @, and by conditioning on
Wiy ..y w,_1, it follows that also A* N B* = &, so that
WANB) = p((A"UA) 0 (B UBY)
=p(A"NB )+ p(A"NB*) +p(A*NnB7)
—p(A"NB NB*)—p(A"NB NAY).
Now, by (i), we may, in the last expression, replace B* by B* and A* by A*and
then, following the equations backwards, we get u(A N B) = u(A N B).

(iv) We shall now show that the pair A, B is semi-disjoint. First of all, it is
clear that &/~ U MR(A*) and 4~ U MR(B™) are representations of A and B,
respectively. It will turn out that this pair of representations is semi-disjoint.
The pair MR(A™), MR(B™) is obviously semi-disjoint, because, as we saw in
(iii) A" N B* = &. By Lemma 6.3, the pair «/~, #~ is also semi-disjoint. It
remains to show that the pairs &/~, MR(B*) and #-,MR(A™) are also semi-
disjoint and, by symmetry, it is sufficient to treat the first pair. This will be done
by using Lemma 6.2. _ :

Suppose w = (wy,...,w,) E B and[w]x €. Let K'=(1,...,n — 1}\ K.
Define the map S: @ X € - (1,..., k,} by

S(n,v) = {Jllnle n [yl n[* j]1c B*}.

REMARK. Note that the intersection of the three cylinders in the above
expression contains only one element.

Define S(n, y) analogously, replacing B* by B*. We know, because the pair
&/, B is semi-disjoint (Lemma 6.3), that for all 4 € €, S(w,w) C S(7, @).
Further, the definition of B* implies that

vae®, S(n)=50,0).
So we get
VqeEQ, S(w, w) c 8(n, @), and finally, because v, € S(w, @),
VneQ, w,eS8(n,w),sothat
vneQ, [n]lgn[e]lgc B,
hence [ w] - € B,

and so, by Lemma 6.2, the pair &#~, MR(B*) is semi-disjoint.
(v) First define, for Dc Qand1 <i<k,,

D'={v € @|(v'i) € D}.

Before we apply the induction hypothesis, we also have to show that the pair
A, B! is semi-disjoint (i = 1,..., k,). This is easily seen by taking the represen-
tations

&= {C|C e MR(4A)}, #'= {C|C € MR(B)}.
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The induction step is as follows. Let p’ denote p|Q’ (i.e., p’ is the uniform
distribution on Q’). Let p = 1/k,. We have

p(A)p(B) — p(A N B) = p(A)u(B) — p(A N B)
k, ky, k, )
=p L w(A)p ¥ w(B') -p X w((4nB)).
i=1 Jj=1 i=1
The last summation equals
ky B _ '
p*Y Y p(A'nBY),
i=1j=1
which, by the induction hypothesis, is at most
kn kn
P’y X w(A)W(B).
i=1j=1
So we have

ky Ky
p(A)u(B) —p(AnB) 2p* Y ¥ [p(A)W(B’) — w(A)w(BY)]

=p* L [W(A) - w(A)][w(B)) - w(BY)],

which is nonnegative because, for all i, j, i < j implies A’ ¢ A* and B' c B/. O

7. Proof of Theorem 4.2, case (d). Clearly, there are mutually disjoint
K,, K,,... € {1,...,n)} such that the support of each maximal cylinder of A is
one of the K,’s. By Lemma 3.12 [noting that each A(«’) falls again under case
(d) of the theorem] we may assume that U;K; = {1,..., n} and by Lemma 3.10
that each K, consists of consecutive numbers. Further, we can reduce the
problem to the case that for suitable r;, s;

(7.1) e=T1{1,....,n}, A={0eQFiw <s]}.
i-1
This can be seen as follows. For each i, let

Qi={w’e I—IS,

JEK;

[* o’ *] is a maximal cylinder of A};

take r, = |[1;,cx,S}| and s; = |2, i.e., the number of maximal cylinders of A
which have support K, Obviously, there exists a-1-1 map f;: {1,...,7r} —
I1;c x,S;, which maps (1,...,s;} onto @ Let »; = (Il;c g ))° f; Now define
f=TLf: TI{1,...,n} > Q, and » =IIp. Note that f %(A) = {w €
I1,{1,..., r,}|3j w; < s;}, and check that the properties (i) and (ii") in Lemma 3.4
hold. Application of that lemma gives that we may indeed restrict ourselves to
case (7.1).
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Now we apply Lemma 3.4 once more to reduce 7.1 to the binary case. Let
n n
@ ={0,1)"x [T{1,...,s;} x [T{si +1,...,1}.

i=1 i=1

Define g: @' — Q by

B(Xys s Xy Yiseeos Yus Z1reves Zp)
= (gl(xl’ yl’ 21), g2(x2’ y2’ 22)" e gn(xn’ yn’ zn))’
where, for 1 <i < n,

y,, ifx;=0,

8i(x;, ¥ 2) = { ifx.=1.

z;,
Also define, for 1 < i < n, the probability measures p’,, p’,, and p;, on {0,1},
{1,...,s;) and {s; + 1,..., r;}, respectively, by

pie(0) = 1 — pip(1) = p{w; < )5

pi(J) =l =j}/mle; <8}, J=1,...,8;

pi(J) = p{o;=j}/p{e;>s}, J=s+1..,71
Finally, define

n

n n
po=TTw, % rlluéyx I-Ilp',iz'
i= i=

i=1
It is not difficult to see that the properties (i) and (ii) of Lemma 3.4 hold (with
f =g and v = p’) and that

g7 (A) = {(xl,...,xn, Vireons Vs Z1seees 2,) € QPFix; = O}.

Application of this lemma and of Lemma 3.12 [note that g '(A) does not
depend on the y,’s and z,’s] reduces the problem to the case that

(7.2) Q=1{0,1}", A={weQIiw=0},
and for this case we have the following direct proof.
If @ and A are as in (7.2) then, for arbitrary B C {,

wEAOB® we B and
(7.3)
i w;=0,(wy,.eer 01,1, Wi p15.-0,@,) € B.

Call an element w € B maximal if there is no &’ # w in B with &’ > w. Denote
the set of maximal elements of B by B,,,. Obviously, by (7.3), AOB C B\ B,
hence

(7.4) r(ADB) < p(B) = p(Bya)-
Further, for each w € Q

p({ee < 0}) = wEIOm(wi) = p(w) w]::_llf"'i(wi)
< p(o)/p(1,...,1) = p(w) /(1 = p(A)).

(1.5)
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Hence

p(B) = n( U (¢l eB, o< w}) < L p({«'|e' € B, o <w})
(7.6) © S Boax S Bnax

< Y mw)/(1-p(A)) = p(Bae) /(1 - p(4)),

©E By,
so that
(7.7) #(Brax) 2 p(B)(1 — p(A)).
Combining (7.4) and (7.7) we get
(7.8) p(AOB) < u(B) — p(B)(1 — p(A)) = p(A)u(B). O
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