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EXTREME VALUES FOR STATIONARY AND MARKOV
SEQUENCES!

BY GEORGE L. O’'BRIEN

York University

Let (X,,),=1,2,... be a strictly stationary sequence of real-valued random
variables. Let M; ; = max(X;,,..., X;) and let M, =M, ,. Let (c,) be a
sequence of real numbers. It is shown under general circumstances that
P[M, < c,] — (P[X; < c,))*""™up,<calX1>cal 5 0, for any sequence (p,)
satisfying certain growth-rate conditions. Under suitable mixing conditions,
there exists a distribution function G such that P[M, < ¢,] — (G(¢,))* = 0
for all sequences (¢, ). These theorems hold in particular if (X,,) is a function
of a positive Harris Markov sequence. Some examples are included.

1. Introduction. Let X = (X,)7_, be a strictly stationary real-valued
stochastic sequence. Let F be the distribution function of X, and let x, =
sup{x: F(x) <1). Let M, ;=max(X,,,, X;,,,..., X;) and let M;=M, ;=
max(X;, X,,..., X;). The purpose of this paper is to investigate the asymptotic
behaviour of P[M, < c,] as n — oo, for real-valued sequences (c,)?_;. We
always assume P[ X, > ¢,] > 0 and P[X; = xz] = 0.

If X is a sequence of independent identically distributed random variables
(ii.d. sequence), then, of course,

(1.1) P[M,<c,] = (F(c,))".

Our purpose may be thought of as an investigation of the asymptotic effect of
the dependence structure of X on P[M, < ¢,]. We will show in Theorem 2.1
that under a broad class of circumstances we have

(1.2) P[M, < ¢,] - (F(c,))""MuneiXizel | o

where (p,)7_, is any sequence of positive integers satisfying p, = o(n) and
certain other rate of growth conditions.

Comparing (1.1) and (1.2), we see that M, is asymptotically no larger in the
general case than in the ii.d. case and the conditional probability in (1.2)
provides a measure of how much smaller it tends to be. This conditional
probability should be interpreted as a measure of the extent to which large
values cluster together, since M, , can be less than ¢, when X, > ¢, only if X,
is the last element in a cluster of values which exceed c,. If large values
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do cluster together, there must be longer intervals between clusters, so that
P[M, < c,] is larger than it would be otherwise.
If P[M, , > c,|X;>c,]— 0, then (1.2) reduces to

P[M, < c,] = (F(c,))" ~o.

This result has been proved under assorted conditions by Loynes (1965),
Leadbetter (1974), O’Brien (1974a) and Davis (1979), among others.

If T'(m):=limsup,_,, P[M,, , > c,|X;>c,]=0 for some fixed m, then
(1.2) yields P[M, < ¢,] — (F(c, )PPIMy < ealXi> el 5 0 which has been proved
under various conditions by Newell (1965), O’Brien (1974b) and Leadbetter
(1983). The last two papers also deal with the case I'(m) » 0 as m — c. All
these results can be deduced from our Theorem 2.1. Rootzén (1986) has indepen-
dently obtained a result much like ours.

The main theorem and some related results are given in Section 2 and proved
in Section 3. In Section 4, we consider the simultaneous asymptotic behaviour of
P[M, < c,] for collections of sequences (c,).

Many examples from the literature on extreme values can be viewed as
functions of Markov sequences. We give a systematic study of these sequences in
Section 5.

The notation introduced in the first paragraph will be used throughout this
paper. We also make the following notational conventions. Let (b,) be a se-
quence. To avoid many subscripts, we often write b for b,. Limits are understood
to be “as n — 0.” We write F*(-) instead of (F(-))* and P*[-]for (P[-]D* If x
is a real number, [ x] denotes the greatest integer not exceeding x.

2. The main theorem. We will use the following mixing condition, which
weakens Leadbetter’s (1974) widely used condition D(c,) just enough to cover
the case of certain stationary sequences with a periodic structure, such as
periodic Markov chains.

DEFINITION 2.1. The stationary sequence (X,,) is said to have asymptotic
independence of maxima relative to the sequence (¢, ) of real numbers [notation:
(X,) has AIM(c,)] if there exists a sequence (g,) of positive integers with
g, = o(n) such that

a, = max|P[M SCpy My ivgsj< € ]

(2.1)
—P[M; < c,]P[M; < c,]| -0,

where the maximum is over all i > ¢ and j > g such that i + ¢ +j < n.

THEOREM 2.1. Let (X,) have AIM(c,), where (c,) is a sequence of real
numbers. Let (q,) and (a,) be as in Definition 2.1. Let (p,) be a sequence of
positive integers such that

(2.2) p=o(n), na=o(p) and q=o(p).
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If either

(2.3) liminf F*(c,) > 0

or

(2.4) limian[Ml’p < ¢ X, > ¢,| >0,

then both

(2.5) P[M, < c,] = (F(c,))""Mo=ed 5 0
and

(2.6) P[M,<c,] - exp{—nP[X,>¢c,, M, , < c,]} = 0.

The proof of this theorem also yields the following corollaries.

COROLLARY 2.2. If the assumptions of the theorem other than (2.3) and (2.4)
hold, then we still have

2.7) P[M, < c,] < exp{ —nP[X,>c,, M, , < c,]} +o(2).

COROLLARY 2.3. Let (k,) be an increasing sequence of positive integers.
Then Theorem 2.1 and Corollary 2.2 hold if n is replaced by k,, throughout their
statements.

REMARKs. If (a,) is any sequence of elements of [0,1], then
(2.8) ar —exp{—n(l - a,)} 0.

This can be proved by applying Theorem 1.5.1 in Leadbetter, Lindgren and
Rootzén (1983) to subsequences along which a? converges. In particular, (2.3) is
equivalent to the condition limsup nP[ X, > c,] < 0. Also, (2.5) and (2.6) are
equivalent if either (2.3) or (2.4) holds. The requirement that (2.3) or (2.4) holds
serves to preclude the delicate situation where the second term in (2.5) converges,
so to speak, to 0°. At the cost of a much messier proof, (2.6) can be proved with
(2.3) replaced in the theorem by the condition that limsup P[M,, > ¢,] < 1 and
np~'P[M, > c,] — 0 or the condition that limsup P[M, > ¢,] < 1.

3. Proof of Theorem 2.1 and its corollaries. We begin with a lemma
which is essentially the same in content and proof as results of Loynes (1965) and
Leadbetter (1974).

LEMMA 3.1. Let (X,) have AIM(c,) and let (q,), («,) and (p,) be as in
Theorem 2.1. Let r, = [n(p, + q,) '] Then
(3.1) P[M,<c,] <P [M,<c,] +o(1).
If, in addition, (2.3) holds, then
(3.2) P[M,<c,] - P’ [M,<c,] —0.
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We now present the proof of Corollary 2.2, which is the easier half of Theorem
2.1. We have
P[M,<c,] =1-P[M,>c,]
p
=1- Y P[X;>c,, M, ,<c,]

i=1
<1-pP[X,>c, M, ,<c,)].
Applying (3.1), we obtain
P[M,<c,] <P"[M,<c,| +o0(1)
(3.3) <(1-pP[X,>c,, My , < ¢,])" +0(1)
< exp{—nP[X1 >c,, M ,<c ]} + o(1),

since prn~! - 1.
The next step is the proof of the complementary inequality
(3.4) P[M,<c,] > exp{ —nP[X1 >c,, M, ,<c ]} + 0(1),

under the assumption that (2.3) holds. It is enough to prove (3.4) along
subsequences such that P[M, < c,] converges, say to L €[0,1]. By (2.3),
rP[M, > c,] < C for some C < co and for all n, so P'[M <c,]=
a- Cr'l)’—>e ¢>0. By Lemma 3.1, L>0. If L =1, (34) is obv10us S0
we can assume 0 < L < 1. Let (s,) be a sequence of positive integers such that
P, = 0o(s,) and s, = o(n); then (2.2) and (3.2) hold with p, replaced by s, and
r, replaced by t, == n(s, + g,)"'. By (3.2) in the two cases and the fact that
0<L<1 P[M > c,] = o(P[M, > c,]). Thus,
P[M,>c,]1=P[M, ,>c,, M, , <c,]| +P[M,>c,]

= P[Ms_p >c¢,, M,_, <c ](1 + 0(1))

s—p

ZP[Xi>cn’sz+t 156, ] (1+O(1))

< sP[X, > c,, 1p_c](l+o(1))

Since nP[ X, > ¢,, M, , <
Lemma 3.1 that

P[M,<c,]=P[M,<c,]+0(1)
> (1 - sP[X1 >cp My, <c,](1+ 0(1))) + 0(1)
= exp{—nP[X,>c,, M, ,<c .} +o(1),

< ¢,] is bounded and stn~' — 1, we now deduce from

as required.

We observe that the preceding arguments apply equally well along subse-
quences. The only remaining task is to show that the hypothesis (2.3) may be
replaced by (2.4). It is enough to consider a subsequence along which F*(¢,) —» L,
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and P[M, <c,] = L,. If L, > 0, we are in the previous case. If L, > 0, then,
by (3.3) nP[ X, > ¢, M < ¢,] is bounded. This fact and (2.4) together imply
(2.3). Finally, if L, = L2 = 0 and (2.4) holds, then (2.6) is immediate. O

4. Collections of sequences. It is often interesting to consider the simulta-
neous asymptotic nature of P[M, < c,] for (c,) ranging over some collection of
sequences. Frequently mentioned cases are the following one-parameter families
of sequences: linear families a,x + b,, x € R, where a,> 0, b, € R and the
quantile family (d,(x)), x <0, given by d,(x)=inf{y: F(y)>1+ n" '},
-n<x<0 (d(x)=—o0 for x < —n). It was shown in O’Brien (1974b)
and Leadbetter (1983) that if (X,) has extremal index € (0,1), that is, if
F™d (x)) —» e* and P[M, < d,(x)] = e™ for all x < 0, then
(4.1) P[M,<c,] - G"c,) >0
for all sequences (c,), where G(x) = F'(x). We will call any distribution func-
tion G satisfying (4.1) for all sequences (c,) a phantom distribution function for
(X,). It is clear that G is not uniquely determined by (X,,) since only the right
tail of G matters. We next show that (X,) has a phantom distribution function
even if the extremal index is zero or does not exist, including the case when there
is no sequence c, for which F"(c,) = a € (0,1).

We first introduce a mixing condition which is a bit stronger than the
AIM(c,) condition if F' is not continuous near x. The sequence (X)) is said to
satisfy AIM *(¢,,) if it satisfies AIM(c,) both as stated and with “ < ” instead of
“<”in (2.1).

THEOREM 4.1. Let (X,) have AIM*( f(,,}) for all t > 0, where f, = inf{x:
P[M, < x] > e '}). Then (X,) has a phantom distribution function G given by
(4.2) G(x) = e™V/™ iff, <x<fo1(=0ifx <f,).

Proor. We note first that ( f,,) is nondecreasing and f, = x5 — , so G is well
defined. If 2 = max{i: f,=f,} and m = max{i: f; < f,}, then
(43)  G(f,) = G(f,) =e k2 e V/n> e V/m = G(f,) = G(f,-).

For ¢ > 0, we have
P[Mpu < finn] 2 €7' 2 P[Mpny < fran]-

Using an argument like that leading to (3.1) we can show from the first
inequality that np~'P[M, > f,,] — 0, where (q,,) is a sequence arising from
the AIM*( f,,;) condition and ( p,) satisfies (2.2). Then, using this fact in lieu of
(2.3), we obtain

P'[M,, < frny] + 0(1) 2 €72,
as in the proof of (3.2), so that
(4.4) liminf P[M, < f(,,] = e '/".

Consider a subsequence along which P[M, < f,,] converges. If the limit is
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positive, then np~'P[M,, > f(,,1] = 0 as before and we obtain
(4.5) limsup P[ M, < f(,,] < ™%,

along the subsequence and hence also for unrestricted n. Let (c,) be any
sequence of real numbers. It is enough to prove (4.1) for n restricted to
subsequences along which

(4.6) P[M,<c,] - L <[0,1].

Assume first that 0 < L <1 and write L = e™'/% where 0 < a < 0. Let ¢ €
(0,1). Comparing (4.6) with (4.4) for t = a(1 + ¢), we see that ¢, < f[,414. for
large n in the subsequence. Applying (4.3), we see that

Gn(cn) < Gn( f[na(1+e)] _) < exp{ _(a(l + £:))_1} + 0(1)‘

Similarly,

G"(c,) = exp{—(a(l - s))_l} + o(1).

Since ¢ is arbitrary, G™(c,) - e /%= L. The case L =0 and L =1 are han-
dled similarly. O

We remark that the phantom distribution function G constructed in the
above proof increases only by jumps even if (X,) is i.i.d. and F is continuous.

We also remark that as an immediate corollary of Theorem 4.1, we obtain a
new (albeit roundabout) proof of the fact that the set of possible limiting
distribution functions of a, (M, —b,), a,>0, b, € R, is the same for the
stationary case (with suitable mixing) as it is in the independent case.

5. Functions of Markov sequences. We begin with a mixing condition
that is appropriate for Markov sequences. Let o(i, j) denote the o-field gener-
ated by X;, X;,,,..., X;. If B is in this o-field, say B = {(X,,..., X;) € E} for
some Borel set E C R/~i*1, let B, denote the shifted set {(X; 4,..., X;,,) €
E} € o(i + k, j + k). We will say that (X,,) is r-strongly mixing (with mixing
function g) for a positive integer r if

(5.1) g(i) =sup|r ! rf_:lP(ABk) — P(A)P(B)| >0 asi— oo,
k=0

where the supremum is over all positive integers n, all A € o(1, n) and all
B € o(n + i, ). Strong mixing as it is usually defined is the same as 1-strong
mixing.

ProPosITION 5.1. Let (X,) be stationary and r-strongly mixing and let (c,,)
be a sequence of real numbers. Let (q,) be any sequence of positive integers with
q, = © and q, = o(n). Then (2.1) holds, so (X,) has AIM(c,).
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Proor. It is enough to consider subsequences along which P[X, > c,]
converges. If the limit is 0, then

|P[M; < ¢, Miygivgej < €] — P[M; < c,]1P[M; < c,]|
_1 Z P[M =< Cn L+k+q i+k+g+j = <c ] - l)[Mis cn]l)[l‘ljS cn]

+rP[X1 >c,]
<g(q)+rP[X;>¢c,] — 0.

If the limit is positive, then P[M; < ¢,] < P[M, < c,] — 0 which implies (2.1)
in this case also. O

Obviously, r-strong mixing also implies the AIM * condition of Section 4.

We will deal with the theory of Markov sequences as described in the book by
Revuz (1975). Let (S, &%) be a separable measurable space (often S C R* for
some k). Let f: S —» R be a measurable function and let (J,) be a stationary
positive Harris Markov (spHM) sequence with state space S. Let X, = f(J,).
The stationary sequence (X,,) is said to be a function of the spHM sequence
(J,). We recall that P[J, € A infinitely often |J;] = 1 a.s. for every set A for
which #(A) == P[J, € A] > 0. It follows in particular that (J,) is irreducible.
We will let T denote the transition kernel of (<J,) and let ||u|| denote the total
variation of p.

If S=R and f(x) = x then (X,) = (J,) is itself an spHM sequence. Chernick
(1982) described as open the question of whether every stationary Markov (X,,)
satisfies D(c,) if P[ X, > c,] — 0. Consider the following examples.

Let (Y,) be an iid. sequence with each Y, uniform on (0,1). Let W
be a random variable which is independent of (Y,) and satisfies P[W = 0] =
P[W=1]=05. Let ¢,=1—-n"" If X,=1Y,+ iW for all n, then D(c,)
fails, essentially because (X,,) is reducible. If X, = (—1)"*"Y, for all n, D(c,)
again fails, this time because (X,) is periodic. In the latter case (X,) is
2-strongly mixing.

The following theorem is well known in the aperiodic case and is in fact an
exercise in Revuz (1975). The extension to the periodic case is minor.

THEOREM 5.2. Let (X,) be a function of an spHM sequence with period r.
Then (X,,) is r-strongly mixing with mixing function
r-1
rot Y TR H(x, ) = w ()
i=0

(5.2) g(k) < 7(dx).

It follows from Theorem 5.2 that the various theorems on stationary se-
quences satisfying AIM(c¢,) can be applied to the case of functions of spHM
sequences. We now extend this observation to the case of functions of positive
Harris Markov (pHM) sequences which are not necessarily stationary.
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THEOREM 5.3. Let (K,) be a pHM sequence on S and let f: S > R be a
measurable function. Let Y, = f(K,) and let R, , =max(Y,.,,...,Y,) and
R, =R, ,. Let (J,) be the spHM sequence with the same transition probabili-
ties as (K,) and let X, = f(J,) and M, = max(X,,..., X,). Let (c,) be a
sequence of real numbers such that

(5.3) PlY,>c,] >0 fork=1,2,....
Then
(5.4) P[M,<c,] - P[R,<c,] —0.

REMARKS. It follows that Theorem 2.1 holds for (Y,) in the sense that if the
hypotheses hold for the stationary sequence ( X,,) rather for (Y),) itself, then (2.5)
holds with M, replaced by R, in the first term. It is not enough to assume
PlY, > ¢,] = 0 instead of (5.3) since this is compatible with P[Y, > c,] » 0.
Note that (5.3) implies P[X, > ¢,] = 0 and, if the distribution of K, is
absolutely continuous with respect to the distribution of .J, the converse is also
true. .

Proor. Let %,,%,,...,%, = €, be periodic classes of (<J,) so that P[X, €
% .1X,€ ¢]=1fori=1,2,...,r. Let (L,) be the pHM sequence with the
same transition probabilities as (K,) and (¢J,), with P[L, € 4,] = P[K, € %,]
for all i and with P[L, € A|L, € %,] = P[J, € A|J, € %] for all measurable
sets A and all i for which P[L, € %]>0. Let Z,=f(L,), T, ,=

max(Z,, 1, Zysr---» Zy) and T, = T, . We will prove (5.4) by verifying
(5.5) P[R,<c,]-P[T,<¢c,] >0

and )

(5.6) P[T,<c,] - P[M,<c,] - 0.

To check (5.5), fix ¢ > 0 and choose m sufficiently large that
|P[K,<€ ]-P[L,< ]| <e.

It follows from the Markov property that

[P[(K,y Kps1re--) € ] = P[(Lps Lypsyrs---) € ]| <
and hence that

IP[(Y,s Yyirs---) € -] = P[(Zs Zopi1s---) € -] <&
Then, for n sufficiently large, we have

|P[R, < ¢,] - P[T,<c,]
<|P[R, .<¢,]-P[T, ,<c,]| + P[R,>c,]+ P[T,>c,]

< 2g,

where we have used (5.3) and the fact that the distribution of each Z; is
absolutely continuous with respect to the distribution of X,. Since ¢ is arbitrary,
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(5.5) must hold. To prove (5.6), we note that for i = 1,2,...,r,
|P[M, < c,|J, € €] — P[M, <c,|J; € %]l
= |P[M1,n+1 < ¢ ld; € 1] — P[M,<c,J, € (gi—l:”
< P[X, > c,|d, € €] + P[ X,y > ¢l € 64 ]
-0
by (5.3). It follows that
|P[T, < ¢,] - P[M,<c,]|

l

Z {P[Tn < cnlLl € gL]I)['Ll € (gz]
i=1

- P[M,<c,J, € %]P[J, € (gi].

T PIM, < o5, 6](PLL € 6] - PLo = 41}

IA

.i I{P[Mn <cldy € 6] - P[M,<c,lJ, € %1}
x {P[L,e %]-P[J, € ‘AN

+ P[M, < c,|J; € %,] z’: (P[L,e%]-P[J e %]}‘

i=1

- 0. ad

We remark that Rootzén (1986) has studied functions of pHM sequences by
means of regenerative cycles. In particular, he has obtained a different phantom
distribution function for such sequences.

Many of the examples arising in the theory of extreme values of stationary
sequences can be viewed as functions of spHM sequences. Some of these have the
form X, = f(X,_1, Y,) for some function f, where (Y,) is an i.i.d. sequence. For
example, the autoregressive sequences in Chernick (1981) have this form and it is
easy to verify that (X,,) is an aperiodic spHM sequence in those examples. The
example of de Haan [cf. Leadbetter (1983)], which has properties similar to those
of Example 5.3, satisfies X, = max(X,_, — 1,Y,). We now consider three exam-
ples in detail.

ExaMPLE 5.1. This example shows the role of clustering of large values and
shows that the relative sizes of the elements of the clusters play a role as
important as the number of elements in the clusters. Let (Y,) be an i.id.
sequence with Y, uniform on (—1,0). Let X, = max(Y,, @'Y, ,) where 0 < a <
1 (@ = 0 corresponds to X, = Y,). Then (X,,) is a “moving function” of (Y,) and
is 1-dependent [strongly mixing with g(2) = 0]. Also (X,,) is a function of the
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spHM sequence ((Y,,, Y, ,)). If Y, is large (i.e., close to 0), then X, _, and X, are
both large, so large values come in pairs, although the values in the pairs are not
equal for a < 1. It is easily checked that (X,,) has extremal index (1 + a)~ . If g:
(-1,0) » R is any strictly increasing continuous function, then (g(X,)) =
max(g(Y,), 8(a"'Y,,,)) again has extremal index (1 + @)~ ', and g can be chosen
so that the distribution function is in the domain of attraction of any prescribed
extreme value distribution. The case @ = 1 of this example was considered by
Newell (1964).

ExaMpLE 5.2. Let (X,) be the spHM sequence with state space S = [—1,0)
and transition probabilities as follows: given X, € S, = {—1, —27}
—-272 ..}, X, is uniform on S; given X; =x €SN Sf, X, = —27*, where
—27% < x < —27%1, Thus (X,) has period 2. There is no sequence (c,) such
that F"(cn) — a € (0,1). Nevertheless, P[M,, < xn~'] = exp{3x} for x < 0 so
(X,,) is in the domain of attraction of an extreme value distribution. Also, (X,)
has a phantom distribution function G given by G(x) =1 + 3x, -2 <x <0.

ExaMPLE 5.3. Let (X,) be the stationary Markov chain with state space
S ={1,2,...}) and transition matrix T given by T;,,, =¢ and T;, =1— ¢,
where 0 < t; < 1foreach iand p=1+¢ + t;t, + --- < 0. Let H(x) be the
distribution function of the first return time R to 1, starting at 1. Using the weak
law of large numbers, one can deduce that G = H »"" is a phantom distribution
function for (X,). If t;=¢ € (0,1) for all i, then p=(1 - #)"' and G(x) =
F1=9(x). [Since F”(dn(x)) dlverges we cannot say (X,) has extremal index
1 — t.] Now suppose t; > 1 as i = oo. Then P[M, , < d,(x)|X; > d,(x)] <
P[X,<d,(x)X,>d (x)] — 0, so (X,,) has extremal index 0, by Theorem 2.1.
It is in general hard to specify the relationship between F' and G beyond
observing that 1 — G(x) = o(1 — F(x)) as x = oo. If the function 1 — H(x) is
regularly varying with exponent y < —1 at oo, then x(1 — H(x))1 — F(x))™' -
—(y + Dp. If, for example, ¢ = (i + 1)(i + 3)"}, then 1 — H(x) =
6([x]+2) ' (x]1+3),L y=—-2 p=3and x(1 — H(x))(1 — F(x))"! > 3.

Acknowledgments. I am grateful to E. V. Slud and J. Hiisler for some
useful comments.
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