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HYDRODYNAMICAL LIMIT FOR THE ASYMMETRIC SIMPLE
EXCLUSION PROCESS

BY ALBERT BENASSI AND JEAN-PIERRE FOUQUE
Université de Paris VI

We prove a strong law of large numbers for the rescaled asymmetric
simple exclusion process. By a coupling procedure we show that the density
profile is a weak solution to a first order quasilinear partial differential
equation. Moreover, the monotonicity of the process allows us to show that it
is the unique solution satisfying the entropy condition. The local equilibrium
is then an easy consequence.

Introduction. It is well known that the simple exclusion process with
translation invariant transition probabilities preserves stochastic order and has a
family {»°} of equilibrium measures indexed by a continuous parameter ranging
from 0 to 1. We recall this notation in Sections 1 and 2.

In this article we are interested in the asymptotic behavior of the one-dimen-
sional asymmetric simple exclusion process in which only transitions to nearest
neighbors are allowed. We consider this process starting from a product measure
»®® corresponding to two half-spaces in equilibrium with different parameters a
and b.

After a suitable space and time rescaling, the distribution of particles at time ¢
defines a random measure on the real line, each particle contributing an equal
mass. We show that this measure converges weakly almost surely to a determin-
istic measure, as the rescaling parameter goes to zero. In other words, we obtain
a strong law of large numbers for the system (Section 2).

Moreover, the limiting measure has a density, called the density profile, which
< is a weak solution of a nonlinear hyperbolic P.D.E.; this is shown in Section 3,
under the nearest-neighbor assumption, by a coupling argument.

The identification of the density profile as the only weak solution satisfying
the entropy condition relies strongly on the properties of the limiting equation
summarized in the Appendix.

In Section 4 we deduce from the preceding result the local equilibrium at each
point of continuity of the density profile.

When the process starts from the particular configuration corresponding to
a =1 and b = 0, this problem is solved by Rost [9] when the particles move only
in one direction to the nearest neighbor and by Liggett [7] for general transition
probabilities.

1. The simple exclusion process.

1.1. Generator and initial distribution. Consider on the space E = {0,1)%
with elements e = {e(k), k € Z}, the Markovian process of a simple random
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walk with exclusion which can be described intuitively in the following way:
Particles are distributed initially on Z in such a way that there is at most one
particle per site. Each particle waits an exponential time with parameter one and
attempts a transition of one unit to the right with probability p and one unit to
the left with probability 1 — p; it makes the transition if that site is vacant,
while if the site is occupied, the particle remains where it was.

A general result of existence and uniqueness [7] shows that there emsts a
unique Markov process corresponding to this description. Its generator is
defined on cylindrical functions on E by

Li(e) = ¥ pe(k)(1 — e(k + 1)[ f(e***1) — f(e)]

kez

+ X (1= ple(k)(1 = e(k = 1)[f(e**) = f(e)],

keZ

(1)

where e*! is obtained from e by permuting the coordinates at %2 and [/ and
keeping the rest fixed. Denote by (7,) the semigroup generated by L. Let
{X,= (X/(k), k € Z), t >0} be the right-continuous version with left limits of
the Markov process with semigroup (7}). Observe that X,(2) = 0 or 1 for every
t>0and k € Z.

The initial distribution v®® will be a product measure on E such that
(2) v@tec E:e(k)=1) ={Z: g:ig:
for given a and b, 0 < b < a < 1. Since a product of Bernoulli measures with
the same parameter is an invariant measure for (7}) (see [7], Chapter 8), we may
see this initial distribution as the juxtaposition of two half-spaces in equilibrium
and then observe its evolution according to the exclusion process. Note that
- p=1, a=1and b =0 is the case studied in [9].

1.2. The process as a solution of a system of stochastic equations. Let
(2, #,P) be a complete probability space equipped with a right-continuous
filtration (#,),., %, complete, supporting the following independent objects:
—the initial distribution »%

—a family {P(k), t > 0}, -z of independent Poisson processes with intensity p;
—a family {Q,(k), t > 0}, ., of independent Poisson processes with intensity

1-p.
P(k) [resp. Q(k)] will be the bell attached to site 2 which indicates transition

times to the right (resp. to the left). Consider the following infinite system of
stochastic differential equations:

dX,(k) = X, (k- 1)[1 - X, (k)] dP(k - 1)
~X, (B)[1 - X,_(k +1)] dP(k)
(3) +Xt—(k + 1)[1 - Xt—(k)] th(k + 1)
—X, (k)1 - X, (k- 1)] dQ,(%),
law(X,) = »*°.
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It is easy to check that (X,),. , is a Markov process with generator L defined by
(1). Consequently, (3) has a unique solution in law concentrated on the right-
continuous trajectories having left limits.

1.3. Rescaling. 1If I, , is the indicator function of the real interval [c, d),
for A > 0 and x € R we define )

Xth(x) = Z Xt/h(k)I[hk,h(k+l))(x)’

ke

(4) 'Pth(x) = Z Pt/h(k)I[hk,h(k+l))(x)y
ke

ch(x) = kEl Qt/h(k)I[hk,h(k+1))(x)°

We want to prove almost sure weak convergence of the measure X/(x)dx as h
goes to 0.

Observe that for ¢ = 0 the strong law of large numbers holds: The random
measure on the real line defined by X((x)dx = X<z Xo(RB) pp, nes1y(%) dx
converges weakly almost surely to the deterministic measure u,(x)dx =
(al o 00+ bl +0y)(x) dx [i.e. for every continuous function ¢ with compact
support on R, limy . o fu®() X2(x) dx = [up(x)(x) d as]

In order to guess the limit we need an equation for (X}),. ,. On the set of
functions u: R —» R we define the following functionals:

Fy (%) = u(x)[1 - u(x £ h)],

) Fu(x) = u(x)[1 - u(x)],

+1
D julx) = —=[u(x £ ) - u(x)].

From (3), (4) and (5) we deduce the equation satisfied by (X}), ,,

(6) dX}' = —D_,[Fy(X}) d(hP!)] + D,[F_, (X)) d(hQF)],
initial condition X2.
Intuitively, as & — 0, hP} - pt, hQ} > (1 — p)t, D, , —> 3/3x and F,, - F,
we should have that X ”(x) dx converges weakly almost surely to u(x, t)dx
where u(x, t) is a solution of the first-order nonlinear hyperbolic P.D.E.
8u F(u)
2p—1 =0

u(~,0) = u,.

We will suppose p # ; (i.e., the exclusion is asymmetric); for p = 1 the right
time scaling is ¢/h? and the limit is a solution of the linear parabolic equation
du/dt = 1(3%u/dx?) (see [2] and [7], Chapter 8).

In the Appendix we give the essential properties of (7), the main result about
entropy and a complete description of the density profile.
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Note that for p < ; the discontinuity of u, propagates while for p > § it
disappears.

2. Monotonicity properties and convergence. In this chapter we show a
law of large numbers for the family of processes {(X}*),.,, / \ 0} defined in
Section 1 by (3) and (4). We will use a subadditive ergodic theorem due to
Liggett ([7], Chapter 6, Theorem 2.6). In Section 1 we recall the basic tools for
the study of the exclusion process.

2.1. Stochastic order, monotonicity, coupling and priority. The notion of
stochastic order for probability measures on E is defined as follows: For e and
e’ in E we say that e <e’ if e(k) < e’(k) for every k € Z; a continuous
real-valued function f defined on E is called monotone (f € /#) if f(e) < f(e’)
whenever e < e’; » and p being probability measures on E, we say that v is
stochastically larger than p (p < ») if fu < fv for every f in A.

It is well known that (7},) preserves stochastic order: p < » implies pT, < »T,
for all ¢ > 0 which is equivalent to T, f € # for every f € # (see [7], Chapter 2).
The underlying Markov process (X,),. , is called monotone or attractive in this
context.

This notion is connected to coupling which allows us to construct simulta-
neously on the same probability space versions of the exclusion process starting
from an arbitrary configuration at an arbitrary time (cf. [7], Chapter 8, Section
2). We will use coupling in the particular situation where the initial distributions
are stochastically ordered.

We will also need the priority procedure which can be described by
the following generator defined on the cylindrical functions on {(e,e,) €
E X Ele(k)ey(k) =0,V k€ Z}:

Lfere)) = L X {p(k, me,(k)(1— e(m))

kel mez
X (ex(m)[ et epn*) = f(ey, e5)]
+ (1 - e2(m))[f(ef"", 92) - f(evez)]}
+p(k, m)ey(k)(1 — ey(m) — e,(m))
X [f(er eb™) = fler, e0)]),

with
D, fm=~k+1,
p(k,m)={1-p, ifm=k-1,
0, elsewhere,

for every k € Z.

“On the same space one can say that: Given a configuration formed by two
types of particles X; and X,, the system X; + X, evolves according to the
simple exclusion process but each time an X,-particle decides to jump to a site
occupied by an X,-particle, the two particles exchange; we say that X, has
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priority over X, (X; - X,) and we know that the global system starting from
(X,,0 + X,) and the subsystem starting from X, , evolve according to simple
exclusion processes.

2.2. Convergence. Let »® be a product measure on E such that »*(e € E;
e(k) = 1} = b for every k € Z; we call B-particles the corresponding system in
equilibrium. We add Y-particles to B-particles at negative sites in such a way
that the distribution of (B + Y)-particles, denoted by X-particles, is our initial
distribution »%°. Finally, we add Z-particles to X-particles at positive sites in
such a way that the distribution of (X + Z)- particles lS v® and we impose the
following priorities: B - Y + Z. We have law(B,) = Tp® = »®, law((B + Y),) =
Tp*® = law(X,) and law((B + Y + Z),) = Tp® = »° for every t > 0. Let u> 0
and m, n be integers such that 0 < m < n; let the system (B, Y, Z) evolve up to
time m/u; we call Y™ the (Y + Z)-particles which are at time m/u at sites less
or equal than m and Z™ the (Y + Z)-particles which are at the same time at
sites greater than m; we call B™ the B-particles at that time. After time m/u
we let the system (B™, Y™, Z™) evolve according to priorities B™+— Y™+ Z™
up to time n/u. We denote by S, , the number of Y™-particles which are at
time n/u at sites greater than n: S, , =X, .Y, (/). Similarly, we define
S(k, t) as the number of Y-particles which are at time ¢ at sites greater than k:
S(k, t) = ;. .Y, (J). With these definitions we have S, , = S(n, n/u). We de-
note by [x] the integer part of x.

PROPOSITION 1. For every u in R, t~'S([ut], t) converges, as t goes to + oo,
almost surely to a random variable G(u).

ProoF. We prove the convergence along the sequence of times ¢ = n/u for
. u > 0; the extension to convergence along all ¢ is routine, the case u < 0 is
handled similarly and for u =0 we define S;, as X,.,Y,(j) and S, , as
L. oY,"(j) where relabelling is performed at time m.

We prove the following properties:

@ S,,<Sym+S,,and S;,=0as,;

(b) for fixed k € N, (Sk(,, 1, kns 1 € N*) is a stationary sequence;
(C) for fixed m, law( 'm, m+k? ke N) = law( m+1, m+1+k> ke N)’
(d) E(S,,,) < + oo for every n € N..

Theorem 2.6 in Chapter 6 of [7] will then give the almost sure convergence of
n~'Sy, ., as n goes to + oo, to a random variable G(u).
Let X, for ¢ > m/u be the process which starts at time m/u in the  configura-
tlon (B™+ Y™,V X, ,, and define Y by X=B+Y. Since X,,,(j) 2
m /u( J) for every j € Z, we have X, )2 X, /u( J) for every j € Z. Subtract-
lng /u(]) we get Y;z/u(.]) 2 Y;z/u(.]) and SO n z"1>n n/u(]) < z:1>n n/u(.’)
By priority we have

E Y;t/u(]) S m, + card{j € Z/ /u(]) =1land m/u(]) = O}’

j>n
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where by definition the last term is S, ,,. Therefore we get (a). (b) follows from
the definition of S, , and Lemma 2.1 in [8]. (c) is easily obtained by a simple
shift of the space E. (d) is proved as in [7] (Theorem 5.3, Chapter 8) by
comparison of the exclusion process with independent particles moving only to
the right. The subadditive ergodic Theorem 2.6 in Chapter 6 in [7] shows that
n~’S, , converges almost surely to a random variable G(u). O

REMARK. The ergodicity under time and space translation of the exclusion
process starting from a measure »°, 0 < ¢ < 1, and Theorem 3.1 in [8] would
have given the ergodicity of the sequence (S, _ 1y, ,x» # € N*) and by Theorem
2.6 in Chapter 6 in [7] the nonrandomness of G(«). In the case a = 1 and b = 0,
studied in [9] with p = 1 and in [7], Chapter 8, with general p, this sequence is
obviously independent and identically distributed.

Unfortunately, in our situation (0 < ¢ < 1), we are unable to prove this
ergodicity, but we have the following proposition:

PROPOSITION 2. For every t > 0 and real numbers x and y such that x < y,
hxty [x /h]+ 1X;/1(J) converges almost surely to a nonrandom limit as h goes to 0.

Proor. Setting s = t/h,
[y/h] [s-y/t]
BoY Xu)=t" X X())
J=[x/h]+1 Jj=[s-x/t]+1
[s-y/t] + 00
=ts' Y B(j)+st X Y())
J=[sx/t]+1 J=[sx/t]+1
+ 00

-7t X Y ().

J=[sy/t]1+1
By Proposition 1

+ 00 too
7t Y Y-t X Y())
Jj=[s-x/t]+1 Jj=[s-y/t]+1

= s7S([s - x/t], 8) - s S([s - 3/2), 8)
converges almost surely as s goes to + 00 to the random variable {(G(x/t) —

G(y/0)).
On the other hand, #s~'Zl227 .| B(j) converges almost surely to (y — x)b

as s goes to + 0. In order to see that, for u > 0, (B, ,(j), J=1,...,n)isiid.
with moments of all orders (actually bounded); therefore

4

|n £ (8,00 - 0)] - o
Jj=1

and consequently, '

+ 00 n 2

P{|n! B i) —b)| >e) < +o0, foreverye> 0.
2: n/u J
n=1 J=1
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By the Borel-Cantelli lemma n~'Y?_,(B, ,,(J) — b) converges almost surely to
0. We get lim,_, n"'Y% B, (j)=0b as and it is routine to obtain
lim, , ,  s7'ZI2IB(j) = by as. for y > 0, the case y < 0 being handled simi-
larly.

Combining these two convergence results we get that AX/"),. . X, .())
converges almost surely, as 4 goes to 0, to the random variable b(y.— x) +
HG(x/t) — G(y/1)).

In order to prove the nonrandomness of this variable it is enough to prove
that for every y > 0, setting u = y/¢, lim,, , , ,n”'E"_, X, ,(J) is nonrandom,
the case y < 0 being handled similarly. « being fixed, we denote this limit by I.

Let o, be the o-algebra generated by X, we define %, 9,, % and 9,
respectively, by V, _,0,, V5,0, V.5 0% and N, (%, By definition I is measur-
able with respect to ¢, N %_ = 9. Observe that E(I|#,) = E(I|s,) as. by the
Markov property. We will prove that for any fixed ¢ > 0, E(llo,) = E(I) as; I
being bounded (by 1), the martingale convergence theorem will then give I = E(I)
a.s., in other words, the nonrandomness of I.

It is enough to prove that for any cylindrical function f onE with || f| =
sup, c zlf(e)| < 1, we have E(If(X,)) = E(I)E(f(X,)). f being fixed, we have
the following property:

for every ¢ > 0, there exists an integer N°® such that for every
(8) function A in C(E) with |h||<1 and support(h) C

(0, 1)1V NT | B(R(X)(X,) — E(M(X)E(f(X,)] < e.
(8) follows from 1.4.6. and part (c) of 1.3.9. in [7] and from the fact that »*° is a
product measure.

At time ¢t we define (X}, X?) by (X,,(X,)™”) where (X,)V)(j)=0 if
—N?®<j< Ntand X,(j) elsewhere.

Let X be the coupled process starting at time ¢ from (X/, X?). If 7 denotes
the law of (X}, X?) and E the expectation under the law of the coupled process
starting from 7, we have

for every h in C(E) with ||A| < 1,
(8)
|[n(x)1(x2) a5 [n(x2) 5 [1(x) 3| <,
since h(X?) = h(X}) with h, € C(E), ||h))| <1 and support(h,) C
{0, 1}[=N%NY 50 that by (8)

lfh(X}’)f(X})di— fh(Xf)diff(X})ldi

=|E(h1(Xt)f(Xt)) - E(hl(Xt))E( f(Xt))' < e
On the other hand, ’

n n
Z Xri/u(.]) - Z Xr?/u(])
J=1 Jj=1

<2N®+1,
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for n > ut shows that I(X') = I(X?) P, as. Therefore E(If(X,)) =
E(I(XY{(X)) = E((X?)f(X})). Setting I(e) = n™'L}_,e()), we get

E(If(Xt))=E( lim I,,(Xf/.,)f(Xf))

lim E(L(X},)f(X}))

n— + oo

ninlloo ff(el)T(n/u)—tIn(e2) dv

= lim E~(T(n/u)—tIn(Xt2)f(Xt1))‘

n— +oo

Setting h,(e) = T, /) L(e) for n/u > t, we get by (8)
IE hX2) (X)) — E(h(X2)E(f(X, ))l <e, foreveryn > ut

and therefore |E(If(X,)) — E(I)E(f(X,))| < ¢ for every &> 0 which implies
E(llo,) = E(I)as. O

]

REMARK. The same argument shows that in fact I is independent of %, for
every ¢ > 0.

COROLLARY 1. There exists a nonrandom decreasing convex function H such
that forallx <yinR andt>0

[y/h]

) lmp X X,(J) = {H(x/t) - H(y/t)} a.s.
=0 j_[x/n]+1

Proor. By Proposition 2, h):gy txvnj+1X¢/n(J) converges almost surely, as h
goes to 0, to the nonrandom variable b(y — x) + t{G(x/t) — G(y/t)} which is
then equated to its expectation, b(y — x) + t{E(G(x/t)) — E(G(y/t))}.

Setting H(u) = —bu + E(G(w)), it remains to prove that H is decreasing
and convex; this is satisfied as soon as the function E(G(-)) is itself decreasing
and convex.

Going back to Proposition 1, if u < v, by definition S{ut], t) = S(vt], t);
dividing by ¢ and taking the limit as ¢ goes to + oo we get G(u) = G(v) as.
which implies E(G(u)) > E(G(v)).

A simple generalization of (a) gives that for every £ and m in Z and r > 0,
§> 0,8k +m,r+s)<S(k,r)+ S(m, s), where law(S(m, s)) = law(S(m, s));
taking the expectation with & = [aut], m = [(1 — a)vt], r = atand s = (1 — a)t
(0 <a<1)we get

E{S([(au+ (1 — a)v)t], )} < E{S([aut], at)}
+E{S([(1 - a)ot],(1 — a)t)}.
Dividing by ¢ and taking the limit as ¢ goes to + co gives
E(G(au+ (1 — @)v)) < aE(G(u)) + (1 — a)E(G(v)). o
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REMARK. We did not prove the nonrandomness of G(u) but Corollary 1 is
sufficient for the sequel. In fact G(u) is nonrandom and one way to see that is to
observe that G(u) — G(v) is nonrandom and G(v) converges almost surely to 0
as v goes to + oo.

COROLLARY 2. There exists a function u(x, t), decreasing and right continu-
ous in the x-variable such that b < u(x, t) < a and X}(x) dx converges weakly
a.s. to u(x, t) dx.

Proor. With (4) we have

[y/h]
fyXZ‘(Z) d=h Y X,(j)+0(k), lmO(k)=0 as,
x Jj=[x/h}+1 h—0

which shows
(10) }llin})fth"(z) dz = t{H(x/t) — H(y/t)} as.

For ¢t = 0 we have u(x,0) = uy(x) = (al _, g + bl . ))(x) and for ¢ > 0 we
define u(x, t) = —Hj(x/t) where H} is the derivative on the right of H. Then
(10) and — [JH/(2/t)dz = t{H(x/t) — H(y/t)} give the convergence part. The
inequality b < u(x, t) < a follows from »? < %% < »® and the monotonicity of
the process. O

REMARK. In order to identify the density profile u it will be enough to study
ul(x) = E{X}(x)} = E{X, ,([x/h])} as h goes to 0, since by dominated conver-
gence lim,_, ,/?E{X(2)} dz = [Yu(z, t) dz and therefore u(z, t) =
lim,_, (E{X}(z)} for almost every z.

3. Identification of the density profile.
PROPOSITION 3. u is a weak solution to (7).

ProoF. From (6) we deduce
(11) du? = —pD_,[E{Fy(X})}] dt + (1 — p) D4 [E{F_4(X[)}] e,

ug = al_ p+ bl i o)

which is understood in the following weak sense: For every smooth function ¢:
R X R* — R, with compact support, we have

de
[.[f [u{’% + pE{Fy(X})) Dy — (1 — p)E{E_,(X})) D_,p | dx dt
R*VR
(12)

= - [#b(x)9(x,0) dx.

The main difficulty is to prove that terms as E{X/(x)X}(x + h)} and
E{X}(x)X}(x — h)}, appearing in (12), converge to (u(x, ¢))%
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We will compare our process (X,) with the same exclusion process (Byf)
starting from the invariant measure »¢ with 0 < ¢ < 1. Initially we impose
Xo(k) = B(k)for k < 0and X (k) < B(k) for k > 0; then we let the processes
evolve according to the coupling procedure and priorities XB°+ X and XB°
B¢ where (XB°)(k) = X(k)B“(k) for every k € Z. With these conditions X
and B evolve like exclusion processes starting, respectively, from »*? and »°. At
time ¢, k(c,t) = max{k € Z; X,(k)> BS(k)} defines a random number on
Z U {— o0, +o0}; moreover, we have X,(k) > B/(k) for every k < k(c, t) and
X,(k) < B(k) for every k > k(c, t).

LeMMA 1. For any c outside a countable set C, hk(c, t/h) converges a.s. to
a deterministic number y(c, t) in R U {— o0, +00}.

Proor. H being the decreasing convex function obtained in Corollary 1 for
d>0, C;= {Cy(n) = td"'[H(nd/t) — H((n + 1)d/t)], n € Z} is a decreasing
sequence between b and a; therefore, if ¢ & C,;, there is one and only one
number n,(c, t) such that Cyn)>c if n<ny(c, t) and Cy(n)<c if n>
ny(c, t). By Corollary 1, the definition of k(c,t) and the convergence

hd =Ll Ddir] BE,(J) = ¢ as. as h goes to 0 (obtained at the beginning of the

proof of Proposition 2), we deduce
d(ny(c,t) — 1) < liminfhk(c, t/h) < limsuphk(c, t/h)
(13) h=0 h—0

<d(ny(c,t) +1) as.

By construction [d(n (¢, t) — 1), d(n (c, t) + 1)] is a decreasing family of inter-
vals as d \ 0 with d=2"", m » + o0, converging to one point denoted by
¥(¢, t): the number of intervals where the function H is linear being countable,
Lemma 1 holds for every c outside a countable set C (the set of the slopes of
linear pieces of H). O

In order to finish the proof of Proposition 3 we observe that for almost every x
such that y(c + d, t) < x < y(¢, t), we have

c< }llm%)E{X,"(x)} =u(x,t)<c+d,
(14) c? < li;zni(r)lf,supE{Xth(x) ‘XMx+h)) <(c+d),
?< li;lni(r)lf,supE{X,"(x) - XMx—h)} <(c+ d)’.

Therefore, for almost every x € R we have

(15) limsup | E{ X}(x) - X}(x ¥ h)} — (u}(x))’| = 0.
h
From (12), (15) and the limit as A4 goes to 0 we get
I g
(16) -/;v/.;{u;? + (2p — Du(1 - u)a} dx dt + Luo(x)¢(x,0)dx =0,

which implies that u is a weak solution to (7). O
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THEOREM 1. u is the weak solution to (7) satisfying the entropy condition.
We refer to the Appendix for this notion and a complete description of u.

PROOF. p < 3: Since u is decreasing in x, the entropy condition (¢u* < u™)
is satisfied. Therefore, from the Appendix, we get

a, ifx<(@2p-1)(1-a-b),
t) =
ut,?) {b, ifx>2p-1)(1-a-0>d) as.

This a.s. equality, the monotonicity (in x) of u(x, t) and the fact that u(x, t) =
u(x/t,1) imply that the equality holds for all (x, ¢) such that x # 2p — 1)(1 —
a — b)t.

> ;: Let & be the solution to (7) satisfying the entropy condition starting
from u, (see the Appendix). The monotonicity with respect to the initial
conditions for these solutions (see [3]) shows that a > u > b and therefore
@2p - 1A - 2a) < F'(#) < (2p — 1)(1 — 2b); then the method of characteris-
tics gives

x>02p-1)(1-2b)t=>x>F'(u)t=u(x,t) =ulx—F'(u))=0>
and
x<@2p-1)(1-2a)t=>x<F'(u)t=u(x,t) =uyx— F'(&)t) =a

(see the Appendix for a complete description of this solution). We know that our
weak solution u satisfies a > u > b. The inequality u — b > 0 and the method
used to obtain the a priori estimate for (7) (see [3] or [4]) show that u = b
a.e. in the region {(x,¢)/x > (2p — 1)1 — 2b)t}. The inequality a — u >0
and the same techniques show that u =a ae. in the region {(x,?)/x <
(2p — 1)1 — 2a)t}. The argument given in the case p < ; shows that these
equalities hold everywhere in these regions.

If c is a real number such that b < ¢ < a and u®° (resp. u®?) denotes the
solution starting from al _, o + cI(0 4) (resp. ¢ _, o1 + bl 4 ) Obtained as
a limit of a particle system as u = u® %, the monotonicity of the process implies
u®® < u < u®*. Applying the previous result to u®°and u%® we get

x>2p-1)1-2c)t=u*(x,t)=c
and
x<(2p-1)(1-2c)t= u®x,t)=c.

Then if u has a jump at (x,, t), one has u(x,+ ,t) < u(x,—,t) and x, =
2p — 1)1 — 2¢)t for every c such that u(x, + t) < ¢ <u(xy—,t) which is
impossible. Then u(-, t) is continuous and u is the unique solutlon to (7)
satisfying the entropy condition. O
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From the Appendix, we get

@ ifx < (2p — 1)(1 - 2a)t,
1 x '
u(x,t) = _2_(1— (2p—1)t)’ if(2p-1)(1-2a)t<x

< (@2p-1)(1 - 2b)t,
b, ifx>(2p — 1)(1 — 2b)t.
4. Local equilibrium. We deduce from Theorem 1 the limiting behavior of

the particle process seen by a travelling observer (i.e., the weak limit of the
distribution of {X,([x¢] + k), k € Z} as t goes to + oo for fixed x € R).

THEOREM 2. For all points of continuity of u(x,1) ( for all values of p # 3)
we have

w. limlaw{X,([xt] + k), k € Z} = »=D,
t—> + o0

REMARK. Except for one case (p < 2, x = (2p — 1)1 — a — b)), the limit-
ing distribution is a product measure invariant under the action of the semigroup
(T,). We say that propagation of chaos holds and that the system is in local
equilibrium.

PROOF. It is easily shown that for any finite set F of sites in Z we have
(17) lim IE{ TT X.([x¢] + k)} = (u(x,1))™P,
p t— +o00 keF

Substitute 1 for ¢ and let A = 1/¢ in the proof of Theorem 1. We get y(u(x,1) +
d,, 1) <x < y(u(x,1) — d,,1) for every x such that u(-,1) is continuous at x
and for a sequence (d,) decreasing to 0. Since for every k € F

[(x + A(min F — 1))/k] < [x/h] + k < [(x + h(max F))/h]

and for A small enough y(u(x,1) + d,,1) <x + h(min F — 1) <x + hmax F <
y(u(x,1) — d,, 1), we obtain '

(u(x,1) - dn)wd(F) < lim (inf,sup)IE{ IT X ([x/R] + k)}
h—0 keF

< (u(x,1) + d,)™",

which shows (17) as d,, goes to 0. O

REMARK. For x = 0, Theorem 2 is contained in [5] and [6]. Denote by 7,
the weak limit of the distribution of X, as ¢ goes to +oo; then g, = »*®D
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whenever u(-,1) is continuous at 0.

p>3: 0<b<acx<y: Ny = 7%,
0<b<l<ax<il: g =r7"
;<b<acx<l: N = »°,
p<j3: a+b<1: N = 27,
a+b>1: Ny = V%,

a + b = 1 is the only case where u(-, 1) is not continuous at 0 and the identifica-
tion of 7., remains an open problem (see Conjecture 1.6. in [5]: 1, = 1r® + 1»%).
Local equilibrium has been studied for the zero-range process by Andjel and
Kipnis [1].
One may think of possible generalizations of the method presented in this
article.

(1) On the process itself: This method seems to be suitable for monotone
systems having a continuous family of equilibrium measures; in particular it
should apply to the asymmetric zero-range processes, generalizing [1].

(2) On the nearest-neighbor assumption: In order to remove this assumption
we need a proof of (14) which does not use the interface k(c, t).

(3) On the dimension: In higher dimension, for suitable initial distributions,
the difficult part of the problem is the law of large numbers; heuristically the
limiting equation is of the same nature as (7) and the notion of entropy condition
is still available (cf. [3]).

(4) On the initial distribution: It is not difficult to replace »*? by a product
measure », such that lim, , __ fe(k)dv, = a and lim, , . fe(k) dv, = b; it is
also possible to obtain more general decreasing initial conditions u, by taking »,
dependent on the rescaling parameter. The real difficulty is to obtain initial
conditions which are not monotone (for instance u, = I;_, o).

(5) On the dynamics: Let p depend on the rescaling parameter in the
following way: p = § + h. Heuristically the limiting equation will be the nonlin-
ear parabolic P.D.E.:

2
8_u+28[u(1 u)]  19%
at dax T2 9x?
Again the law of large numbers is the main difficulty in this asymptotically
symmetric system.

We are presently working on these generalizations, (1) and (2) being the
subject of a coming paper.

APPENDIX
Equation (7),
du 9dF(u)
at * dx
with F(u) = 2p—Du(l —u),0<p <1, p+ 3} and ug=al_, g+ by .

is a first-order quasilinear hyperbohc P.D.E. well studied in [3] and [4] The
existence of a weak solution is proved by a viscosity method which consists in

=0, u(-,0)=u
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the addition of a term eAu where ¢ is going to 0. In general, we do not have
uniqueness of weak solution for this kind of equation. However, Kruckov [3]
introduced the notion of entropy; we give an equivalent definition [4], which
describes the permissible jumps.
DEFINITION A.l. A weak solution to (7) such that
ut(x,t) = limu(y,t) and u (x,t) = limu(y,t)
yix yTx
exist, satisfies the entropy condition if
F(u*) — F(u™) F(u*) — F(c)
= max —

ut —u” cefutAu,utvu] ut—c

REMARK. In our context: If p > 1, F is concave and Al & u* > u~; if
p <%, Fis convex and Al & u* < u”. The main result about entropy can be
summarized as follows:

THEOREM A.1. There exists, in the almost everywhere sense, a unique weak
solution to (7) satisfying the entropy condition.

The existence is given by the viscosity method and uniqueness is obtained via
an a priori estimate ([3] or [4]).

Acknowledgments. The authors wish to thank A. Galves, C. Kipnis, J.
Lebowitz, E. Presutti and M. Roussignol for valuable discussions on this subject
and the referee for his helpful comments and suggestions.

The Profile u(-,t)

p<§ 1
—-—-.,---—-----a

a+b<1, «— | l1-a

u(-,00) =b, L >

2p-1)(1-a-b)t<0

Il
1
a \ —_—
a+b>1, 5 L :
. = - - - RSN
“om) = 1-a ¢ : >
0<@p-1)1-a-0b)
: 4
a
a+b=1,
u('r°°)=uor b=1-a

@p-11-a—-b)t=0
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1 x
> 1. u(-, t) is continuous and the nonconstant piece = —(1 - ———|.
p> 5, u(-,t) e piece 2( (2p_1)t)
A
11
0<b<asxli, \ 1
~.2
u(-,) = a, ] NN
bpFr-——"~"~- ~.
0 @2p - Dt -

u('r°°)= ’ >
0 2p — 1t g
A
~ 41
l<b<cacxl, —~_17
b
u( rw) = b, 2 \
0 @2p - 1)t >
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