The Annals of Probability
1987, Vol. 15, No. 1, 40-74

TIGHTNESS OF PRODUCTS OF RANDOM MATRICES AND
STABILITY OF LINEAR STOCHASTIC SYSTEMS
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Université Paris 7

Let p” be the distribution of a product of n independent identically
distributed random matrices. We study tightness and convergence of the
sequence {p”, n > 1}. We apply this to linear stochastic differential (and
difference) equations, characterize the stability in probability, in the sense of
Hashminski, of the zero solution, and find all their stationary solutions.

This paper is devoted to the study of the tightness of products of i.i.d. random
matrices and its applications to stability properties of linear stochastic equations
evolving either in discrete or continuous time (mainly when the upper Liapounov
exponent is zero).

Let us first give an example of the results we obtain.

Consider the continuous time stochastic differential equation on R%

(1) dx,= Syx,dt + Y Six,o db},
i=1
where S;, S,,..., S, are fixed matrices of order d and b}, b2,..., b] r indepen-

dent real Brownian motions (° db; is the Stratonovich differential). Let .#(d) be
the set of real matrices of order d and consider the solution (M,, ¢t > 0) of the
following equation on .Z(d):

r
2) dM,= S,M,dt + Y, S;M,~dbi, M,=1Id.
i=1
For any x in R, x,:= M is a solution of (1).
The upper Liapounov exponent y = y(S,, ..., S,) associated with (1) is

1
y = lim —E(logl|M,)).

If v = 0, the zero solution (i.e., x, = 0 for any ¢ > 0) of (1) is not almost surely
stable but the question arises (cf. Hashminski [8]) whether it is stable in
probability. Recall that:

DEFINITION ([8], page 25). The zero solution of (1) is said to be stable in
probability if for every £ > 0 and 5 > 0, there exists a § > 0 such that:

for ||y]|<8 and t>0, P(|M,y|=1)<e.
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We shall prove the following (see Theorem 7.3):
The zero solution of (1) is stable in probability if and only if there exists an

invertible matrix @ such that for i =0,..., r
A, x *
QSQ'=|0 K, =],
0 0 B

where each K; is a skew-symmetric matrix and the upper Liapounov exponents
Y(Ay, ..., A,) and y(B,,..., B,) are strictly negative.

If p, is the law of M,, (p,),. , is a convolution semigroup on #(d). It is easily
seen that the stability in probability of the zero solution of (1) is equivalent to
the tightness of {u,,n > 1} on #(d). This leads us to consider the following
more general problem:

PrOBLEM (P). Let Y,,Y,,... be independent matrices on #(d) with
the same arbitrary distribution u. Denote by p" the distribution of M, :=
Y)Y, , -+ Y. Whenis {p", n > 1} a tight sequence of probability' measures on
A(d)?

The purpose of this paper is to solve it under weak assumptions on p. This
will for instance permit us to study the convergence in distribution of M,, a
question raised by Kesten and Spitzer in [13]. Specific results on the solutions of
(1) will be immediate applications of general theorems (needless to say some of
our arguments can be simplified if one deals only with (1)).

Organization of the paper. Consider a probability measure p on .#(d).

This paper is organized as follows. In Section 1 we introduce the notation and
definitions we shall use. In Sections 2 and 3 we give a necessary condition
ensuring the tightness of {u”, n € N} either if p is carried by the invertible
matrices or if there exists in the closure of U, . ,Supp(p™) a matrix with at most
one (simple) eigenvalue of modulus one. For instance we prove in the first case
that if {u”, n € N} is tight then there exists some matrix @ such that for every n
each M, can be written as
(3) M,=Q| 0 K, D,|Q7" as,
0 B

n

0

where K, is an orthogonal matrix and the sequences {A,,n € N} and
{B,, n € N} converge in distribution in the Cesaro sense to the zero matrix (see
Theorem 3.1). Under some stronger assumptions on p the Liapounov exponents
associated with A, and B, are strictly negative. In Section 2 we suppose that p
satisfies an irreducibility condition and use a method introduced in Furstenberg
[5). The general case is considered in Section 3.

In Section 4 we prove a converse of these results. For instance if a decomposi-
tion such as in (3) holds, if E(log™|| M, is finite, and if the Liapounov exponents
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associated with (A,) and (B,) are strictly negative then {u", n € N} is tight on
M(d).

In Section 5 we apply these results to describe the stationary solutions of the
following stochastic system on R

(4) x,=Yux,_,, forn>1,

where Y}, Y,,... are ii.d. random matrices. In other words we describe the set of
the invariant probability measures of the R%valued Markov chain M,x.

In Section 6 we study the asymptotic behaviour of the paths of the Markov
chain M x, for x in R% when each M, can be written in the form (3) and when
the Liapounov exponents associated with A, and B, are strictly negative. This
will be a consequence of a result which shows that the following situation may be
considered as the model case:

For two integers d and d’ let (L,), (K,), and (R,) be three independent
sequences of random matrices such that

(i) L,, L,,... are d X d’ random i.i.d. matrices;

(i) R, R,,... are d’ X d random i.i.d. matrices;

(iii) K,, K,, ... are ii.d. orthogonal d’ X d’ matrices;

(iv) For each integer m, n, R,L,, is the identity matrix of order d'.

In this case M,=Y, --- ¥,=L(K, --- K))R, and Y; --- Y, =
L(K, -+ K,)R,. In general M, will be written asymptotically as a product of
three matrices, the first converging in law (here it is L,), the second being a
random walk on the orthogonal group (here it is K, - -+ K,), and the third
converging almost surely (here it is R,). As in the model case the convergence in
law of the first component will be a consequence of the a.s. convergence of the
first oneof Y, --- Y,.

In Section 7 we apply some of these results to the study of the stability of the
zero solution of (1). We describe which equations (1) are stable and their ergodic
behaviour. As an immediate application of the results of Section 5 we find the
stationary solutions of all the equations of the form (1).

Although we have stated all our results for real matrices, a lot of them are
also true for complex matrices (but not the necessary condition in Section 2
under C2).

Finally we must say that these problems have already been considered. First
by Furstenberg (see Theorem 1.2 of [5]), who introduced the main tools. Re-
cently (see [13]), Kesten and Spitzer have completely solved them when the
matrices are nonnegative.

1. Notation and definitions.

1.1. Matrices. If d and d’ are integers we will denote by .#(d), the set of
real d X d matrices; Gl(d), the set of real invertible d X d matrices; .#(d, d’),
the set of real d X d’ matrices; O(d), the set of orthogonal matrices (i.e., the M
in Gl(d) such that ‘M = M~'). We will frequently use the fact that if K is a
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compact subgroup of Gl(d), for some @ in Gl(d), QKQ ! is contained in O(d);
see (22.23) of Hewitt and Ross [10].

DEFINITION 1.1. Let T be a subset of #(d).

(a) A linear subspace V of R is said to be T-invariant if Mx is in V for each x
in Vand M in T. If there is no proper subspace of V which is 7-invariant we say
that T acts irreducibly on V.

(b) T is said to be irreducible if T acts irreducibly on R<.

We introduce two kinds of subsemigroups T of .#(d) which will play a major
role in the sequel (T is a subsemigroup if M, M’ € T implies MM’ € T).

DEFINITION 1.2. A subsemigroup T of /#(d) is said to be an F-semigroup if
it satisfies the following:

(i) T is finite and irreducible.
(i) The spectral radius of each element of T is 1. i
(iii) There exists in 7' a rank-one projection, i.e., a matrix P such that P? = P
and dim(Im P) = 1.

For instance,

(+lo ob=(70 o)

is an F-semigroup in .#(2).

H

(2 op=(Z2 2)

DEFINITION 1.3. Given three nonnegative integers d,, d,, d3, d = d, + d, +
d3, we denote by T(d,; dy; d;) the set of matrices M of #(d) whose entries M; ;
satisfy:

M, ;=0 ifd,<i<d, +d,and j<d,

iJ
orifd, +d,<i<dand j<d, +d,.
We will write such a matrix as:
a(M) (M) e(M)
(5) M= 0 k(M) d(M)
0 0 b(M)

with a(M) in #(d,), k(M) in A(d,), B(M) in #(d;), c(M) in #(d,, d,),
e(M)in A(d,, d;) and d(M) in A(d,, ds).

We shall usually write 0 for any zero matrix, the context making clear the
dimension of that matrix. In the same way “I” will represent any identity
matrix.

We choose on .#(d) the supremum norm defined by

M| = sup{||Mx||; x € R, ||x|| = 1}.
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1.2. Measures.

DEFINITION 1.4. Given a probability measure p on #(d), T(p) denotes the
smallest closed semigroup T in .#(d) such that p(T) = 1. We say that p is
irreducible if T(p) is irreducible.

If p and p’ are probability measures on .#(d) we denote by p#*p’ the
convolution product of p and p/, i.e., the image of p ® p’ under the mapping
Yy MA(d) X M(d) > #(d) defined by Y(M, M’) = MM'. For any integer n, p"
will be the nth power of convolution of p, for instance p! = p, p® = p*p.

DEFINITION 1.5. Given a probability measure p on #(d) and a probability
measure » on R¢ we say that » is p-invariant if for any bounded Borel function
f on R?

[[#(Mx) du(M) dv(x) = [1(x) dv(2).

Notice that » is a p-invariant probability measure on R if and only if it is an
invariant probability measure for the Markov chain x, solution of (4).
We shall often make use of:

DEFINITION 1.6. Let p be a probability measure on #(d). We say that

(i) p satisfies Condition C1 if u(Gl(d)) = 1.
(ii) u satisfies Condition C2 if there exists in T(p) a matrix with at most one
eigenvalue of modulus one, this eigenvalue being simple.

(Recall that the eigenvalue A of a matrix M is simple if for all p € N\ 0 the
null space of (M — AI)? is one-dimensional.)

Recall that if X is a complete separable metric space, a family &% of
probability measures on X is tight (i.e., of compact closure for the weak
topology) if and only if for each ¢ > 0 there exists a compact set K in X such
that »(K) > 1 — ¢ for any p in &.

1.3. Liapounov exponents. Consider a probability measure p on Z(d).
Given a sequence Y, Y,,... of independent matrices with distribution p we set

M,=Y,Y, ;- Y,. We define (see for instance Ledrappier [14]):

DerINITION 1.7. If E(log?|Y;|) is finite, the upper Liapounov exponent
associated with p is

1
v(p) = lim —logl|M,| as.
n—oo N
We shall often call y(p) “the Liapounov exponent of p.”

2. The irreducible case. In this part we consider an irreducible probability
measure p on #(d). We study the set of p-invariant probability measures on



TIGHTNESS OF PRODUCTS OF RANDOM MATRICES 45

R< As a consequence we obtain a necessary condition on p ensuring the
tightness of {u”, n € N} on #(d), under one of the conditions C1 or C2 (see
Definition 1.6).

We begin with a general result. The idea of the proof is borrowed from
Furstenberg [5].

PROPOSITION 2.1. LetY,,Y,,... bei.i.d. random matrices with distribution
pon A(d)andU,=YY, --- Y,.

If there exists on R? a p-invariant probability measure whose support is not
contained in a hyperplane then the sequence {U(w), n € N} is for almost all w
bounded and for each M in T(p), |M|| > 1.

If, moreover, p is irreducible then T(p) is a bounded set.

PrROOF. Let » be a p-invariant probability measure on R¢ such that for any
hyperplane H of R¢, »(H) # 1. If M is in .#(d) we define the measure M» on
R¢ by

J 1) d(My)(x) = [F(Mx) dv(x)

for any Borel bounded function f on R<

Furstenberg has pointed out that U,» is a measure-valued martingale and
thus converges almost surely to a random probability measure A, on R (see
Lemma 1.3 of [5]). Suppose that for a fixed w, U,(w)» converges to A but that
sup{||U(w)|, » = 1} is not finite. We can find a subsequence n(i) such that
U,(i(w)v converges to A, and ||U,;(w)||”'U,;(«) converges to a nonzero matrix
H(w). If x is in R? and H(w)x # 0, |[U,;)(w)x|| > + oo when i - +co. This
implies that for any continuous f with compact support on R¢,

Jiar, = lim [§(Uy(w)x) dr(x)

= ‘l_i_)l?o flkerH(w)(x)f(Un(i)(w)x) dv(x),

hence »(ker H(w)) = 1. This contradicts the assumption on » and the sequence
U,(w) must be almost surely bounded.

It follows from Lemma 2.13 in Guivarc’h and Raugi [7] that for almost all M
with respect to £¥_,27"u” and almost all w, U,(w)Mp» converges weakly to A .
If U(w) is a limit point of the bounded sequence U,(w) we thus have

(6) U(w)My =\

This equality remains true for any M in the support of X2_,2"u" i.e., for any
M in T(p). If we could find a matrix M in T(p) such that || M| < 1, the zero
matrix would be in T(p). By (6) this would imply that A is the Dirac measure
8,- But this cannot hold since, U,» being a bounded martingale, » = E(A ).

We now prove that if moreover p is irreducible, then T(n) is bounded.
Suppose there exists a sequence {M,,, n € N} in T(p) such that im||M, || = + co.
We may assume that || M|~ M, converges to some nonzero matrix A. By (6) we

a.s.

w
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have for each integer p and matrix M in T(p)
U(w)MM,y =\,

For such an w fixed let V = {x € R% U(w)MAx = 0}. If x is not in V,
lU(w)MM,x|| - oo when p — co. Therefore if f is a continuous function with
compact support on R¢,

[H(x)dr(x) = [H{U(0)MM,x) d(x)

a.s.

= lim flv(x)f(U(w)MMpx)dv(x).

This implies that »(V) = 1 and V must be R% Choose some x such that Ax is
not zero. For all M in T(n), U(w)MAx = 0. So the subspace W of R¢ spanned by
{MAx, M € T(p)} is contained in the null space of U(w). Since W is T(p)-
invariant the irreducibility of p implies that U(w) is the zero matrix. This
cannot hold since the zero matrix is not in T(p). O

We need the following algebraic result:

PRrROPOSITION 2.2. Let T be an irreducible subsemigroup of #(d) such that
for some ¢ > 0,1 < ||M|| < c for each M in T. Then:

(@) If T contains a matrix with a unique eigenvalue of modulus one, this
eigenvalue being simple, then T must be an F-semigroup (see Definition 1.2).

(b) If T is contained in Gl(d), T is contained in a compact subgroup.

PRrROOF OF (a). It is easily seen using the Jordan decomposition that under
the hypothesis of (a), the closure S of T in .#(d) contains a rank one projection
P. We put on R¢ a scalar product for which Im P is orthogonal to ker P, and
choose some unit vector y in Im P. Then for any x, Px = (x, y)y. Each M in S
has an eigenvalue of modulus one (because 1 < | MP|| < ¢ for each integer p). So,
for M,, M,, and M in S, PM,MM,P has such an eigenvalue and the relation

(7 PM,MM, Px = (M\MM,y, y){x, y)y
leads to
(8) (M\MM,y, y) = +1.

By irreducibility we can find M,,..., M,,; in T s.t. {u, ="M, y,...,u,="M,y)}
and {v, = M, ,y,...,0; = M,,y)} are two bases of R<. By (8) the set {{ Mv,, u;);
MeT,1<i,j<d}is finite so T must be finite. Since this implies that T' = S,
P is in T, proving the (a) of the proposition. O

ProOOF OF (b). We now suppose that each element of 7T is invertible. Let S
be the closure of T in #(d) and
= inf{rank(M); M € S}.
For any M in .#(d) we write APM for the endomorphism of A?R¢ defined by, if



TIGHTNESS OF PRODUCTS OF RANDOM MATRICES 47

Xy,..., %, are in RY,

(APM)(x, Ay A -+ Ax,) = Mx, A Mxy A -+ AMx

b
Let {e),..., e;} be the canonical basis of R%. We endow A’?R? with the scalar
product for which e;; A - -+ Aey py U1) <i(2) < --- <i(p), are orthonormal
vectors. If we work with the associated norm, then

(9) 1 <||[APM]| < cP

for any M in S. The right-hand side inequality is a consequence of the fact that
[APM|| < ||M||?; and if for some M in S, |A’M|| < 1, then any limit point M
of the sequence {M", n € N} satisfies APM = 0. But this is equivalent to
rank(M) < p and thus cannot hold.

Let @ be an element of S with rank(Q) = p. If U3,...,0, is a basis of
Im @,Im APQ is the one dimensional subspace L(w,) of APR? spanned by
Wy =10, A vy A -+ Auv,. The spectral radius of APQ is one by (9); thus if
P = @* APP is a projection on L(w,). We know (see Chevalley [2], Chapter IV,
Section 5) that since T is irreducible, its action on APR? is semisimple, i.e., there
exists a direct sum decomposition A’PR%= W, ® W, @ --- @ W, such that, for
eachi,l1<ix<r,

(i) (APMYW,) c W, for any M in T.
(ii) There is no proper subspace W of W, such that (A?M )W) c W, for all
Min T.

Since for each i (APP)(W,) is contained in W, we may choose W, such that w, is
in W,.
As in (8), for some scalar product on APRY, if M, M,, and M, are in T

<(APM1)(APM)(APM2)w0, w0> = *1

and, as above, by the irreducibility property (ii), the set whose elements are the
restrictions of A’M, M € T, to W, is finite. Since P is in the closure of T, there
exists some M in T such that

APPw = APMw, for all win W,.

But M and APM are invertible and Im APP = L(w), so W; = L(w,). By (i) the
linear span of v,,..., v, in R is thus T-invariant. The irreducibility of 7' implies
that p is equal to d. Therefore each element of S is invertible, and S is a
compact cancellative semigroup. S is thus a compact group (see (9.16) of Hewitt
and Ross [10]). Since T is contained in S the proposition is proved. O

REMARK 2.3. It is not difficult to modify the proof in order to obtain that
the same proposition holds if, instead of requiring that 1 < |M|| < ¢ for M in T,
we only suppose that the spectral radius of each element of T is one. The first
modification is to define p as the least integer n such that for some M in T the
dimension of the direct sum of the generalized eigenspaces associated with an
eigenvalue of modulus one is n. As above one shows that p = d, so that all the
eigenvalues of each element in T' have modulus one. It thus follows from the
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Lemma 1 in Conze and Guivarc’h [3] (stated for groups but actually valid for
semigroups as well with the same proof) that T is contained in a compact group.

REMARK 2.4. The proof does not work for matrices with complex entries but
part (b) remains true in this case. To verify this, write each matrix M in GI(d, C)
as M = A + iB with A and B in GI(d).

Define ¢: Gl(d,C) — Gl(2d) by

. A -B
<p(A+zB)—(B A)
and put J = @(il). If T is a semigroup contained in Gl(d,C) which acts
irreducibly on C? the semigroup 7" of GI(2d) generated by ¢(T) and J is
e(TYVU — o(T) U Jo(T) U — Jo(T). This implies that T is irreducible. If
1 <||M| < ¢ for each M in T, the same holds for each M in T'. From the
proposition we conclude that 7" is in a compact subgroup of Gl(2d). Therefore T
is contained in a compact subgroup of Gl(d, C).

REMARK 2.5. If T is an F-subsemigroup of .#(d), it contains by definition a
rank-one projection P. Unless d =1, —P is also in T. (By (7), for M, M,, and
M, in T, PM,MM,P is equal to Por —P. If — P is not in T, we have instead of
(8), (MMM, y, y) =1 and, as above, we can find two bases (u;) and (v;) such
that (u;, v;) =1for1 <, j < d. This of course can hold only if d = 1.)

Notice that if 1 is an eigenvalue of each matrix in 7' then d must be equal
to 1.

We can now prove our main result on irreducible probability measures.

THEOREM 2.6. Let p be an irreducible probability measure on #(d) such

that one of the following assumptions is true:
(i) p satisfies C1 and T(p) is not contained in a compact subgroup of Gl(d);

or

(ii) p satisfies C2 and T(p) is not an F-semigroup.
Then:

() The unique p-invariant measure on R¢ is the Dirac measure at 0.

(b) If {p", n € N} is tight on M (d), then (1/n)L?_,u’ converges to the Dirac
measure at the zero matrix.

For unimodular matrices (a) is proved in Furstenberg [5].

PROOF. Let » be an p-invariant probability measure on R¢ and H the linear
subspace spanned by the support of ». By definition

f/lH(Yx)dp(Y)dv(x) —»(H) = 1;
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hence, for p-almost all Y, »{x € R% Yx € H} = 1 and Y(H) is contained in H.
The irreducibility of p implies that H = {0} or R€. It follows from Propositions
2.1 and 2.2 that H cannot be R¢ so H = {0} and » is the Dirac measure at 0,
proving (a).

It is clear that if {u”, n € N} is tight, {(1/n)L7p%, n € N} is tight too.
Under this hypothesis consider a limit point m of (1/n)L" 4, we have

1z 1 1
y*m=]imu*;Eu‘=lim;2p,‘+lim;{p."“—p.}=m.

i=1 i=1

For any x in R¢, denote by m,, the distribution of Mx if M is a random matrix
with distribution m. Since p* m = m, m_ is a p-invariant probability measure
on R From (a) we deduce that m, = 8, for all x, so m is the Dirac measure at
the zero matrix. O

Let M, =Y, --- Y, where ¥,,Y,,... are ii.d. matrices with distribution p.
The following corollary is in particular useful in the study of the central limit
theorem for products of random matrices (see for instance the proof of the
proposition below). It implies that sup,(log?|| M, x|)) = oo for any x # 0 of RY,
which settles a question of Hashminski ([8], page 244).

COROLLARY 2.7. Under the hypothesis (i) or (ii) of Theorem 2.6, for any
x # 0 in RY, the sequence of the distributions of log|M, x|, n = 1,2,..., is not
tight on R.

PROOF. Suppose that this sequence is tight. If p? is the distribution of M, x,
the sequence {(1/n)L™ p%, n € N} is tight on R% It is easy to see that any
limit point of this sequence is a p-invariant probability measure; therefore by (a)
of the theorem (1,/n)Lp, converges to §,. This contradicts the tightness of the
sequence {log||M x|, » € N}. O

The condition “(1/n)L?_,u’ converges to the Dirac mass at the zero matrix,”
which appears in Theorem 2.6, is not easy to handle. It would be nice to replace
it, under moments conditions, by: “the upper Liapounov exponent y(p) is
strictly negative.” Since (1/n)log||M,| converges a.s. to y(r) it is clear that
¥(p) < 0. But even for 1 X 1 matrices one can have (1/n)L? ,u‘— §, and
¥(p) = 0. There exists a sequence (X,) of iid. real random variables with
E(|| X,||) finite and E(X,) = 0 such that, for any real c,

P(X,+X,+---+X,<c)>1 asn— 4+

(see the unfavorable fair game in Feller [4], Example 15, page 262). If we set
Y, = exp(X,,), Y, is a 1 X 1 matrix and if p is its distribution, y(g) = 0 but p»
converges to §,.

Nevertheless we have the following result which settles in particular the case
of linear SDE (see Section 7).
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PROPOSITION 2.8. Let p be a probability measure on #(d) such that:

i) wGl(d)) = 1.
(ii) There does not exist a finite union U of proper subspaces of R? such that
M(U) c U for each M in T(p).
(ili) For some a > 0, [||M||* du(M) and [|M~Y|* dp(M) are finite.

Then (1/n)X?,u‘ converges to the Dirac mass at the zero matrix if and only
if y(p) is strictly negative.

ProoOF. Since (1/n)log||M,,| converges to y(p) a.s. we have only to prove
that if y(p) = 0, (1/n)LP 1’ cannot converge to the Dirac measure at the zero
matrix. Let us introduce all the Liapounov exponents associated with p, i.e., the
reals A\, > A, > -+ > A, defined by, for 1 < p < d:

AL +Ay+ - +A, = lim llog||A"’Mn||
n—-o N

(see Ledrappier [14]). We shall suppose that y(p) = 0, i.e.,, A; = 0. We consider

three cases.

(a) First case: \; # \,. Since p satisfies (ii) and (iii) it follows from the central
limit theorem of Le Page ([15], Theorem 2) that in this case, for each x # 0, the
sequence n~'/2log|| M, x|| converges in distribution to some normal law 4°(0, ¢2).

If 6% = 0, then by Propriété 1 of ([15], page 278) there exists some x # 0 and
C > 0 such that

log||M, x||| < C a.s.for each integer n.

By Corollary 2.7 this can hold only if T(p) is contained in a compact subgroup of
Gl(d), which would imply that A, = A,.
Therefore 62 + 0 and for each x # 0

lim inf P(|IM,)|=1) > lim. P(log||M,x|| = 0) = 3.

It is thus clear that (1/n)L"_ 4’ does not converge to the Dirac measure at the
zero matrix.

(b) Second case: A\, = A, = =M\, # A, for some p€ {(2,...,d - 1}.
Let i be the image of p under the mapplng xp Gl(d) - Aut(APR?) deﬁned by
Y(M) = APM.If X, and X, are the two largest Liapounov exponents associated
with i, A, = A, +>\+ +>\p—0and>\—>\ A+ o A, 1+)\p+1<
0. As in the proof of Propos1tlon 2.2 we may write AP[Rd W o W2 oW,
where each W, is a subspace invariant under {APM, M € T( p,)} and where, if p;
is the image of fi under the restriction to W}, each p; is an irreducible probability
measure on End(W)). It is clear that for some k in {1,...,r} the upper
Liapounov exponent of p, is X, =0. If Q/n)Xi W converges to the Dirac
measure at the zero matrix, (1 /n)): lp, *. converges to the Dirac measure at the
zero element of End(W,). Either W, is one dimensional and we are led to a
contradiction using the usual central limit theorem, or dim(W,) > 2 and the
second upper exponent associated with p, is no larger than 7\2, hence, strictly
negative. We arrive at a contradiction by applying (a) to p,.
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(c) Third case: A, = A, = -+ = A, Define y: GI(d) - Gl(d) by Y(M) =
|det M|~Y/“M. By Theorem 8.6 of Furstenberg [5] there exists a compact sub-
group K of GI(d) such that ¢(Y)is in K for p-almost all Y. This implies that for
a suitable norm on #(d), ||[¢(M,)|| =1 as. for all n > 1. Therefore || M,||¢ =
|det M,| and n~'/%d. Log||M,|| = n~Y/2L_, log|det Y;|. We conclude immediately
with the usual central limit theorem. O

3. A necessary condition for tightness of {y”,n > 1}. In this section we
consider a general probability measure on #(d) satisfying C1 or C2 (see
Definition 1.6). We shall show that if {u", n > 1} is tight, p must have a very
particular form. Namely we have, with the notation introduced in Definition 1.3:

THEOREM 3.1. Let p be a probability measure on #(d) for which either
condition C1 or condition C2 holds. If {p", n > 1} is tight on #(d) there exist
three nonnegative integers d,, d,, d;, d, + dy + d; = d, such that:

(i) For some invertible matrix @, QT(p)Q ! is contained in T(d,; dy; d).

(i) If p, (resp. p,) is the image of p on MA(d,) (resp. #(d3)) under the
mapping f,: M(d) - H#(d,) defined by f(M) = a(@MQ™") (resp. under fy:
M(d) > M(ds) defined by f,(M)=b@QMQ™), then (1/n)Ti,p, (resp.
(1/n)X?_,ps) converges to the Dirac measure at the zero matrix of #(d,) (resp.
M (dy)).

(iii) Under C1, {k(QMQ~"), M € T(p)} is contained in the orthogonal group
o(d,).

(iv) Under C2, {(K(QMQ~"), M € T(p)} is an F-subsemigroup of #(d,).

The proof of this theorem under C2 is easy and will be given at the end of this
section. Under C1 the proof is more intricate and we begin with two lemmas.

LEMMA 32. Let p be a probability measure on #(d) such that
{Q/n)Xi 1, n = 1} is tight on A (d). The sequence (1/n)L?_,u* converges to a
probability measure m such that

(10) prm=m*p=m*m=m.

Moreover the linear space {x € R% Mx =0 for m-almost all M} is T(p)-
invariant.

ProOF oF THE LEMMA. This result is well known and easy to verify: If m
and m’ are two limit points of {(1/n)X? ,p, n > 1} we have (see the proof of
Theorem 2.6) p* m = m, hence m'* m = m, and m'*p = m’/, hence m'* m = m'.
So m’ = m and (10) holds. For W = {x € R% Mx = 0 for m-almost all M}, the
relation m * u = m gives that if x is in W, MYx = 0 for p ® m-almost all (Y, M).
Therefore Yx is in W for p-almost all Y and {M € #(d); MW C W} is a closed
semigroup in .#(d) of p-probability one. It must contain 7(p). O
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Before stating the next lemma, let us introduce some notation. It will be more
convenient to deal with endomorphisms rather than matrices.

NotaTioN 3.3. Let E be a finite dimensional vector space. If M is an
endomorphism of E and F a subspace invariant under M (i.e., MF C F) we
denote by My, the endomorphism of F defined as the restriction of M to F (i.e.,
Mpx = Mx for any x in F).

As usual End(E) is the set of endomorphisms of E, Aut(E) the set of
automorphisms. The next lemma is the key for the proof of the theorem under
C1.

LEMMA 34. Let p be a probability measure on End(E) such that
p(Aut(E)) = 1 and such that (1/n)L?_,u* converges to a probability measure m
on End(E). We suppose that for any x #+ 0 in E,

(11) m{M € End(E); Mx =0} + 1.

Let F, be a T(p)-invariant subspace of E with maximal dimension such that
{Mp; M € T(p)} is contained in a compact subgroup of Aut(F,). Then, for any
xin E, m{M € End(E); Mx € F,} = 1.

ProOF. (a) Let G, be a subspace of E such that F;, ® G, = E and F, =
{x € G;; Mx € F, for m-almost all M}. We want to prove that F, = G,. If this
does not hold we may consider a subspace G, such that F; ® F, ® G, = E and a
subspace F; # {0} of G, of minimal dimension s.t.

MF,CF,® F,® F, forall M in T(y).

Notice that F = F, ® F, ® F, is T(p)-invariant. If p satisfies the hypotheses of
the lemma, then so does its image under the map which sends each M in T(p) to
M. Looking for a contradiction we can (and shall) reduce the study to the case
where E = F. Now if E = F, in a basis compatible with the direct sum decom-
position E = F, ® F, ® F; we can write each M in T(p) as

an(M) au,(M) au(M)

M= 0 apn(M) ay(M)

0 0 as(M)
where, for d;=dim F,, a,(M) is a d; X d; matrix. I claim that {as(M),
M € T(p)} is contained in a compact subgroup of Gl(d;). The image pg of
under ag; is an irreducible probability measure on .#(d3), carried by Gl(d;),
such that (1/n)X?_,p% converges to the image m, of m under ag,. If the claim
were not true, by Theorem 2.6, m, would be carried by the zero matrix. Since

m * m = m this would imply that, for any x in Fj,
m{M € End(E); Mx = 0} = m ® m{(M,, M,); M\M,x =0} =1,

which contradicts the definition of F,. We can of course suppose that the bases
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of F, and F; are chosen in such a way that a,,(M) is in O(d,) and as(M) in
O(d,) for each M in T(p).
(b) The next step is to prove that, for each r > 0,

= {M € T(p); llag(M)|l < 3, llay(M)|| < 7, llagyg(M)|| < "}

is a bounded subset of End(E). An easy way to show this is to mimick the proof
of Proposition 2.1: Let Y},Y,,... be independent matrices with distribution p
and M,=Y, --- Y,. For any M in End(E) we denote by mM the image of m
under the right multiplication by M. For almost all w, the sequence {mM,(w),
n > 1} converges to a probability measure m, on End(E). This implies that
{M,(w), n > 1} is a.s. bounded (if not we could find, as in Proposition 2.1, a
nonzero matrix H(w) s.t. m{M; MH(w) = 0} = 1, which contradlcts (11)). For
any limit point M(w) of {M,(w), n > 1} and each M in S,
(12) mMM(w) =
(see the analogue (6)). If S, is not bounded we can find a sequence M, in S, such
that || M, ||~ 'M,, converges to a nonzero matrix A with a; H(A) =0if (l, J)#(1,3).
Asin Propos1t10n 2.1, (12) implies that m{M; MAM(w) =0} =1land AM(w) =
0. Carrying out the matrix multiplication we find that A is equal to zero, which
is not true.

(c) Choose some matrix A in the support of m. Since a,,(A) = 0, there is an
r such that S := {A", n > 1} is contained in S,. As S, is bounded the closure of
S is a compact semigroup contained in 7(p). Therefore S, and thus T(u),
contains a projection P (see, e.g., Hewitt and Ross [10], (9.18)). Notice that
a45( P) is the zero matrix. Consider the semigroup 7' = PT(p)P. It is easy to see
that T is closed and contained in S,, hence compact. Let V' be the range of P
and let 7" = {M,; M € T}. For each M in T(p) the eigenvalues of a,,(PMP)
and ag4( PMP) are nonzero, whence dim(ker PMP) is equal to d,. Since ker P is
contained in ker PMP this yields that ker P = ker PMP, so that M, is one to
one. Thus 7" is a compact semigroup in Aut(V'), and (see Hewitt and Ross [10],
(9.16) and (22.23)) we can find a scalar product ( -, -) on E such that:

(i) V is orthogonal to ker P.
(ii) For M in T(p), PMP acts on V as an isometry. )

(d) Let W= {y € E; (My,x) =0,V M € T(p), V x € F,}. This subspace is
T(p)-invariant. If U is the orthogonal of F, in V (note that F, ¢ V),dim(U) = d,
is not zero and by (i), PMP(U) c U for M in T(y). This implies that if x € F,,
ye€ U,and M € T(p),

(My, xy = (MPy, Px) = (PMPy, x) = 0.
Thus W contains U and W # {0}. We easily see, as at the end of (a), that {My;
M € T(p)} is in a compact subgroup of Aut(W). Since F; and W are orthogonal
and T(p)-invariant this implies that {Mpew; M € T(p)} is in a compact
subgroup of Aut(F, & W) which contradicts the maximality assumption on F;.
O

PrOOF OF THEOREM 3.1 UNDER CONDITION Cl. Since {pu"; n > 1} is tight,
1/n)L? n' converges to a distribution m. Let V= {x € Rd Mx = 0 for m-
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almost all M}. For any M in T(p) let M be the endomorphism of E = R%/V
defined by, if x is in R? and X is its canonical image in E,

Mz = Mx.
The i image B of p under M — M has the propertles required in Lemma 3.4. (By

Cl i is carried by Aut(E) and if m is the image of m under M — M,
1/nX? p* = m. If for some X # 0 in E,

m{M € End(E); Mx =0} =1,
then
m{Me#(d); MxeV} =1
and, since m*m = m,
m{M; Mx = 0} = m ® m{(M,, M,); M\M,x =0} =1,

which contradicts the definition of V.)

By Lemma 3.4 we can write E = F, © F,, where:

(a) F, is invariant under {M € End(E), M e T(p)} and {MF € End(F));
M e T( u)} is in a compact subgroup of Aut(F)).

(B) For X in F,, Mx is in F, for m-almost all M.

Consider now a basis {f;,1 < i < d} of R? such that {f,,1 < i < d,} is a basis
of V,{f,d, <i<d, +d2}abas1sofF1,and{f,,d + d, < i < d} is a basis of
F,. If {e,,l <i< d} is the canonical basis of Rd and @ the matrix defined by
Q(f)=e;, 1 <ix<d,itis clear that QT(n)Q ! is contained in T(d;; dy; dj).
The property (ii) is a consequence of the definition of V and of () above. By (a)
we may choose the basis { f;, d, < i < d, + d,} in such a way that (iii) holds. O

PROOF OF THEOREM 3.1 UNDER CONDITION C2. Let {0} =E,Cc E, C ---
C E, = R be a sequence of T(p)-invariant subspaces of R? such that E,
contains strictly Ep_l, for p=1,...,r. For M in T(p) denote by s,(M) the
endomorphism of F, == E,/E,_, defined by s,(M)x = Mx (fxisin E, and X is
the class of x in F, ) Cons1der m= hm(l/n)E 1" and p, (resp. m )the image
of p (resp. m) under s,. By choosing inductively each E, as a T(u) invariant
subspace of minimal dimension, we may suppose that each [, is an irreducible
probability measure on End(F,); it satisfies, of course, C2. Therefore by Theo-
rem 2.6, either m,, is the Dirac measure at the null endomorphism of End(F,)
(and this case occurs if and only if some s,(M), M € T(p), has no eigenvalue of
modulus one) or {s,(M); M € T(p)} is a finite F-semigroup. By Condition C2
we know that there exists a matrix M|, in T(u) with at most one eigenvalue of
modulus one, this eigenvalue being simple. Hence, there exists at most one
integer ¢, 1 < g < r, such that m is not carried by the zero matrix. It follows
from the relation m * m = m that if @ is an invertible matrix sending E,_, onto
the subspace generated by ey, ..., e, (where e;, 1 < i < d, is the canonical basis
of R? and d, the dimension of E, ;) and E onto the subspace generated by
€y,--+> €4 +q, (Where d; +d, is the dimension of E 2)» the theorem holds with
this @. O
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REMARK 3.5. From the above proof it is clear that if there exists in T(p) a
matrix with no eigenvalue of modulus one, {(1/n)X% ,p', n € N} is tight on
A (d) if and only if this sequence converges to the Dirac measure at the zero
matrix.

REMARK 3.6. Suppose that the spectral radius of each matrix in T(p) is an
eigenvalue (this is true for instance if T(p) is contained in the set of nonnegative
matrices). Under C2 if {(1/n)L™ ¢, n € N} is tight and d, # 0, then d, =1
and k(QMQ') = 1 for each M in T(p). To prove this, consider a matrix M, in
T(p) such that k(QM,Q~") is the projection P introduced in Definition 1.2. By
the Remark 2.5 it suffices to prove that — P is not in {R(QMQ~'); M € T(p)}.
Suppose that for some M, in T(p), 2(QM,Q ') = — P and consider a matrix M,
in the support of lim(1/n)X2 ,u'. Se have a(QM,Q ') =0, b(QM,Q ') = 0,
and either 2(QM,M,M,Q" ") or k(QM,M,M,Q@ ") is equal to — P (use (7) and
(8)). Therefore one of the matrices M; M, M, or MM, M, has the only eigenval-
ues 0 and —1, which contradicts the hypothesis.

If T(p) is included in the set of nonnegative matrices and contains a positive
one, this result and much more has been proved by Kesten and Spitzer in [13].

CoroLLARY 3.7. If p fulfills the conditions of Theorem 3.1,
lim, _, (1/n)X! p is the law of a random matrix
0 CK,K; CK,D,
(13) Q@'lo K,K,K, K,K,D,|Q,
0 0 0
where (C, K,), K,, and (K, D;) are independent and C, € #(d,,d,),
K,, K,, K3 € #(d,), D; € M(dy, dy).
If moreover K == {(R(QMQ~"); M € T(n)} is contained in a compact sub-
group of Gl(d,) then we may choose K, and K, above as the identity matrix,
and the distribution of K, is then the Haar measure on K.

PrOOF. Let m = lim(1/n)X™ i’ Since m* m* m = m (see (10)), m is the
distribution of M, M, M, where M,, M, and M, are three independent matrices
with distribution m. Using the relations -

a(QMQ ) =0, b(QMQ ') =0 fori=1,2,3,
and carrying out the matrix multiplication we find (13) with

C,=c(QMQ '), K,=r(@MQ '), D,=d(QMQ").

If K is in a compact subgroup of Gl(d,), K is itself a compact group (being a
compact cancellative semigroup). Since the distribution of the K,’s is
lim, , (1/n)L™ ,n}, where p, is the image of p under M — E(QMQ™) it
is the Haar measure on K (see [16]). By invariance of the Haar mea-
sure, (C,K,K;, K,K,K,, C,K,D,, K,K,D;) has the same distribution
as (C,K{'K,, K,,C,K{'K,K;'D,, K,K;'D,). So it is clear that m is the
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distribution of a matrix of the form (13) with K, = K, = I (one takes new C,
and D, as being the old C;K;' and K;'D;). O

4. Sufficient conditions for tightness of {p"”,n >1}. We may consider
the following as a converse of Theorem 3.1 (see the end of Section 2).

THEOREM 4.1. Suppose that for a probability measure p on #(d) the
following holds:

(@) [log* || M|l dp(M) < co.
(ii) For some d, >0, dy, > 0, d3 > 0, T(p) is contained in T(d,; dy; dj). So
we can write each M in T(p) as (see Definition 1.3):
a(M) o(M) e(M)
M= 0 k(M) d(M)|.
0 0 b(M)
(iii) If p, (resp. p,) is the image of n under a (resp. b), the-Liapounov

exponents y(u,) and y(p,) are strictly negative.
@iv) {k(M); M € T(p)} is bounded.

Then the sequence {p", n > 1} is tight on #(d). This sequence converges if and
only if p%, n > 1 converges (where ., is the image of p. under the mapping k).

The following lemma is easily proved by induction.

LEMMA 4.2. For M in T(d,; d,; d;) let

a(M) 0 e(M)
s(M) = 0 0 0
0 0 b(M)

If Y, Y,,...,Y, arein T(d,; dy; ds), then
d(Y, - )= L k(Y, - Y,,)d(Y)b(Y,_,) -+ b(Yy),
i=1

(Y, - )= Ya(Y,) - a(Y,)e(Y)k(Y,_, - 1),

i=1

e(Y, .-+ Yi) = e{s(Y,) .-+ s(¥)}

¢ LX)+ a(ku)e(Y)d(Y, - X).

From Hennion ([9], Proposition 1) or Furstenberg and Kifer ([6], Lemma 3.6)
we deduce:

LEMMA 4.3. Under the hypotheses of Theorem 4.1, the upper Liapounov
exponent of the image p., of p under s is strictly negative.
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PROOF OF THE THEOREM. We want to prove that {§”, n > 1} is tight on
M (d). Let (Y,) be iid. matrices with distribution p, M,=Y, --- Y, and
S, =Y, --- Y, havedistribution u*. If « = sup{||k(M)|; M € T(n)}, by Lemma
4.2,

121 < o E1ADIBT) -+ B

Since E{log*||d(Y))|l} < oo, the Borel-Cantelli lemma yields that
limsup||d(Y;)|"* <1 as.,

and since lim||b(Y,,) - - - &(YDII'™ = exp y(p,) < 1, d(M,,) is bounded with prob-
ability 1. In the same way we prove that ¢(S,) is a.s. bounded. So, the exponent
¥(p,) being negative, we have only to check that

n—1

Y a(Y,) - a(Y,)e(Yi)d(Y; -+ V)

i=1

is tight. This sum has a norm smaller than

Tla(%,) -+ alToIe(H 1404,

and since d(M,) is as. bounded it suffices to show the tightness of U, =
ZrMa(Y,) -+ a(Y o)l le(Y;. 1)l This is clear since U, has the same law as
V, = Za(Yy) - a(Y; )l le(¥;)l| which is bounded a's.

We shall now verify that if {u}, n > 1} converges, then {u", n > 1} converges
too (the converse is obvious). Consider a subsequence {p™?,i > 1} which con-
verges to some probability measure m;, on #(d). For each integer p let
i, = max{i; 3n(i) < p}. Note that if p — oo, i, > o0, and for m(p) = n(ip),
I(p) =p — 2m(p) - oo. Writing pP = p™P) % uiP) x y™(P) we gee that for any
limit point m of {u?, p > 1}, for some limit point m’ of {(u?, p > 1} we have

m=m;*m' *m,.

As in the proof of Corollary 3.7 we see that m is the distribution of a random
matrix of the form (13), with @ = I, where (C,, K,) and (K, D,) depend only on
m, and K, on m'. If {u}, n>1} converges to some law, K, has it for
distribution and m does not depend on a particular convergent subsequence.
This implies that {u”, n > 1} converges. O

In order to apply the last part of the theorem under Conditions C1 or C2 we
must give criteria ensuring the convergence of (%, n > 1}. If {k(M); m € T(n)}
is in a compact subgroup of Gl(d,) this is well known: This sequence converges if
and only if the support of p, is not contained in a coset of a proper normal
closed subgroup of K = {(k(M); M € T(p)} and the limit is the Haar measure
on K (see, e.g., [16]). To study this problem under C2 one may use:

PROPOSITION 4.4. Let p be a probability measure on #(d) such that T(y) is
an F-semigroup. Unless d = 1 and p = 8_,, the sequence {p", n > 1} converges.
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Proor. The statement is obvious when d = 1. We thus suppose d # 1 and
set T = T(p). Since we shall make use of Theorem 4.13 of Mukherjea and
Tserpes [16] we first have to explicate the so-called standard representation of
the kernel K of S. By assumption there exists a rank-one projection P in T. For
any M in T, PMP is a scalar multiple of P. Actually PMP is equal to P or — P,
since the spectral radius of PMP is equal to one (see Definition 1.2). This implies
that the kernel K (i.e., the smallest two-sided ideal) of T is equal to TPT. It
follows from Theorem 2.14 of [16] that if G = PKP and if X (resp. Y) is the set
of idempotents of KP (resp. PK) then X X G X Y is the standard representa-
tion of K. Notice that KP = TP, that PK = PT, and that, since —P isin T by
Remark 2.5, G = {P, —P}. By Theorem 4.13 of [16], if {u", n > 1} does not
converge then there exists a proper subgroup G’ of G such that YX is in G'.
Since the only proper subgroup of G is { P}, this yields that YX = {P}.

Let now ( -, -) be a scalar product on R? for which Im P is orthogonal to
ker P and v be a unit vector in Im P. Note that since PTP = { P, — P}, for any
M in T, MP, or —MP is in X and PM or —PM is in Y. Making use of the
irreducibility of T' we thus can find M; in Y and N, in X, 1 < i < d, such that
{("M;v,1 < i <d)} and {N;v,1 < i < d} are two basis of R®. Since YX = {P},

(Nv, Mjv) = (*M;N,v,v) =1, 1<i,j<d.
This can hold only when d = 1.0

5. Stationary solutions of x, =Y, x
equation on R%

n_1- Consider the following linear

x,=Yx nx1,

where Y, Y,, ... are independent random matrices with a common distribution p
and x, is a random vector with law » independent of the sequence {Y,, n > 1}.
Then the process {x,,n = 0} is stationary if and only if » is a p-invariant
probability measure on R?% We shall determine the set of such invariant
distributions when the Y;’s are invertible.

If » is a measure on R? we write E(») for the linear span of its support. We
have already noticed that E(») is T(p)-invariant when » is p-invariant (see the
beginning of the proof of Theorem 2.6). Thus the main step in the description of
all the p-invariant distributions is

n—1»

THEOREM 5.1. Let p be a probability measure on GI(d) such that
[log*||)Y|| du(Y) is finite. A necessary and sufficient condition for the existence
of a p-invariant probability measure v on R? such that E(v) = R? is the
following:

(i) For some d; 20, d, =0, d, + d, = d, and some invertible matrix Q,
QT(r)Q™! is contained in T(d,; dy; 0). In a convenient basis of R we can write

each M € T(p) as
_[a(M) (M)
M= ( 0 k(M))
with a(M) € #(d,), c(M) € #(d,, dy), k(M) € #(d,).
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(i) The upper Liapounov exponent of ,, the image of u under a, is strictly
negative.

(iii) Each k(M), M € T(p), is orthogonal.

(iv) If P is a projection in T(p) such that a(P) =0 and P + 0, the only
T(p)-invariant subspace which contains Im P is R<.

In this case, if m = lim,,_, (1/n)S™ 4, then
{m ® p; p being a probability measure on R?)

is the set of p-invariant probability measures on R<.

We have used the following notation: If m (resp. p) is a probability measure
on #(d) (resp. on R?), m® p is the measure on R which satisfies for every
bounded Borel function f on R¢,

Jix)d(m@p)(x) = [[i(Mx) dm(M) dp(x).

PROOF OF THE NECESSITY. We assume that » exists with E(v) = R% From
Proposition 2.1 we know that if (Y,,) are i.i.d. matrices with distribution g, then
the sequence Y,Y; - - - Y, is bounded with probability one. Therefore {u”*, n > 1)
is tight on .#(d) and we may apply Theorem 3.1. Let @, d,, d,, and d, be as in
that theorem; for convenience we assume that @ = I. Consider a random
variable (A, X) with values in #(d) X R and distribution m ® ». By the
p-invariance of » the distribution of AX is », but 5(A) = 0 as. and E(») = RY,
thus d; = 0. We now prove that a(Y; - -- Y,) converges to 0 almost surely. Since
the support of m is in T(u) there exists a matrix P in T() such that a(P) = 0
and k(P) = I. Considering the image of p under the conjugation by

o “7)

we can moreover suppose ¢(P) = 0. As in the proof of Proposition 2.1 for almost
all w,

Jm Y(0) - Y(@)Pm = lim Y(0) - Y(a)m.

We shall prove that for each w such that this equality holds a(Yy(w) - - Y(w))
converges to 0. Any limit point M of the sequence Y(w)--- Y, (w) satisfies
MPm = Mm. Let us see that this implies a(M) = 0. If H is a random matrix
with distribution m, we deduce from MPm = Mm carrying out the matrix
multiplication that the random variables (X,Y) = (k(M)k(H), a(M)c(H) +
¢(M)k(H)) and (X', Y") = (k(M)k(H), c(M)k(H)) have the same distribution.
But V' = ¢(M)k(M)™'X’ so Y = ¢(M)k(M)~'X and a(M)c(H) = 0 as. This
implies that for V.= {(x, y) € R% x € R%, y € R%, a(M)x = 0},

m{He #(d);ImHcC V}=1.

By invariance of », m ® »{(H,x); Hx € V} = »(V) so »(V) = 1. This holds
only if V=RY ie., a(M) = 0.
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We have thus proved that ||a(Y] --- Y,)|| converges to 0 with probability one.
If E(log*||a(Y,)|]) is finite this implies that the Liapounov exponent y(p,) is
strictly negative (see Lemma 5.2).

To verify (iv) we use the fact that for any P in T(p), Y; --- Y,P» converges
to some probability measure v, such that » = [», dP(w) (see the proof of
Proposition 2.1). Since each », is carried by the smallest T(p)-invariant subspace
which contains Im P, this subspace carries » and is thus equal to R%. O

PROOF OF THE SUFFICIENCY. If the conditions hold {u", n > 1} is tight and
(1/n)C™ u’ converges to some m (see Theorem 4.1). For a probability measure p
on R? it is clear that m ® p is p-invariant. Consider a projection P in T(p) such
that a(P) = 0. As above we may suppose if P # 0 that £(P) = I and ¢(P) = 0.
We choose a probability measure p on Im P whose support spans Im P and set
v = m® p. Since E(») is T(p)-invariant PE(v) C E(v) and since the projection
of E(v) into Im P is all Im P, Im P c E(»). By (iv), E(v) = R% This proves the
sufficiency.

The last claim of the theorem is clear: If A is an p-invariant probability
measure on R% p®A =X and A =m®M\. Conversely each m®p is p-
invariant. O

In the course of the preceding proof we have used:

LEMMA 5.2. Let X, X,,... be independent random elements of Gl(d) with
a common distribution p. Assume that [log™||Y|| du(Y) is finite and that a.s.

lim "Xan—l e Xl" = 0

n—oo

Then the upper Liapounov exponent associated with (X,) is strictly negative.

PROOF. Let A be a probability measure on the unit sphere S of R¢ such that

/1 s () @nca) = 1) ixw)

for any bounded Borel function f on S. If U, is a random variable with law A,
independent of the sequence ( X,,), then

A (X Xn—l ”'Xon )
" " “X : X1U0||

L
is a stationary Markov chain. If we set F(Y, u) = log||Yul|, then

1 17

—log|| X, --- XUyl = — ) F(Z,).

n Og” n 1 0" n igl ( t)
By Lemma 3.3 of Furstenberg and Kifer [6] we can choose A in such a way that
Z, is ergodic and (1/n)X}_,F(Z;) converges to the exponent y(p). Since

1 n
~ L F(Z) <log|X, , -+ X\l > —w0 ssn o0
i=1

it thus follows from Lemma 3.6 of Guivarc’h and Raugi [7] that y(p) < 0. O
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To describe all the invariant measures on R? for any p on Gl(d) such that
[log*||Y|| du(Y) is finite we choose a maximal 7T(p) invariant subspace F with
the following property:

In a suitable basis of F, for each M in T(p) the restriction My of M to F can
be written

a(M) c(M))
0 k(M))

where the exponent y(p,) is strictly negative and each k(M) is orthogonal.

Such a subspace is in fact unique. Each p-invariant probability measure on R ¢
is carried by F and is invariant under the image p5 of p under the restriction to
F. Therefore, for m = lim(1/n)L? ,p%, each p-invariant probability measure »
can be written » = m ® p for some measure p on F.

-

6. Ergodic properties of stable linear stochastic equations. In this part
we consider a discrete time linear stochastic equation on R%:

x,=Yx nx1.

n—1»

We want to describe the ergodic properties of the Markov chain (x,) under the
following assumption (A), related to the stability in probability of this process:

CoONDITION (A). We say that a probability measure p on #(d) satisfies (A)
if the following holds:

@ [log*[Y]ldp(Y) < +oo.
(ii) For some d; >0, dy >0, d3>0, and d; + d, + d; =d, T(p) is con-
tained in T(d; dy; d3). As in Definition 1.3 we write for M in T(p),

a(M) (M) e(M)
M=| o kM) dM)]|.
0 0 b(M)

(iii) The upper Liapounov exponents of the image of p under a(-) and b(-)
are strictly negative.
(iv) Each k(M), M € T(p), is orthogonal.

We shall write K = {k(M); M € T(p)}; it is a compact group. We have met
this condition (A) either under C1 or under C2 (see Remark 3.6 for instance).

As before we set M, =Y, --- Y,, where Y,,Y,,... are iid. matrices with
distribution p. The following decomposition shows that asymptotically Y, can be
written as L, K, R, where L, € #(d, d,), K, € O(d,), and R, € #(d,, d) are
independent matrices such that, for all m and n, R,L,, is the identity. If this
were exactly true we would have

Mn = LnKn e KIRI

and the proposition would be obvious. This kind of decomposition already
appears in Kesten and Spitzer [13].
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PROPOSITION 6.1. LetM,:=Y, --- Y,, where the Y;'s are i.i.d. matrices in
A (d) with distribution p. We suppose that p satisfies (A).
For any M in T(p) let

M)k(M)™?
M) = “ )1( : and r(M)=(0 I k(M) 'd(M)).
0
Then, for each n,
M, = (M, )k(M,)r(M,) + P,
where

(i) r(M,) converges almost surely to a random matrix R.
(i) I(Y; -+ Y,) converges almost surely.
(iii) P, converges to 0 a.s.
(iv) (M,), k(M,), and r(M,) are asymptotically independent.

In this proposition /(M) is a d X d, matrix, r(M) a d, X d matrix, I is the
identity matrix of order d,, and 0 in (M) (resp. r(M)) is the zero matrix of
order d; (resp. d,).

Proor. We first verify (i). For M in T(p) we set
r'(M) = k(M) 'd(M).
By Lemma 4.2 for n > p,
r(M,) - r(M,) = L k(M) 'd(Y)b(M;_,);
Jj=p+1
hence,

Ir(M,) = r(M)ll < X Id(Y)N15(M;_ ).
Jj=p+1

Let y denote the upper Liapounov exponent associated with the distribution
ps which is defined in Lemma 4.3. It follows from this lemma that y < 0.

Now ||b(M,)|| < exp(Zy,) for n large enough, a.s. Since E(log*||d(Y?)|) <
we obtain with the Borel-Cantelli lemma |d(Y,)|| < exp(— 1y,) for n large
enough. This yields that .

(14) Ir(M,) = (M)l < X exp(—iv;+ §v(j — 1)) < Cexpiyp

Jj=p+1
for a suitable C and p, n large enough, entailing that r’(M,) is almost surely a
Cauchy sequence and that r(M,,) converges a.s. The proof of (ii) follows the same
line.

In order to prove (iii) it suffices to check that a.s.

lim e(M,) — e(M,)k(M,) 'd(M,) = 0.

The proof we give is well suited for generalization to the continuous time model.
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Fix an ¢ > 0 sufficiently small. Since (1/n)E(log||s(M,,)||) converges to y we can
find an integer & such that

(15) E(log|ls(Mp)Il) < k(y — e).
For each integer m we set
Zm = Ymk t Y(m—l)k+1'

For convenience we will write, for n > p, M, M, " instead of Y, --- Y, even if
the matrices are not invertible.
If mk < n < (m+ 1)k we have, by Lemma 4.2,

e(M,) — c(M,)k(M,) 'd(M,)
=e(s(Y,) -+ s(¥,)) - a(M,M,})a(Z,) -+ a(Z,)c(Z,)r'(M,)

+ mg—lla(MnMr;li)a(Zm) o ( j+2) ( j+1)k(Mk1){r’(Mkj) - r,(Mn)}

+c( M, M} ) k(M) {r'(M,,,) — r'(M,)}.

In order to show that this quantity converges to zero it is enough to prove,
since y < 0 that for each p fixed

(16) E la(M M) |a(Z,) -+ a(Z;0s) || | e(Z;20) | |7/ (M) = 7(M,)
and
(17) |e(M,Mz3) | 17 (M,,,) — r'(M,)]

converge to 0 as n > oo.
By the Borel-Cantelli lemma, for almost all  and m, j sufficiently large,

(18) sup{"a(MnM,,‘,,i)"; mk<n<(m+ 1)k} <e™
and
(19) sup{"c(MnM,;,i)"; mk<n<(m+ 1)k} <e™.

By (14) and (19), (17) converges to zero. Now by the law of large numbers, (15)
yields that

lim sup | sup i {log”a(Zj) | - #(v - s)} <0 as.

n—oo \Jj<n ‘—j
Hence for m large enough and every j <m
(20) |a(Z,) -+ a(Z)] <lla(Z,)] - [a(Z)|| < exp k(m — j)(v - ¢).

Using (14), (18), (19), and (20) we obtain that a.s. for m and r large enough, (16)
is smaller than
-1
Ce2memz ek(m—2—j)(-y—s)e(j+l)ee'ykj/2’
j=r

which is easily seen to converge to 0 when m — oo, for & small enough.
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We now prove (iv). Recall that by definition, {(M,,), k(M,), and r(M,) are
asymptotically independent if for every bounded continuous functions f:
"”(d’ d2) - IR’ g: ‘//{(d2) - R’ h: '//l(d2’ d) - IR’

E{f((M,))g(k(M,))h(r(M,))} — E{{(U(M,))} E{g(k(M,))}E{r(r(M,))}

converges to 0 as n — co.

We know that {u”, n > 1} is tight (see Theorem 4.1). As in the proof of this
theorem if m is the limit of a convergent subsequence (u™?), m is the distribu-
tion of a random matrix which can be written

0 CK,K; CK,D,
0 K,K,K, K,K,D,|,
0 0 0

where (C,, K,), K,, and (K,, D;) are independent and the distributions of
K,, K,, K, are limit points of {u}, n > 1}, where p, is the image of p under
k(+). Since p,, is a probability measure on the compact group K, we know that
there is some b in K such that §,. * u} converges to the Haar measure on a
compact normal subgroup K’ of K (see Mukherjea and Tserpes [16], Theorem
4.15). We thus may write K, =k Kl, K,=k,K,, and K, =k;K,, where
ky, ko, ks arein K and K, K,, and K, are three independent random matrices
whose distribution is the Haar measure on K’. Since K’ is normal kK has the
same law as K,k for each k in K and i = 1,2,3. Using the invariance of the
Haar measure and independence we get that the following random variables
have the same distribution:

(a) (C,Ki', K\K,K;, K3'D;)

= (C,K %Y, kK kK k3K, K3 'R35'D;),
(b) (Cko K1 k5 'Y, Rk K KoK ks, k3 'K 'Dy),
(c) (Ciko Ky ki Y, Rk Kok, kK5 'Dy),
(d) (C.K1Y, kK kg, K5'Dy).

We obtain, if f({(M)) = {(c(M)k(M)™") and h(r(M)) = k'(k(M)™'d(M)),
lim E{ (1 Mys))8(R(My)) A(r(My)))
= E{1/(C.K7")g(K,K,K,) 1 (K;5'D,))
= E{{(C.K7")g(kiKyks) W (K5'Dy))
= E{ f/(C.KT") E(g(k,Koks) ) E{W'(K5'D;))

lim E{f(U(My)) }E{g(R(M)) }E(R(r(Ms))}

This being true for every convergent subsequence, the result is proved. O
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To study the pathwise behaviour of the solutions of x, = Y,x,_,, i.e, x, =
M, x,for M, =Y, --- Y,, we shall prove an ergodic result. We first state it in a
particular case as a lemma.

LemMMA 6.2. Suppose that p is a distribution on #(d) satisfying (A) with
d3=0. If m=1lim(1/n)L?% ', for each bounded continuous function f on
M(d)

n

1
lim ~ Y f(M(w)) = [fdm a.s.
noo N ;_y
Proor. Let X = (M € T(d;; d,;0); k(M) <€ K}. For any M, in X
{M,(0)M,, n > 1} is a Markov chain on X starting from M, with transition
probability P defined, for any bounded Borel function f on X and A in X, by

Pf(A) = [f(MA) du(M).

If A is an invariant distribution for this Markov chain, AP = A entailing
p*A =X and m=* A = \. Consider two independent random matrices, Z, with
distribution m and Z, with distribution A. Carrying out the matrix multiplica-
tion we obtain

a(2,Z,) =0, c(2,2,) = c(2,)k(Z,), k(Z,Z,) = k(Z,)k(Z,).

From the description of m given in Corollary 3.7 it is clear that A, which is the
distribution of Z,Z,, must be equal to m. So m is the unique invariant
distribution of this Markov chain. By the ergodic theorem applied to a countable
dense set of continuous functions on X with compact support we know that

For almost all w and m-almost all M,,,

&) = X 10t (e);) > [fam

for all f in this dense set. But for w and M, fixed this is in fact a “convergence
in law” statement; therefore, it holds for each bounded continuous function f on
A (d). We want to prove that (21) is true when M, is the identity matrix. Fix an
M, for which (21) holds for almost all w. If A is the matrix in X such that
a(A) =1, c(A) =0, k(A) = k(M,)" ' we define f: X - R by f'(M) = f(MA)
for M in X. Since a(M,) — 0 a.s.

f(M,(0)) - f(M,(0)M,) >0 as.whenn — .
Applying (21) to f’ we find that a.s.
17 17
lim n 2 f(M(«)) = lim n 2 f(M(0)M,) = ff’dm.
n—-oo N ;_, n—oo Ui

As the mean of the left side is [f dm, we have [f’dm = [fdm and the lemma is
proved. O
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In the next theorem we use the notation and the results of Proposition 6.1.

THEOREM 6.3. Let M,=Y, --- Y, where Y,,Y,,... are i.i.d. matrices on
M (d) whose distribution satisfies Condition (A). Let N\ be the distribution of
lim (Y, -+ Y,), p be the Haar measure on K = {k(M); M € T(p)}, and
R = lim r(M,). For almost all » and any bounded continuous function f on
M (d),

%é f(M(w)) = [[i{(LUR(w)) dN(L) dp(U).

ProoF. Since this is for each w a “convergence in law” statement it suffices
to prove the theorem for functions f on T(d,; d,; d3) which can be written as

f(M) = g((M)k(M))h(r(M)),
where g and A are bounded continuous functions on 7(d,; d,; ds).

If we apply Lemma 6.2 to the image of p under the map : T(dl, d,y; d3) —
T(d;; dy; 0) given by, for M in T(d,; dy; d3),

a(M) (M)
o) = (G0 H00)

it is easily seen that, a.s.,
1 n
lim — Y g(UM)A(M) = [[e(LU) dN(L) dp(U).
n—oo b
Since lim A(r(M,)) = h(R) a.s. the theorem follows. O

COROLLARY 6.4. Under the above hypotheses, a.s. for each bounded con-
tinuous function ¢ on R? and each x in R<,

lim 3 o(M(a)x) = [[o(LUR(a)2) ANL) do().

From this we deduce the asymptotic behaviour of the Markov chain x, = M, x
on R¢

Let {e;,1 < i < d} be the canonical basis of R and let E,, E,, and E; be the
linear span of {e;,...,e;}, {€4 415+ +>€q+a,}» aNA {€4 g, 115, €q}. Write
eachxinR%asx=u+ v+ w whereu € E;, v € E,, and w € E,. For any v in
E, consider the cylinder A(v) = E; X Kv X {0}.

(i) If v = w = 0, M, x converges to 0 exponentially fast.

(ii)) If w =0, v #+ 0, A(v) is an invariant set for the Markov chain: starting
at time 0 in A(v) the process remains in this set. Moreover, on A(v) this Markov
chain has a unique invariant distribution m, defined by, for each Borel set B in
A(v)

m(B) = [[1a(LU) dA(L) dp(U) = [15(Mzx) dm(M),
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where m = lim (1/n)X2 4%, and is recurrent in each open set of nonzero m
measure.

(iii) If w # 0, the Markov chain chooses a random cylinder, A(Rx), and goes
to it exponentially fast.

v

REMARK 6.5. Suppose that Condition (A) holds and that there exists a fixed
x in R so that Mx = x for each M in T(p) (consider for instance stochastic
matrices). It is easy to see that in this case one can suppose d, = 0, d, = 1, and
k(M) = 1. Therefore, by Proposition 6.1, M, converges almost surely.

7. Linear stochastic differential equations. Consider as in (1) the linear
stochastic differential equation (linear SDE) on R¢

(22) dx,= Syx,dt + Y. S;x,o db},

i=1
where S, S,,...,S, are d X d matrices and (b',..., d") the usual R"-valued
Brownian motion. Let {e;, 1 < i < d} be the canonical basis of R? and let M, be
the matrix whose ith column is the solution of (22) starting from e; at time 0. We
have

(23) dM, = SoM,dt + ) S;M,cdbi, M,=1.
i=1
Since if x, = x, x, = M,x is a solution of (22), (M,, t > 0) is the flow associated
with (22) (see Ikeda and Watanabe [12]). As such, if p, is the distribution of M,,
Be* By = Py, and M, is in GI(d).
We define for i = 0, 1,..., r the right invariant vector field S: on the manifold
GI(d) by: if f is a smooth real function on Gl(d)

S0I(1) = ZHews)m)| | Meaa)

0

With the usual notation for SDE on manifolds (see Ikeda and Watanabe [12],
Chapter V.1), (23) can be written as

(24) dM, = Sy(M,)dt + Y S(M,)odbi, M,=1I.
i=1

By Theorem 1.2, Chapter V of [12], the infinitesimal generator associated with
M, is

1/ . o
A=_(Esi2+80).
2 i=1

LeEMMA 7.1. Let G be the connected Lie subgroup of Gl(d) whose Lie
algebra is generated by S, S,,...,S,. For any t>0, p(G)=1. For A\ =
J§e " 'u, dt, if H is a closed subgroup of GI(d) such that A\(H) = 1, G is included
in H.
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PROOF. Since each S| is a vector field on the manifold G the equation (24)
can be considered as a SDE on G. By unicity M, is in G a.s. and p(G) = 1. We
consider also A as a differential operator on G. Since S, ..., S, generate the Lie
algebra of G, the Hérmander’s theorem (see Hormander [11]) implies that A is
hypoelliptic. Therefore, A being the solution of (A* — 1)A = —§,, the measure A
has a density on G. If H is a closed subgroup of Gl(d) such that A(H) =1,
H N G must contain an open set. The connectedness of G implies that H N G =
G (see Hewitt and Ross [10], 7.9). O

LEMMA 7.2. Suppose that:

(i) There is no proper subspace V of R¢ such that S(V)C V for i =
0,1,...,r.

(ii) There is no invertible matrix Q such that QS;,Q " is skew-symmetric for
i=01,...,r.

Then the family {u,, t > 0} is tight on #(d) if and only if y(p,) <O0.

This result is a generalization of Theorem 7.2 of Hashminski [8]. Recall that
the set of all skew-symmetric matrices (i.e., matrices M with M +'M = 0) is the
Lie algebra of the orthogonal group.

ProOF. We first prove that if {u,, ¢ > 0} is tight y(A) < 0, where A = [5°u, dL.
We shall apply Proposition 2.8 to A. We first verify that there does not exist a

finite set V,,...,V,, where each V; is a proper subspace of R? such that

M(V,U---UV,)c VU ---UV, forany MinT(}).

We can suppose that dimV; < dimV], 1 < i < p. For each M of Gl(d) N T(A),
MV, must be one of the V,. Therefore, after reordering terms, we may suppose
that for some ¢ < p,dimV, =dimV, 1 <i < g and that

MV, e {(V,,V,,..:,V,} forany MinGl(d) N T(X).

Let H={M € Gl(d); MV, € {V,,...,V,}}. H is a closed subgroup of Gl(d)
and A(H) = 1. The group G defined in Lemma 7.1 is contained in H and its
action on the space of dim V,-dimensional subspaces of R is continuous. G being
connected, the orbit of V; under G is finite only if it is V, alone. So MV, =V
for each M in G. This in turn implies S(V;) € V, for i = 0,1,..., r in contradic-
tion with (i).

For some ¢ > 0, E(|M,)|?) < e (see [12], page 164). Thus for a =1/c,
E(IM,|*) < e'/? and [||Y||*dN(Y) = [PE(||M,||*)e *dt is finite. Since M, !
also satisfies a linear SDE, namely

dM;' = —M;'S,dt — Y. M;'S, db},
i=1

we may suppose that [||Y || dA(Y) is also finite. Therefore the hypotheses of
Proposition 2.8 are verified.
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If {u, t= 0} is tight, {\*, n > 0} is also tight and by Proposition 2.8 and
Theorem 2.6 either y(A) < 0 or T(A) is in a compact subgroup of Gl(d). In the
second case G would be, by Lemma 7.1, contained in a conjugate of O(d) in
contradiction with (ii).

Thus y(A) < 0 but

n—1

Y(A) ! dp (M) ds

1 1 -] S
1 .| Ml 5
Jim = [log |41 dN(31) = lim— [ [ gl Mlle™* (-

1
lim = flog| M| du,(M) = ¥(k,).
The theorem follows immediately. O

We can now characterize the stability in probability of the zero solution of (1).
By definition it is equivalent to the tightness of {u,, ¢ > 0} on #(d).

Given T;, T},..., T, being p X p matrices we denote by v(Ty, T}, ..., T,) the
upper Liapounov exponent associated with the linear equation on R?

-
dy, = T,y dt + Z T.y,~ db;
i=1

defined in the introduction. For instance, with our notation

1
¥(S0, Sy, ) = ¥() = 2 v(w) i 2> 0.

THEOREM 7.3. Consider on R the linear SDE

dx,= Syx,dt + Y Six,o dbi.

i=1
The solution x,= 0 is stable in probability if and only if there exists some
invertible matrix Q and integers d, > 0, dy > 0, d3 > 0, and d = d, + d, + dj,
such that each 8] = @S,Q™', 0 < i < r, is in T(d,; dy; d;) and
(i) A(S)) is skew-symmetric.
(ii) The Liapounov exponents y(a(S}), ..., a(S.)) and y(b(S}), ..., b(S.)) are
strictly negative.

We have used Definition 1.3 and written
a(S) <(S) e(Ss)
S = 0 k(S d(S)|.
0 0 b(S!)

PRrOOF. We first suppose that x, = 0 is stable in probability. In this case {,,
t > 0} is tight and for A = [°e™*u  ds, {\*, n > 1} is tight. We may thus apply
Theorem 3.1 to A. Let @ and d,, d,, d; be the quantities introduced in this



70 P. BOUGEROL

theorem, and G the group defined in Lemma 7.1. We can suppose that @ = I.
The verification of (i) is easy: if H is the smallest closed subgroup of Gl(d) which
contains {k(M); M € T(A)}, H is compact by (iii) of Theorem 3.1 and
{k(M); M € G} is contained in H by Lemma 7.1. So {k(M); M€ G} is
contained in a conjugate of O(d,) and we may choose @ in such a way that it is
in fact in O(d,). In this case each k(S]) = k(S,) is in the Lie algebra of O(d,)
hence is skew-symmetric (recall that we have supposed that @ = I).

We verify (ii) using Lemma 7.2. Since the proof is the same for both exponents
we only consider y(a(S{),...,a(S;)). If we set a(S;))=T;, a(p t) =p,, and
a(A) = 7 we have to show that if {p,, £ > 0} is tight and (1 /n)E *_, 7" converges
to the Dirac mass at the zero matrix then the upper Liapounov exponent
associated with

(25) dy, = T,y dt + > Ty, dbti’ %€ R4,
i=1
is strictly negative. Consider a stnctly 1ncreasmg sequence {0} = E,CE, C
- CE,= R% such that for j=1,...,p E; is a minimal subspace which
contains E _1 and such that Ty(E;) C E for i =0,..., r. Let a/(T;) denote the
endomorphism of ¥,=E,/E; , deﬁned by

(26) aj(Ti)f = Tx, x € Ej’

where X is the class of x in F,. By Hennion [9] or Furstenberg and Kifer [6], the
exponent associated with (25) is the supremum of the exponents associated with
the following SDE on F}:

r
dx, = a;(Ty)x, dt + Yy a,(T)x,° db}, X,€F,
i=1
for j=1,...,p.

Makmg use of the minimality assumption on E; and of the convergence of
1/n¥? ;7 to 9, it follows from Lemma 7.2 that each of these exponents is
strictly negative. This shows that (ii) holds.

We now verify the converse. We can suppose @ = I too. The assumption (i)
implies that {k(M); M € G} is in O(d,), so for p=p,, (k(M); M€ T,} is
bounded. By (ii) the Liapounov exponents of the image of p under a(-) and b(-)
are strictly negative. Therefore, Theorem 4.1 implies that {u,, n > 1} is tight on
A (d). Since by continuity {u,, 0 < s < 1} is tight and since each p,, ¢ > 0, can
be written p, = p,*p, with ninN and 0 <s <1, {u,, £ > 0} is tight. O

This theorem shows clearly that when the upper Liapounov exponent is 0
instability is the rule. For instance S, must have at least one eigenvalue with real
part 0. We also have:

COROLLARY 7.4. If trace(S,) = 0, the solution x, = 0 is stable in probability
if and only if for some invertible Q, all the matrices QS,Q™ ', 0 <i<r, are
skew-symmeltric.
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Proor. If x,=0 is stable in probability we can apply Theorem 7.3. We
know from Theorem 2.2 of Arnold, Crauel, and Wihstutz [1] that

tra(S;) < dyy(a(S),...,a(S!)) <0
and
tr b(S;) < day(5(S;),..., b(S!)) <o.
Therefore if d, or d, is nonzero then
tr(Sg) = tra(Sy) + trb(Sy) + trk(S;) < trk(S;).

But %(S}) is skew-symmetric and thus has trace 0. Hence if tr(S,) = tr(S3) = 0,
then d, = d; = 0 and all the matrices @S;Q ! are skew-symmetric. The converse
is obvious. O

We may paraphrase this corollary by saying that if tr(S,) > 0 (for instance if
Sy = 0) the only linear diffusions on R which are stable in probability are
(possibly degenerate) Brownian motions on spheres (for a convenient scalar
product).

To study the ergodic properties of stable linear SDE we have the following
analogue of Proposition 6.1 and Theorem 6.3:

PROPOSITION 7.5. Suppose that the solution x,= 0 of (1) is stable in prob-
ability. By Theorem 7.3, if we suppose for convenience that @ = I, we can write
the solution M, of (23) as

a(M,) (M) e(M,)

M, = 0 k(Mt) d(Mt) .
0 0 b(M)
Set
R,=(0 I kr(M)7'd(M))eM(dyd), K,=k(M,)e0(dy)
and
c(Mt)k(Mt)_l
L= I e#(d,d,).
0

Then

() M, — L,K,R, converges to 0 almost surely.

(ii) R, converges a.s. to a random matrix R.
(iii) L, converges in law to some distribution \ on #(d, d.,).
(iv) K, is a possibly degenerate Brownian motion on SO(d,).
(v) R,, K,, and L, are asymptotically independent.



72 P. BOUGEROL

OUTLINE OF THE PROOF. The proof is an easy adaptation of the proof of
Proposition 6.1. We just indicate the main modifications. As there, we first verify
that r'(M,) = k(M,)"'d(M,) converges a.s. It is easily seen that if [¢] is the
integral part of ¢,

(27) |7 (32,) = r(Mpy) | < Xl (M) |

if for each integer we define

X, = sup{"d(M,M,:l)”, n<t<n+ 1}.
Since (see for instance Ikeda and Watanabe [12], page 240)
(28) E{ sup ||M,||} <

0<t<1
the Borel-Cantelli lemma implies that a.s. for ¢ large enough X, <[¢]. We
know that r'(Mp,) converges as. Since the exponent of b(M, ) is strictly
negative, r’(M,) has the same limit by 7).
To prove (iii) we remark that if N, is the solution of

dN,= N,S,dt + Y N,S; db;, Ny=1,
i=1
and if L; is associated with N, (in the same way as L, is associated with M,), L
and L) have the same distributions for each £. One proves as above that L,
converges a.s. The other points are proved exactly as in Section 6 using (28). O

As in Section 6 we have:

COROLLARY 7.6. If x,(y) is the solution of (1) such that x,(y) = y, under the
notation and hypotheses of Proposition 7.5, for any bounded continuous func-
tion f on R? and every y,

T M) ds > [HLUR)) ML) do(V) as,

if p is the Haar measure on the closure of the Lie subgroup of SO(d,) whose Lie
algebra is generated by k(S,), ..., k(S,).

We have of course the same description of the behaviour of the path of the
Markov process x, as at the end of Section 6. Let us give a typical example in R3,
Consider the matrices S, S;, ..., S, for which

al * *
Si= 0 0 * ’ aiER,biER,i=0,...,r,
0 0 b

with @, < 0 and b, < 0. In this case x, = 0 is stable in probability and for each y
the distribution of x,(y) converges. In law M, converges to some random matrix
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which can be written

0 C CD
0 1 D, C,DER,
0 0 O

and d(M,) converges to D almost surely.
If y = (g, vy, Wp) is in R3:

(i) for v, = w, = 0, x,(y) converges to 0 exponentially fast a.s.;
(ii) for w, = 0, x,(y) remains on the line {(u, v,,0), © € R} and is recurrent;
(iii) for w, # 0, x,(y) is attracted by the random line {(u, D,0), u € R}.

Finally we can describe the set of invariant distributions of the Markov
process solution of (1), and this gives the stationary solutions in the general case
(i.e., without any assumption of stability). Using the results of Section 5 and the
fact that such an invariant distribution is [{’¢~°u, ds-invariant we have:

ProposITION 7.7. Consider the linear SDE (1). Let E be the maximal
subspace of R® invariant under each S;, 0<i<r, such that if S; is the
restriction of S; to E we can write in a convenient basis of E,

5 a(S;) (S
Si:( 0 k(s,.))’

where ¥(a(S;),...,a(S,)) <0 and k(S)) is skew-symmetric, 0 <i < r. Then
every stationary solution of (1) is carried by E.

On E the invariant distributions are given as in Proposition 7.5. If for
instance some S; has no eigenvalue with null real part, the only stationary
solution of (1) is x, = 0.
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