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A CHARACTERIZATION OF ADAPTED DISTRIBUTION!

By DoucgLas N. HOOVER
The Ohio State University and Queen’s University

The notion of adapted distribution of a stochastic process was introduced
in a recent paper of Hoover and Keisler. Here we give a simple characteriza-
tion of this notion in terms of filtration embeddability. This characterization
allows us to show that for a local martingale M for which some ordinary
stochastic differential equation X, = [{f(s, X,) dM, admits sufficient non-
uniqueness in law of the solutions X, the class of possible joint laws of
(M, X) determines the adapted law of M.

0. Introduction. By a stochastic process we mean a process in the “general
theory of processes,” that is, a stochastic process together with its filtration [see
Definition 1.2 and Meyer (1976)]. For processes so construed, the notion of
distribution is not an adequate notion of equivalence, since it does not take into
account the filtration. Two stronger notions of equivalence for stochastic processes
have recently been introduced: that of synonymity [Aldous (1980) and Definition
1.4.4 below], and that of adapted distribution [Hoover and Keisler (1984) and
Definition 1.4 below). Hoover and Keisler gave reasons to believe that almost
any interesting property of stochastic processes is preserved under equality of
adapted distribution, at least among processes living on saturated adapted
probability spaces [Hoover and Keisler (1984) and Definition 1.5 below]. One
would like to know which properties of processes are in fact preserved under
synonymity, since that is a much weaker relation [Hoover and Keisler (1984),
Section 3]. Some examples of such properties are given in Aldous (1980) and
Hoover (1984). The main motivation for this paper was the desire to find out
whether in the following result about stochastic differential equations the
hypothesis “have the same adapted distribution” can be weakened to “are
synonymous.”

If M and N are semimartingales with the same adapted distribution, then
M —SPEN_ That is to say: Whenever f(¢, x) is a measurable function R* X
R — R, and the processes X!,..., X" satisfy

Xi= X4+ [f(s, Xi_) au,,
0
then there are the processes Y, ..., Y" satisfying
Yi=Y§+ [f(s, %) dN,
0 .
such that (M, X',..., X™) and (N, Y?,..., Y") have the same distribution.
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This is to say, semimartingales with the same adapted distribution have the
same distributions of families of solutions of stochastic differential equations.
This is a consequence of Theorem 7.8 in Hoover and Keisler (1984).

In this paper we present a characterization of adapted distribution which can
be used to show that, for certain classes of local martingales, if M <SPEN and
N —SPEM then M and N have the same adapted distribution. It follows that
synonymity is not sufficient to imply M —SPEN,

1. Definitions and notation. Let B denote the Borel sets on R* = [0, o0).

1.1. An adapted probability space (or simply “adapted space”) is a structure
Q= (Q,F, P,(F,),cg+), where (2,F, P) is a probability space and (F,),. p+ is a
filtration (increasing family of sub-o-algebras of F) which satisfies the “usual
conditions” (for all ¢, N, F, = F,; F, contains all null sets of P).

1.2. A stochastic process is a structure X = (2, X) = (Q,F,P,F,, X),_pz+,
where X is a (B X F)-measurable mapping R* X Q@ - M, M a Polish (i.e.,
complete separable metric) topological space. The adapted space 2 appearing in
the definition of X will be denoted 2(X), and F(X) will denote the filtration of
Q(X). o(X) denotes the subfield of F generated by X. When an underlying
process X appears with several different filtrations, we will write (X, (F,))
instead of X, to keep the notation clearer.

The distinction between the stochastic process X and the associated measur-
able function X will be used to emphasize which properties of a stochastic
process depend on the filtration. For example, we would say,

X is a martingale,
but
X and Y have the same distribution.

1.3. An adapted set is an F X B-measurable set F X [¢, ) where F € F,.
We say that F' X [¢, 0) is adapted at t. We say the same of F itself. An adapted
random variable is a stochastic process X of the form X° - 1([¢, «0)) for some
F,-measurable random variable X °. We say that X is adapted at .

An adapted r.v. X is simple if o(X) is finite.

We see that if X is a random variable adapted at ¢, then o(X) consists
entirely of sets adapted at ¢ Usually we will abuse notation and speak of X° as
the adapted random variable.

In Hoover and Keisler (1984) the notion of adapted distribution was intro-
duced, which contains the probabilistic information about a process with filtra-
tion, as the distribution does that of a random variable. We repeat the main
definitions here, partly for convenience, and partly because we have made a
slight modification.

1.4. Let X and Y be stochastic processes with values in the Polish space M.
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1.4.1. The class AF of adapted functions is defined inductively as follows:

(AF1) If ®: M — [0,1] is continuous and ¢ € R*, then (®, t) € AF.
(AF2) If f,,...,f, € AF and ¢: [0,1]" - [0,1] is continuous, then

(9,(f1,--, fn)) € AF.
(AF3) If g € AF and ¢ € R*, then E(g|t) € AF.

1.42. The value f(X) of f € AF on X is the random variable defined
inductively as follows:

(V1) (@, 1)(X) = (X))
(V2) (@,(f1;--» FDX) = @(f1(X), ..., [(X)).
(V3) E(glt)X) = E[gX)|F(X),].

1.4.3. A subfunction of an adapted function f is any adapted function g
which appears as a subexpression of f. Precisely the class of subfunctions of f is
the smallest class sub(f) of adapted functions containing f and having the
following closure properties:

(S1) I (¢,(f1s---; fo)) € sub(f), then fy,..., f, € sub(f).
(S2) If E(g|t) € sub(f), then g € sub(f).

1.4.4. (i) X and Y have the same adapted distribution, X = Y, if for every
f € AF,
(1.4.4) E[{(X)] = E[f(Y)].

(ii) We write X =Y to mean that X and Y have the same distribution.

(iii) X =, Y means that X and Y are synonymous in the sense of Aldous (1980)
ie., forany n€N, ¢,...,¢,,u;,...,u, € R" and ¢,,..., ¢, bounded continu-
ous functions R —» R,

(E[of( Xpproo s X )IF, oo E[@n( X X, )F.])
EO(E[(pl(Yul’ ce Yvu,,)l(""q] [ E[(pn(Yul’ R Yu,,)th,,])‘

1.5. An adapted space @ is saturated if for any process X' on @ and
processes Y! and YZ on another adapted space &', if

Xl = Y.l,
then there is a process X2 on £ such that
(X1,X?) = (Y, Y?).

2. A characterization of adapted distribution. We give now a sufficient
condition for equality in adapted distribution. This condition, in terms of partial
filtration embeddings, characterizes equality in adapted distribution when the
adapted spaces involved are saturated. Although simple, this is really our main
result. From it comes the application to stochastic differential equations in
Section 4.
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DEFINITION 2.1. Let the function [-];: R — R be defined by
' [x]s=i5, whereie Z,i6 <x < (i + 1).

LEMMA 2.2. Let X and Y be square integrable, R™valued random variables
on probability spaces (2,,F, P) and (Q,, G, P), respectively. Let ¥, C F and
G, € G be sub-o-algebras, and let X, = E[X|F,] and Y, = E[Y|G,]. Let X;
and Yy be F, and G, measurable random variables, respectively.

(a) If
(2.2.1) (X, X,) =,(Y,Yy)
and
(2:2.2) (X, Xg) =0(Y,Y,),

then X{ = X, a.s. and Yj = Y, a.s.
(b) For any ¢ > 0, there is a § > 0 such that if

(X,[Xo15) =0 (Y, Y)
and
(Xv X(;) EO(Y» [YO]S)’
then ¢%(X] — X,) <eand ¢ (Yj — Yy) <e.
PROOF. (a) X, is the projection of X on L%(F,). The analogous property is

true of Y, Y, and G,, hence, in particular, Y; is square integrable. By (2.2.2), X{
is in L%*(F,). Hence

0%(X{ - X) = 0%(X§ — X,) +0%(X, — X).
Likewise,
o} (Yy - Y) = o*(¥y - ;) + 0*(Y - Y).

Hence

o}(Xg— X) + 0*(Ys = Y) = 0*(X§ - X) + 0*(X, - X)

+o%(Yy = Y,) + 0%(Y, ~ Y).
By (2.2.1) and (2.2.2),
0% (X, - X) +02(Yy - Y) =0%(X,— X) + %Y, - Y).
Hence
0%(X; — X,) + oX(Yy - ;) = 0.

(b) is a straightforward refinement of (a). Followers of nonstandard analysis
will observe that if § is taken infinitesimal and = is changed to =
(infinitesimally close) in the proof of (a), (b) follows by overspill. O

Hoover and Keisler (1984), Lemma 5.7, and Theorem 2.4 of this paper show
that the foregoing equivalence relations are closely related to the following
properties for stochastic processes.
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DEFINITION 2.3. X is finitely embeddable in Y,X < Y iff:

For any n € N and simple r.v.’s X1,..., X" on Q(X), respec-
(2.3.1) tively adapted at times ¢,,..., t,, therearer.v.’s Y',...,Y"on
Q(Y), respectively adapted at ¢,..., ¢,, such that

(X, XY,..., X") =,(Y,Y},...,Y").

Note that the same concept is defined if the X *’s are taken to be adapted sets.
X < Y says that any subfiltration G of F(X) which is finitely generated over
6(X) can be embedded in F(Y) over the embedding which takes o(X) to o(Y) in

the natural way.
THEOREM 24. If X=>Yand Y- X, then X =Y.

PrOOF. Instead of proving the statement given, we will prove a slightly
weaker statement. At the end of the proof we will indicate the routine refine-
ments needed to obtain the theorem.

Say that X —»* Y iff (2.3) holds for any adapted r.v.s X!,..., X" We will
show that

(2.4.1) ifX >* Yand Y >* X, then X = Y.

Assume, then, that X " Y and Y —»* X, and let f € AF. We will show that
E[ f(X)] = E[ f(Y)]. By definition of X —* Y, there exist adapted r.v.’s X¢ on
2(X) and Y% on Q(Y), g € sub( ), such that

(X, Xg)gesub(f) =,(Y, g(Y))gesub(f)’
(X, g(x))gesub(f) =0 (Y: Yg)gesub(l)’

and whenever g is of the form E(h|t), X¥ is Fradapted and Y? is G-adapted.
We will show by induction on formation of g € sub( f) that

g(X) = X2 as.
and
g(Y)=Y% as.
The induction is trivial for g formed by AF1 or AF2. If g is obtained by clause
AF3, g = E(h|t), then by the inductive hypothesis,
gX) = E[h(X)|Ft] = E[Xh|Ft] as.,
g(Y) = E[h(V)G,] = E[Y"G,] as.
Applying Lemma 2.2 with X = h(X), X’ = X?¥, etc., we find that X¢ = g(X) a.s.
and Y# = g(Y) a.s. This proves (2.4.1). To prove the statement of the theorem,
“observe that for each g € AF, g(X) and g(Y) take values in [0,1], [g(X)]; and

[g(Y)]; are finite-valued for each i < m. Choose Y% and X%, g € sub( f), such
that

(X: [g(X)] 8)g€sub(f) =0 (Y’ Yg)gesub(f)



ADAPTED DISTRIBUTION 1605

and

(v, [2(Y)] 8)gesun(r) =0 (X, X&) geaunir)
and X% and Y? are adapted at ¢ where g = E(h|t).
It suffices now to transform the proof of (2.4.1) into a proof by induction on
& € sub( f) that for any & > 0, if § is sufficiently small, then
o%(g(X) — X&) <
" and
o?(g(Y) - Y8) <e.
This is easily done by using (b) of Lemma 2.2, and observing that the mappings
Z - E[Z|G], G a o-algebra,
and
Z-o¢(Z), ¢:[0,1]1*->[0,1] (uniformly) continuous,

of square-integrable [0, 1]*-valued random variables, are L2continuous. O

COROLLARY 2.5. Let X and Y be processes with Q(X) and Q(Y) saturated.
Then

(2.5.1) X=Y iff XoYand Y- X.

ProOF. Theorem 2.4 is one direction, and the other is by definition of
saturation. O

QUESTION 2.6. Does X — Y imply X —-* Y?

We think that the answer to this question is probably “yes,” but it appears
that the proof will require a fairly thorough measure theoretic analysis of — .
Certainly, if Q(Y) is saturated, the answer is “yes.”

Corollary 2.5 suggests the following question.

QUESTION 2.7. Is there a class U of adapted functions such that, for Q(Y)
saturated, X — Y iff :

E[fX)] < E[f(Y)], forfe 8?

3. Generalization of a theorem of Engelbert and Schmidt. A recent
paper of Engelbert and Schmidt (1985) described solutions of a general class of
one-dimensional, driftless Brownian stochastic differential equations. In this
section we will generalize one of the main results of that paper to one-dimen-
sional SDE’s driven by a local martingale. This will be a source of examples for
the next section.

We assume that the reader is familiar with the basic facts about time change
contained in the first part of Chapter 10 of Jacod (1978).
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LEMMA 3.1. Suppose that

(X,T) = (X, T),
where T and T’ are time changes. Then
(Xr) = (X7).

ProofF. This follows because, for any f € AF, there is a Borel function ¢ ’
such that f(X7) = ¢(gX,T): g € AF) and f(X;) = ¢(&X',T): g € AF). O

Let AF, be a countable subset of AF such that for any process X, the values
E[{(X)], f € AF,, determine the adapted law of X [cf. CP, in Hoover and
Keisler (1984)]. m(X) is the R*-valued martingale

m(X), = (E[ /(X)IF(X).]; f € AF,),

whose (ordinary) law determines the adapted law of X.

LEMMA 32. Suppose that (F,) and (G,) are filtrations such that F, ¢ G, for
each t € R*. If m(X,(GR,)) is (F,)-adapted, then

(X, F)) = (X, (G)).

Proor. Since m(X,(G,)) is (F,)-adapted, one proves easily by induction that

for each f € AF,,
f(X,(G,)) = f(X, (F,) as.

Hence m(X, (G,)) = m(X,(F,)) ass., and the lemma follows. O

THEOREM 3.3. Suppose that M is a one-dimensional continuous local

martingale on a saturated space and that 1/h*(x) is locally integrable. Then
there is a solution X of

(3.3.1) X, = /{;th'(Xs) M,
such that
(3.3.2) E[ fo "1(r(X,) = 0) d(M)s] =0.

The law of (X, M) is unique.

ProoF. If M is a Brownian motion, the result follows by Engelbert and
Schmidt (1985), Theorem (5.4), and Hoover and Keisler (1984), Theorem 7.8.
In the general case, let T' be the time change

T(t) = inf{s: (M), > t}.
Then the time changed process B = M, is essentially a Brownian motion

stopped at (M ). If 2(B) were saturated, we could find an appropriate solution
for B, apply the inverse time change to T' (which is just (M)) and we would get
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a solution for M. Unfortunately, 2(B) need not be saturated, so we will have to
do something a little more complicated. Let Z = m(M). On some saturated space,
find processes B’, T, Z' such that
(3.3.3) (B,T,Z)=(B',T,2).
. Since 2(B’) is saturated, it has a Brownian motion W independent of B’, so the
Brownian motion

B/’ = B/, t< (M),

is a Brownian motion extending B’. We can apply the Brownian motion case of
this theorem to get a solution Y’ of (3.3.1) with B’ replacing M. Let S’ be the
inverse time change of 7",

S'(t) = inf{s: T"(s) > t}
and let M’ = B}, X’ = YJ. Then by Lemma 3.1,

(M, Z,(FM) 1)) ,) = (M, Z,(F(B))s).)-
Now we would like to use saturation of M to transfer X’ back to Q(M).
Unfortunately, though, unless (M) is strictly increasing, (F(M)r) ), may be

larger than F(M),. Thus we must resort to one more trick. Since (M) is
continuous, T is strictly increasing. According to Exercise 10.5(c) in Jacod (1978)

G, = (FM)1) a0~ = FMr(ary (-~ Since
T((M),.) = sup{s: (M), < (M)}

<t

G, € F(M),. Hence, if (H,) is the right-continuous filtration generated by (G,)
and the natural filtration of m(M), then

(M, (F(M),)) = (M, (H,)).
On the other hand, if G/ = (F(B')g/,-, and (H;) is the right-continuous filtration

generated by (G/) and the natural filtration of Z’, then it follows by a proof
similar to that of 3.1 that

(M,(H)) = (M, (H))).

By Jacod (1978), (10.18), X’ is a solution of (3.3.1) for (M’, (F(B)g.),). Since Y’ is
continuous, it is (F(B’),-)-adapted, hence X’ is (G/)-adapted, and so (Hj)-
adapted, hence a solution of (3.3.1) for (M’,(H})). Since (3.3.2) is preserved by
time change and by =, X satisfies (3.3.2). If uniqueness in law failed, then a
time change argument would show that it also failed for Brownian motion,
contradicting Engelbert and Schmidt (1985), (5.4)(ii). O

4. Application to stochastic differential equations. In this section we
will give an application of Theorem 2.4, that continuous local martingales which
have strictly increasing quadratic variation, and have the same laws of solutions
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of a given stochastic differential equation must have the same adapted distribu-
tion.

In the sequel, M and N are continuous d-dimensional local martingales, U and
W are other stochastic processes on the same space as M and N, respectively,
and f: R* X R% - R is a Borel function.

DEFINITION 4.1. (i) (Y,M) <SPE) (W,N) if for every n and adapted
R%*m.yalued processes X',...,X" satisfying

(4.1.1) Xi= fo‘f(s, Xi)dM,, 1<i<n,
there are adapted Y2,..., Y" satisfying

(4.1.2) Y= fo‘f(s,yg)st, l<i<n,
such that

(U, M, X)=,(W,N,Y).

(i) (U, M) —>5PE (W, N) if every bounded Borel f, (U, M) <>SP™) (W,N)..
(iii) Suppose that (M) is strictly increasing. f is M-flexible if for every
u € R* and F € F,, P(F) > 0, there is an adapted process X satisfying

(41.3) X, = fo ‘i(s, X,) dM,,

such that {(X) > 0} = F X (u, ) a.e. on &X) X R™.
(iv) f is flexible for a class S of local martingales (with strictly increasing
quadratic variation) if f is M-flexible for each M € S.

THEOREM 4.2. If M is a continuous local martingale such that (M) is
strictly increasing, then (U,M) —SDE (W N) and (W,N) —SDE (U, M) implies
(U,M) = (W,N).

Theorem 4.2 will follow immediately from the following theorem, once we
show that there exist flexible functions.

THEOREM 4.3. (i) Suppose f is M-flexible and (U, M) <5P%()) (W,N). Then

(U, M) = (W,N).
Gi) If f is Mflexible and N-flexible and (U,M) <SPE() (W,N) and
(W, N) ->SPE(D (U, M), then (U,M) = (W,N).

ProOF. (ii) follows from (i) by Theorem 2.4.

(i) Let Fix [u},0), 1 <i < n, be adapted sets, and let Z%....,Z" be their
indicator functions. Since f is M-flexible, there are solutions XL4,...,X"of (4.1.3)
such that '

Fix (u,0) = {(X') >0} ae.on@XR"
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By (U, M) -SPE() (W, N), choose solutions Y?,..., Y" of (4.1.3) such that
(U, M, X',..., X") =,(W, N, Y%,...,Y").

By Theorem 3 of Chapter IV of Meyer (1976), the quadratic variation [Z] of a
semimartingale Z can be obtained as a measurable function of Z. As X and Y are
both continuous local martingales, [ X*] = (X*) and [Y*] =(Y*) for 1 < i < n,
S0

(XD =, (Y}, 1<i<n.

Thus, for each i, there is an adapted indicator function W' which is a.e. equal to
1({(Y*) > 0). Then

(U,M,2%,...,Z") = (W, N,W',...,W").
As n is arbitrary, it follows that (U,M) —= (W,N). O
To prove the theorem we need to find, for each dimension d, one function f
which is flexible for all d-dimensional local martingales M which have (M)

strictly increasing. Of these we have one trivial example. First we give a useful
sufficient condition for flexibility.

PRrROPOSITION 44. Let M be a continuous local martingale with strictly
increasing quadratic variation. Suppose that f(s,0) =0 and for any local
martingale M’ on (M) there is a solution X of

(4.4.1) X, = ftf(s, X,) dM;,
0
such that for s < t, (M'), < (M"), implies (X ), < (X),. Then f is M-flexible.
PRrROOF. Given an adapted set F X [¢, «0), let

Ms’ = (Ms - Mt)l(F X [t’ 00))9

and let X be the solution of (4.4.1) guaranteed by the hypothesis. Then X is the
solution of (4.1.3) required by 4.1(iii). O

PROPOSITION 4.5. The function f(t, x) = 1 (x # 0) is flexible for any continu-
ous local martingale with strictly increasing quadratic variation.

Proor. By 4.4, it suffices to show that for any continuous local martingale
M,

(45.1) M, = ['1(M, + 0)aM,.
0
‘First assume that M is a one dimensional Brownian motion B. Clearly,
B,= [‘1(B,+0)dB, + [1(B, = 0)dB,.
0 ()}

But the second term is 0, since its quadratic variation, [{1(B, = 0)ds, is 0. For
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general one-dimensional continuous local martingales, (4.5.1) follows by a time
change argument. If M is d-dimensional, M = (M1,..., M%),

< fo (M, = 0) dM>

A UM, = 0) d(M,)

< 155,1 fo 1(M: = 0) d(M})
- I ([ -0 an)
=0,

the last equality by the one-dimensional case. Hence (4.5.1) holds for M. O

In light of Theorem 4.3, we think it interesting to find more examples of
flexibility. Theorem 3.3 gives us a large class of functions f which are flexible for
all one-dimensional continuous increasing quadratic variation local martingales
on a saturated space. If in the definitions of flexible and —SPE we had allowed
the underlying adapted spaces to be enlarged (without changing the adapted
distributions of the processes one started with) in order to accommodate solu-
tions of the SDE in question, we would not need the hypothesis of saturation.
We have not followed such an approach only because the details of enlarging
spaces in the appropriate way have not been published.

PROPOSITION 4.6. Let M satisfy the hypotheses of 4.4, and let M be one
dimensional, { M) strictly increasing and Q(M) saturated. Let f(t, x) = h(x), h
~a Borel function. If h(0)=0 and 1/h(x)? is locally integrable, then f is

M-flexible.

Proor. This follows by Proposition 4.4 from Theorem 3.3, since (3.3.2)
implies that for any s, t € R*, (M), < (M), implies (X ), < (X ), a.s. O

REMARK 4.7. We cannot guarantee M-flexibility without the requirement
that (M) be increasing. For instance, if M =, N and M and N each consist of a
single jump at a deterministic time ¢, then for any f, M >SPE()N and vice
versa. But Example 3.1 in Hoover and Keisler (1984) shows that such processes
need not even be synonymous. It is not clear, though, whether M need be
continuous or need be a local martingale rather than a general semimartingale.

Hoover and Keisler (1984), Theorem 7.8, implies that for all f, (U,M) = (W, N)
implies (U, M) —SPE() (W, N). Theorem 4.2 is a partial converse to this. It is
still open, though, whether in restricted situations, adapted distribution can be
replaced by synonymity in the premise of this implication.

QUESTION 4.8. Let M and N be semimartingales on saturated adapted
spaces.
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(i) Suppose that the solution of (4.1.3) is unique in distribution. Does
M =, N imply that
M ,_,SDE(/)N?

(ii)) If M =, N and solutions of (4.1.3) satisfy uniqueness in distribution for
M, must (4.1.3) satisfy uniqueness in distribution for N?

(iii) If M =, N, does that imply that (4.1.3) has a solution for Y for N such
that there is some solution X for M such that (X, M) =, (Y, N)?

It seems to us that the work of Engelbert and Schmidt (1985) on fundamental
solutions of SDE’s can probably be extended so as to answer these questions
affirmatively for many cases.
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