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Problems concerning the structure of random media have challenged mathe-
maticians and physicists for many years, and the last twenty years have
witnessed much progress. Probabilists and statistical physicists have developed
and refined techniques for approaching quantitative as well as qualitative ques-
tions, such as the nature of phase transition in physical systems and the bulk
properties thereof. The limited extent of finite-dimensional space (usually d = 2
or d = 3) has constrained progress. In a parallel development described in these
two books, combinatorial theorists have developed an intricate theory of certain
random networks not subject to such constraints of dimensionality. Owing to the
simplicity of definition of these so-called “random graphs,” rich and complex
discoveries have been made about their inner structures.

There are various different types of “random graphs,” of which the following
is perhaps the most basic. Take n vertices labelled 1,2,3,..., n, and from the ('2‘)
available unordered pairs draw N at random; join these pairs with edges to
obtain a random graph w,. What are the properties of w,? In a paper which has
~ since received much attention, Erdés and Rényi (1960) began to answer this
question. They thought of such random graphs as growing organisms, observing
the properties of w, as n - o0 when N = N(n) is a prescribed function of n.
Some examples of their findings are as follows:

(a) If N(n) = o(n), then w, contains almost surely no cycle.

(b) If N(n) = cn for some constant ¢, then the number », of vertices in the
largest component of w, is asymptotic (in appropriate senses) to a(c)logn if
¢ <13, n??if ¢c=1 and B(c)n if ¢ > 1, for constants a and B depending on c.

(c) If N(n) = 3nlogn + yn, then the probability that w, is connected con-
verges as n — oo to exp(—e~2”).

Note that the expression “w, has property = almost surely” is used by random
graph theorists in a nonstandard fashion to mean that P(w, has property
7) > las n — co.

In the above model the set of edges is a random set with prescribed cardinal-
ity: The following is an alternative model. Fix a number p = p(n) in the interval
[0,1]. We examine each distinct pair of vertices from the vertex set {1,2,..., n}
in turn, and we join this pair by an edge with probability p independently of all
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other pairs. In this “constant edge density”” model, the total number of edges has
the binomial distribution with mean (7)p(n), and it is not therefore surprising
that the properties of this random graph resemble closely those of the “constant
edge number” model with N(n) = (;‘)p(n). Bollobas has explored the relation-
ship between these two models. _

Other “random graphs” include graphs chosen at random from the sets of
unlabelled graphs on n vertices, regular graphs on n vertices with degree r,
labelled trees on n vertices, as well as various other types of families of trees.
Another sort of random graph is the “m-out” model, in which each vertex picks
m vertices from the remaining n — 1 and joins itself to these, independently of
the choices of all other vertices. Thus the term “random graph” is generic rather
than specific. The subject can appear to be rather disjointed, using a variety of
techniques to approach a ragbag of questions in various contexts.

Here are a few words about techniques. The earliest papers in the area treated
the topic as a branch of enumeration theory. For example, in order to determine
the chance that w, has exactly £ components, we may count the number of
distinct labelled graphs with n vertices, N edges and k components, and divide
the total by (7), where T = (7). It seems to have been Erdés and Rényi who
first made real use of genuinely probabilistic techniques such as Chebyshev’s
inequality, the central limit theorem and the binomial-Poisson limit theorem.
The modern theory uses both probabilistic and combinatorial techniques, wound
together often in an intricate manner to overcome problems of statistical
dependency. On the other hand, we may note that the useful probabilistic
techniques are fundamental but usually primitive in terms of their probabilistic
content.

Why might we be interested in random graphs? Quite apart from mathemati-
cal beauty and sophistication, of which there is no lack, there are two principal
types of application. The first is the so-called probabilistic method in combina-
torics. Suppose that we wish to show the existence of a labelled graph with n
vertices, N edges and property 7, but we are unable to construct such a graph. It
may be possible to show that P(w, has property =) > 0, using simple methods
such as Chebyshev’s inequality, thus demonstrating the existence of such a
graph. This technique is useful in extremal graph theory for instance [see
Bollobas (1978)]; see also the chapter on Ramsey theory in the first book under
review.

Second, after a decade of relative quiet, the revival of interest in random
graphs in the 1970’s reflected a growth of interest in questions involving the
design and analysis of algorithms in operations research, and this remains the
major field of application of the topic. This growing field treats questions such as
“what is the ‘typical’ run-time of algorithm A, rather than its worst-case
run-time?”, and “algorithm A may not yield optimal results and may be very
bad in the worst case, but how good is it in a ‘typical’ instance of the problem?”
A classical example of the latter question involves the chromatic number prob-
lem. The chromatic number x(G) of a graph G is the smallest number of colours
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required such that each vertex of G may be assigned a colour in such a way that
no pair of adjacent vertices have the same colour. The problem of finding the
chromatic number of a graph is NP-complete. On the other hand, there are some
rather simple and fast algorithms which may be used to colour the vertices of G
with no adjacent pair of identically coloured vertices, but these algorithms may
use more than the minimal number x(G) of colours. A standard example is the
“greedy” algorithm, which proceeds as follows. Let 1,2,..., n be the vertices of
G and c,, c,, ... an infinite set of distinct colours. We use c, to colour vertex 1.
If vertices 1 and 2 are adjacent, we use ¢, to colour vertex 2, and otherwise
colour ¢;,. We proceed to colour the vertices of G in numerical order. Having
coloured vertices 1,2,..., i, we colour i + 1 with the earliest colour c; for which
no neighbour of i + 1 has already been assigned c,. Writing I'(G) for the number
of colours used by the greedy algorithm, we note that I'(G) > x(G). Certainly
the greedy algorithm is fast, running in O(n?) time, but it generally uses more
colours than are necessary; indeed the ratio I'(G)/x(G) has order n in the worst
case [see Johnson (1974)]. It turns out that the “typical” discrepancy between
I'(G) and x(G) is not nearly as bad as the worst-case discrepancy. Suppose that
0 < p < 1, and that G is a random graph on n labelled vertices with edge-density
p. Writing x, and T, for x(G) and I'(G), we find that T, is almost surely
(1 + o(1))n/log n, where d = (1 — p)~'. On the other hand, it is known that x,
almost surely exceeds i(1 + o(1))n/log,n, so that the ratio T, /x, satisfies
1 <T,/x, <2+ o(1) almost surely. This example is particularly appropriate in
the context of this review. First, many combinatorial theorists have been ob-
sessed with chromatic numbers, and the problem of finding chromatic numbers is
central to certain aspects of computational complexity and operations research.
The second reason lies closer to the two books under review. One of the principal
conjectures of the field of random graphs was that x, almost surely equals
- 11 + o(1))n/log n, but standard methods did not seem sufficient to establish
the required upper bound on ¥x,. Korshunov (1980) has published a proof of this
conjecture. It would appear that his published proof is incomplete, and he has
made corrections and additions in private correspondence. Notwithstanding this,
this reviewer knows of no one claiming to understand all the details of
Korshunov’s proof. Perhaps it is valid. In any case, this reviewer and many
others had hoped that the matter might be cleared up definitively by one or both
of the texts under review. Unfortunately, neither author even refers to the paper
in question. (Since the writing of this review, Bollobas has dealt effectively with
the matter. He has used martingale inequalities to settle the preceding conjec-
ture affirmatively.)

These books differ greatly. Graph-theorist Palmer has written a brief, largely
nontechnical introduction for a course for graduate students in graph theory and
combinatorics. Analyst Bollobas has written a long, technical account for “re-
search students and professional mathematicians.” Whereas Palmer’s sketchy
oveiview emphasizes methods by applying them to “selected highlights” of the
subject at the expense of complete proofs or best-possible statements of theo-
rems, Bollobas has placed these methods in the full context of the complex
technical morass of mathematical detail.
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Palmer restricts himself largely to his models A, B and C, being his rather
uncompelling notation for random graphs with given edge-density, given edge-
number and the m-out model, respectively. His breezy stroll through the subject
begins with the idea of a “threshold function.” For a given property 7 of graphs,
we say that A(n)is a threshold function (in the fixed edge-number model, say) if
P(w, has 7) converges to 0 if N(n)/A(n) — 0 and to 1 if N(n)/A(n) — co. For
many properties 7, a sharper threshold may be found. For each x € [0, 1], there
may exist a function A (n) such that P(w, has #) > x as n — oo when
N(n) = A(n); such a function A(n) is called a sharp threshold function.
Palmer’s definition of a threshold function is rather different from that given
above. This is perhaps a pity, since the notion is now well established.

Palmer’s text continues with a brief account of the evolution of random
graphs, following the early conception of Erdds and Rényi. For various choices of
the number N(n) of edges, the structure of w, is examined for large n. The case
N(n) = cn is treated in some detail, particularly with regard to the emergence of
the giant component when ¢ is near }. Next there is an account of the
connectedness of w,. The next chapter, entitled “Selected highlights” describes
vertex degrees, chromatic number, clique number (size of the largest complete
subgraph) and the m-out model. There are a few pages devoted to random
regular graphs and random trees. Ubiquitous is humour; in a textbook, humour
must of course be robust to the ravages of time.

This account is most approachable and relaxed, imparting to the graph
theorist much of the flavour of the topic. A probabilist might find the approach
rather alien, the level of probability and analysis having been minimized in order
to emphasize graph-theoretic arguments.

In contrast, Bollobas presents “the first systematic and extensive account of a
substantial body of results.” He makes no claim of exhaustiveness for his 450
densely written pages, writing “my main consideration in selecting and present-
ing the material was to write a book which I would like to read myself.” Whilst
this approach limits the market somewhat, this book is a remarkable work,
containing not only an account of the author’s extensive research but also a
largely reworked account of much standard material. His notation, G(n, p),
G(n, N), G(n; m-out), is as compact as possible whilst preserving meaning. Of
additional mathematical value is his espousal of “random graph processes:”
starting with n labelled isolated vertices, we add edges one by one, placing them
randomly between pairs of (so far) nonadjacent vertices. The result is a random
sequence GP = (G(0), G(),..., G(T)) of graphs, where T' = (’2‘) Such a coupling
device facilitates the refinement of threshold properties, through the use of
“stopping times” for properties. As an example of this, consider the classical
question of determining how many edges a graph rieeds before a typical such
graph is hamiltonian (that is, there exists a cycle which visits each vertex once
exactly). The threshold behaviour of this property is contained in the fact that if
N(n) = in(log n + loglog n + y(n)), then P(w, is hamiltonian) converges to 0 if
y(n) » —oo and to 1 if y(n) = co. Consider now the property that the minimal
vertex degree, 8, say, of w, satisfies &, > 2. It is clear that this is necessary but
not sufficient for w, to be hamiltonian. It turns out that the latter property is
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“almost surely” sufficient in the following sense. Let 7, 6, be the hitting times of
the process GP for the properties of being hamiltonian and satisfying §, > 2,
respectively: that is, 7, = min{k: G(k) is hamiltonian} and ¢, = min{k: G(k)
has minimal vertex degree 2}. Clearly o, < 7,, and Koml6s and Szemerédi (and
Bollobas, independently) have proved that P(e, = 7,) = 1 as n = co. The very
edge which completes the first hamiltonian cycle is (with large probability) the
edge which ultimately ensures that every vertex has degree 2 or more.

After some detailed probabilistic preliminaries (including rather an old-
fashioned definition of a distribution function, but so what?) and an introduction
to the different types of random graph, Bollobas covers much of the (now)
standard theory and more, in great detail, with an eye to analytical detail and
(to date) best possible results. There are accounts of sizes of components,
connectivity, matchings, long paths, automorphism group, diameter, clique num-
ber and chromatic number, together with other chapters on more diverse topics
such as Ramsey theory and sorting algorithms. Random trees are omitted, but
random regular graphs receive considerable attention. As the author writes
“there is little doubt that many readers will use this monograph as a com-
pendium of results,” but, given the nature of the material, he should be
congratulated and respected for weaving such a coherent symphony onto a
framework which to many appeared disjointed.

The reader pays a price for the author’s preoccupation with detail. Some of
the appeal of beautiful results is occasionally obscured by his way of jumping in
at the analytical deep end. This is a pity, and might have been avoided without
great cost by more careful introductory sections.

Finally, we note that, in recent works, Rucihski and Vince (1985, 1986) have
simplified the approach to nonbalanced subgraphs of random graphs. Karonski
(1984) has written a small monograph on balanced subgraphs of random graphs,
and he tells me that Theorem 1 on page 57 of Bollobas’s book was proved earlier
in an obscure Russian journal by Hakimullin (1979). Palmer (but not Bollobas)
considers the question of the planarity of random graphs, borrowing heavily
from Erdos and Rényi (1960). Unfortunately, there are mistakes in the latter
paper at this point, corrected recently by T. Luczak and J. Wierman.

In conclusion, Palmer’s book is a gentle introduction to highlights of the
theory, whilst Bollobas’s book is a nearly exhaustive technical masterpiece which
will be a standard reference text for the foreseeable future.
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