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A TWO-PARAMETER MAXIMAL ERGODIC THEOREM
WITH DEPENDENCE

By TERRY R. MCCONNELL

Syracuse University

Let X, X,,... and Y;,Y,,... be independent sequences of iid. U(0,1)
random variables. We characterize completely those Borel functions F on
[0,1]2 for which the strong law of large numbers and the maximal ergodic
theorem hold for the doubly indexed family (1/nm)%; ¢, ; < W F(X;, Y)).

1. Introduction. Let Z,Z,, Z,,... be ii.d. random variables and denote by
S, the nth partial sum of the Z,. Then sup,(1/n)|S,| is finite almost surely or,
equlvalently, the strong law of large numbers holds, if and only if |Z|, = E|Z] <
oo. It is also well known that the stronger condition E(sup,(1/n)|S,|) < oo holds
if and only if Z belongs to the class L log,L. This sharp analog of Hopf’s
maximal ergodic theorem in the case of i.i.d. summands is due to Marcinkiewicz
and Zygmund [9] and Burkholder [2]. More recently, several authors have
obtained generalizations of these results to the case of multiply indexed families
(see, e.g., [6] and [15]) but under the assumption that the summands are
mutually independent. The primary goal of the present paper is to prove a
strong law of large numbers and a maximal ergodic theorem for a doubly indexed
family exhibiting a nontrivial pattern of dependence.

Recall that the class L log, L consists of those random variables Z for which
the norm |Z|, ,,,, ; defined by

1Z|
(]-'1) IZlLlog+L = ElZl(l + 10g+
1Zl,

is finite. (Actually | | L 1og,L is not a norm since it fails to satlsfy the triangle
inequality. However, it is easily seen to be comparable in size with any of the
standard Orlicz-type norms on L log_ L ) For functions F on [0, 1]% we denote by
IF)|,10g, 1. the iterated L log,L norm, ie. FlL g, 1 = Ifl1 10,1 Where f(x) =
IF(x, L 10g, 2 + 1FCs %)| L 10g, - We shall also need several other norm-like quan-
tities associated w1th functions of two variables. These are defined by

) : |F|,|F(x, y)|
8(F) = [ IFGx, y)I(l * 1°g+( F (e, IFC 5 ) )) i

) LIz, )
A(F) = [ ¥ 9)llog (|F( )|1|F(-,y>|1)d’°dy

”F" = "F"Llog+L + A(F)'

and
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Let X, X,,... and Y, Y,,... be independent sequences of i.i.d. U(0,1) ran-
dom variables and let &,é,,... and ¢, &},... be independent Rademacher
sequences which are also independent of the X; and Y;. For each Borel function
F on [0,1]? define

1
*F* = sup - | F(X,, Y})|
i,j Y
and

i iF(XuY;) .

i=1j=1

1
*S*(F) = sup —

n,m

THEOREM 1. The following statements concerning the Borel function F are
equivalent:

(1.2) *F* < 0 a.s.,
(1.3) *S*(F) < o a.s.,
™ g;el
(1.4) .Zl ‘21 ijJ F(X,,Y;) convergesa.s.asn A m - o,
i=1j=
(1.5) ' 8(F) < o0
and

1 n m
1.6) — F(X.,,Y. F(x, y)dxd .s.asn A m- oo.
(16) o L X F(X )= [ F ) dsdy as.as

Note that the equivalence (1.5) < (1.6) is the strong law of large numbers
mentioned previously. In the rest of this paper, convergence of a double series
means convergence in the sense of (1.4).

In our second result, the notation A = B means that there are absolute
constants ¢, and c, such that ¢;A < B < ¢, A.

THEOREM 2. Let F be a Borel function on [0,1]% Then we have

Ee

iLJ

S R(X,,Y,

i v

E*F* ~ E*S*(F) = E

Moreover, all three quantities are comparable with || F||.

We shall prove Theorems 1 and 2 in Section 3. In Section 2, we collect some
useful background information and in Section 4, we pose some open problems.

" 2. Background results. The purpose of this section is to present some
preliminary results from classical probability theory in a convenient form and to
discuss some more recent results on double random series and multiple stochastic
integration.
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Recall that {X;} and {Y;} denote independent sequences of ii.d. U(0,1)
random variables and that {¢;} and {¢;} denote independent Rademacher se-
quences which are independent of the X; and Y. For Borel functions f on [0, 1]
define

f* = sup| f(X;)|/i

and

s*(f)

sup —
n

‘;f(xi)l-

PROPOSITION 2.1. The statements (2.1)-(2.4) concerning a Borel function f
are equivalent:

(2.1) f* <o a.s.,
(2.2) s*(f) <o a.s.,
(2.3) i f(X) converges a.s.
i=1
and
(2.4) f e L'o0,1].
Moreover, the following equivalences hold:
(25) B = B(f) = B| 3 e L0 =

The last equivalence in (2.5) is contained in Proposition 4.2 of [3]. The
remaining parts of (2.5) are well known.
In the course of the proof of Theorems 1 and 2 we shall be concerned with

convergence of sums of the form X, i(e;e/4)F(X;, Y;) or, more generally, with
convergence of sums of the form ¥, a;e;e/, a, ;€ R. The next proposition

summarizes the properties of double Rademacher series needed later. In particu-
lar, it yields a “contraction principle” and also shows that double Rademacher
series share with single series the property that L? convergence, convergence
almost surely and convergence in probability are all equivalent.

PROPOSITION 2. 2 The double series ¥; ;a,;e;e; converges almost surely if
and only if ¥, aj; < . Moreover, we have the following extension of
Khintchine’s inequalmes

U

(Xau) , 0<p<oo.

(26)

This result is implicitly contained in a paper of Bonami [1]. More recent and,
perhaps, more convenient references are [7, Theorem 2.5] for the first statement
and [11, Proposition 2.2] for (2.6).
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Several parts of the proofs of Theorems 1 and 2 rely on recent results
concerning double integration with respect to symmetric stable processes, and
the remainder of this section is devoted to that subject. Let X, and Y, be
independent copies of the standard symmetric stable process of index «a in (0, 2),
i.e., X, has stationary, independent increments and

EeiAX, = e—t|>\|“, A €R.
We may assume also that the sample paths of X, are right continuous with left
limits.
If F is a step function on [0,1]?> we define the double integral

I(F) = fo‘folF(t,s)dX,dy;

in the obvious way. What is the widest class of integrands F for which I, is
well-defined? Of course the answer to this question depends on how the integral
is defined, but it turns out that all reasonable definitions of I, and of the more
natural integral

101
F(t,s)I,,dX,dX,
[ [ 7).y dX,
lead to the same condition on F. More precisely, we have

PROPOSITION 23. Let a satisfy 1 < a < 2. The following conditions on a
Borel function F on [0,1]? are equivalent:

There exist step functions F, converging to F in measure for

(2.7) which I (F,) converges in probability.
(2.8) The processes s — [jF(t, s)dX, and t — [JF(¢, s)dY, have

’ versions with sample paths in L°[0,1].

€;8} .
(2.9) Y —RF(X.,Y;) convergesa.s.(asin (14)).
i, ()
1,1 a lFl‘;IF(t’ s)la
2.10) §(F) = F(t,s 1+1o dtds
( ) a( ) _/(; ‘/(; I ( )I ( g+ fOllF(t’ s/)la dsrfollF(t/’ s)la dt/
< 00.

Moreover, if §(F) < co the step functions in (2.7) may be chosen so that
0(F —F,) > 0.

The reason for the restriction on a is that the proof relies on the spectral
theory of stable probability measures on Banach spaces, and L*[0,1] is not a
Banach space when 0 < a < 1. The equivalence of (2.8) and (2.10) is proved in
[14, Theorem 6.2]. A proof of the equivalence of (2.7), (2.10) and the last
statement in the proposition may be obtained by combining the result of [10]
with [12, Theorem 7.3]. We now sketch a proof of the equivalence (2.8) < (2.9) in
the case a = 1 of interest here. The proof is essentially contained in [12] and is
based on a novel representation of Y, due to LePage. Let e, e,,... be iid.
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standard exponential random variables which are independent of the U(0,1)
random variables Y; previously introduced and also independent of the
Rademacher sequence /. Put I'; = e, + - -+ +e;. Then the series [8]
00 E,
Z I‘ =1, Y)(s)
Jj=1
converges a.s. and defines a process stochastically equivalent to Y,. Now, by [12,
Proposition 3.3] the first statement in (2.8) is equivalent to
o g

21 ﬁF(t, Y;) convergesin L'[0,1] as.

J=17"J
This is equivalent, by Kahane’s contraction principle, to the almost sure conver-
gence in L'[0,1] of

°°e

(2.11) Y -IF(-,Y).

Jj=1 J
By Proposition 2.1 [(2.4) = (2.3)] we have that (2.11) implies almost sure conver-
gence of

Now choose n < m and define Z; and W, by

Z+W=3 ’F(X Y)

[ 2R}
j=1Y

and
m gl
Z,= Y JF(X Y)
j=nY

Then since Z; and W, are symmetric and conditionally independent given the
X, and Y, we have for every N < M and & > 0,

M M M M
Pl Y eZ,|>¢ =2P( Y s,-Zi>£) S4P( Y eZ,>e Y eW,20
i=N i=N i=N i=N
M
<4P|| Y &(Z,+ W,)| > ¢].
i=N

This and a similar argument with the roles of i and j ‘reversed show that

2 ¥ “rx,y)

i=1j=1

converges in probability as n A m — c0. Choosing a subsequence (n;, m;) with
n; A m;—> oo along which we have almost sure convergence and applying
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Proposition 2.2 show that
5 FAXY) FX(X,,Y;)
i (¥ )

Thus (2.9) holds by another appeal to Proposition 2.2.
For the converse implication, (2.9) and Proposition 4.1 of [3] yield

< o0 a.s.

0 A
Y <IF(x,Y;) convergesas.fora.e. x,
j=1
2.12)

o] o]
h —‘( ’F( i J)) converges a.s.
i=1 t\j=1J

Statement (2.11) and, hence, the first statement of (2.8) now follow from
Proposition 2.1 [(2.3) = (2.4)] and the It6—Nisio theorem. The second statement
in (2.8) follows similarly by interchanging the roles of x and y.

REMARK 2.1. The functional §, already defined is not a norm since it fails to
satisfy the triangle inequality. However, it is comparable in size to a p-homoge-
neous quasinorm for any 0 < p < a [12, Section 7] and the class of functions
defined by any of the equivalent conditions in Proposition 2.3 forms a Banach
space. Furthermore, we have § (F) < oo implies |F|, < oo.

REMARK 2.2. It would be interesting to have a direct proof of the equiv-
alence (2.9) and (2.10) which avoids the introduction of stable processes.

3. Proofs of the main theorems. In this section we present proofs of
Theorems 1 and 2.

PRrROOF OF THEOREM 1. Each of the conditions (1.2)-(1.6) entails the condi-
tion F € LY([0,1]?). Therefore, the one-parameter results (i.e., Proposition 2.1)
may be used to control the behavior of |F(X;,Y))|/ij on any finite number of
horizontal or vertical lines in the parameter space. With the aid of this observa-
tion, the implications (1.3) = (1.2), (1.4) = (1.2) and (1.6) = (1.3) follow easily.
The equivalence (1.4) < (1.5) has been proved in Proposition 2.3. The remainder
of the argument will be presented in the following order: (1.2) = (1.3), (1.2) =
(14) and (1.5) = (1.6).

(1.2) = (1.3). For a measurable function F on [0,1]2, define on @, X [0,1],
|F(Xi(«), 3)|

*F(y) =*F(w, y) = su ;
and on [0,1] X Qy,

F*(x) =F*(x,0) = sup lﬂ(ﬁ}w
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The equivalence of statements (2.1), (2.2) and (2.4) in Proposition 2.1 may be
used together with Fubini’s theorem to obtain the following string of implica-
tions:

1
“F* < 0 as”= “/ F*(x,w)dx < 0 as.”=“s*(F*) < w0 a.8.”
0

But s*(F*) > sup;(1/7)s*(¥(-, Y;)). The proof of (1.2) = (1.3) is completed by
the next string of implications which, again, follow from Proposition 2.1:

1
“sup 73*(F(',Y})) < oas.” =»“fls*(F(-, y))dy < o0 as.”
j 0
=“*S*(F) < w a.s.”

(1.2) = (1.4). As in the preceding proof of (1.2) = (1.3), we conclude that
+F*(x, w) dx < o0, a.s. This, together with Fubini’s theorem and Proposition
2.1, imply that X2 ,(¢,/i)F*( X, w) converges, a.s. It follows that

ol (F*(Xv w))2

Y ——F—— <o as;
i=1 t
hence, that
© F2(X,Y)\"
sup — ( Y ——ﬂ—é———’— < as.
J J i=1 U
By Proposition 2.1, (2.1) = (2.4) = (2.3), we conclude that
0 8} 0 F2(Xl,Y} 1/2
Y £ ———2———- converges a.s.
17 l
and, hence,
Fi(X,,
( ’) <o as.
i J (U)

_Finally, this implies (1.4) by Proposition 2.2.

(1.5) = (1.6). We first show that 8(G,) —» 0 implies *S*(G,) —»p0. If
this were false, we could find nonnegative functions G, and ¢ > 0 so that
P(*S*(G,) > n) > ¢ and 8(G,) <27 ". By Remark 2.1 the series L2_,G,, con-
verges a.e. to a function G satisfying 8(G) < 0. But P(*S*(G) = + 0) >
P(*S*(G,) > n, i.0) > 0, and this contradicts the implication (1.5) = (1.3) al-
ready proved.

Now suppose 8(F') < oo and choose step functions F, such that §(F — Fy) —
0 as in Proposition 2.3. For the FN, we clearly have that

—m_ Z ZFN(XN ])

i=1j=1
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converges almost surely as n A m — o to
f Fy(x, y) dxdy.
[0, 13

Since *S*(F ~ Fy) —p 0 and |Fy, — F|; — 0, the desired conclusion follows. O

ProOF OF THEOREM 2. The inequality E*F* < E*S*(F) is clear. To obtain
the reverse inequality, we have by (2.5),

1 N
E*F* = EI*"F(*)lL 105, = ESIIJVp N Y. *F(Y))

Jj=1

ZF( Y)

1 1
> Esup —sup N

N Jj=1
1 1 .o
=E Esup—supl—v- Z F(X,,Y;)||(Y;)| = cE*S*(F).
N j=1
Next we prove the equivalence
&€}
(3.1) E\Y 7 F(X,Y;)| = E*F*.
iJ

By (2.5), Khintchine’s inequality and (2.6)

E*F* ~ E| Y, 2*F(Y))
j=1J
2\1/ 2\ 1/2
o (*F(Y; © (F(X,
Lo £ L), g1 (D)
j=1 J i Jj=1 J
© ¢ F(X,Y)\"””
=~ E Z i —2’
i=1 | j=1 J
1/2
2 = (Xv ) eiel'
-5 3 ¥ Ml gy Wex, x|
i=1j=1 (lj) ij Y

The reverse inequality follows from (2.6):
1/2

F(X,, Y)’
,1 (J)

E > E*F*.

> “r(x, )| -

i,J
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The equivalence of E*F* and || F|| is much more difficult. It will be established
in the following steps.

STEP 1. Put

m- % E{'(}’y)'log+( A | 1 200

2(|F(X1» MV BJ)
where A(y) = |F(-, ML g, L and B = IFNl 2 10g, L-
We show that there is a constant C, such that

E*F* < Cl(”F”Llog+L + |Fly).

STEP 2. We show that there is a constant C, such that
IFllL10g, . + |Fls < CE*F*.

STEP 3. We prove that
IFll L 1og, 2 + [Flx = |1 Fl.
We shall use the following elementary inequalities repeatedly: For A > 0 and
B >0,
log,.(AV B) <log, A + log,B,

2
(32) log.(AB) < log, A + log,B,
(3.3) Alog,(B/A) < B/e,  Alog?(B/A) < B/e?,
and
(3.4) Alog,B<Alog,A+ B/e, e=2T718....

STEP 1 (discussion). By (2.5) we have that

(3.5) E*F* = f E*F(y) T

*
1+log, —— () ) dy.

Now
1, 1
[EF(y)dy= [My)dy<p
0 0
by (2.5). Thus, it is sufficient to show that

*

folE*F(y)log+ ) dy < C(B+ IFI*)

I*F,
Now, by (3.2),
- * B (y) . *F (y)
j(;E F(y)log, ——— Uk dy<fE F(y)log, 20°F, v B)
, 2(*F, v B)
+ [[BF(») °g+( I, ) 7
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The second term becomes [see (3.3)]

*
E|*F|llog+(%f—ﬁ)) < (f:;)ﬁ.
Thus, we need only prove that
(39) [ B F o8 5m ) gy < e, + ).
Y 2(| *Fll v ,3)

(Note that the denominator of the argument of log, is random.)
By (3.9),

['M»)E1 "Fly
A Y g+ [*F|,

)dy f)\(y)log+ (y) f ( *t(-,lyl))

hence
%

(3.7) fo 'A(»)E log, |fl(v“l Y) dy < (1 + 1)/3

The remainder of the proof is based on a simple pointwise upper bound which

will also be used in Step 2: For g > 0 Borel and any constant A > 0, we have
sup g( ) Z —g(——lI( (X;) > Ai).
i i=1

This estimate is actually quite sharp since integration of both sides and ap-
propriate choice of A leads to one of the equivalences of (2.5) after standard
manipulations.

This estimate, applied for each y with A = A(y) to the first appearance of *F
in (3.6), together with (3.7) show that it is enough to prove

Zf ['F('y)l1 D) wx, y)|>A(y)z‘]dy

(38 3 &+ 2", v B)’
< c(B + |Fly)-
Put
H(y) = sup ———— I y)l
J*i J

Since H; is independent of X, we obtain from (3.2) that the expression in (3.8) is
dominated by

Z/ B2 rx, y)|>m(y))(E1g+2l(y))dy

Hy,

. if (IF( : y)llog+( ( |F(X;, y)| : ));lp(Xi,y)|>i)\(y))dy

2(|F(X;,-)|, viB

i=1

= (D) + (1),
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say. The second term reduces to |F|,. To estimate (I), note that by relabeling
indices we have an estimate,
Hy(y) 2*F(y)

< E log
2|H, TR,

Elog, = M(y),

which is independent of i. Thus, by a standard calculation,

(l (Xl,y)l

M < ['M() oy |F(Xy, 9)| > iMy) | d

IF(XI’ y)l
M)
|F(Xl’ y)l
|F(-, ¥y

1
< /0 M(y)E|F(X,, y)|log, dy

1
< fo M(y)E|F(X,, y)|log, dy

1
< [ M(»)A(y) dy.
0
We conclude from (3.7) that (I) < ¢B, concluding Step 1.

STEP 2 (discussion). We may assume E*F* < co. Then, by (2.5), we have

i

E*F*>E(sup E(sup—]F( HY)|

(3.9)
1
> cEsup 7|F(X,~, i tog, -

Reversing the roles of the variables we obtain

|

C
E*F* > E"F"Llog+L = B

2

Now define for each y two sequences of events,
Al(y) = {sup -|F(X;, ¥)| < y}\(y)}

i<y .
Bj(y)=Aj~1n{lF(Xj’y)|>VA(y)J}7 j=172"~°’

where an integer v is chosen so that E*F(y) < (v/4)A(y). Note that the B are
pairwise disjoint and that Chebyshev’s inequality gives

(3.10) P(A;) = 3/4.
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Now, by (3.5),

*F
E*F* > ¢ fo "B*R( y)log+(|*—;:|yl) dy
1

> [B(X, )| [ 1F(X 9
e £ [o{ 5 (FR ) m
L 2 gl 1P )] y)l |F(X;, ¥)|/i .
2ex ) { z(|F(x,~,->|1/fv|H,-|1))’B"}dy’

where we have used the elementary inequality

If v &l < 2(fl, v 18l1)

for nonnegative functions f and g in the last step.
By the preceding choice of the integer », we have that E|*F|; < »8/4. Then,
by (3.10),

P(H, <B, A,;_,) = P(H}|, <vB) + P(A;_,) — 12 }.

Hence, the previous sum dominates:

12 | |F(X;, )] |F(X;, 5)| . .
Ejg,foE{ i SR, )], v b)) [F(X 3)] > M) o
13 [F(X, 9], |F(X,;, %)
'2E1fo { J tog, 2(|F(X,,, )|lv»jg)’
1 ( u,,y)l>vj>\(y)} dy

1 & | |F(X;, )] |F(X;, ¥)| )
= E;E,foE{ B[R, ), vB)

|F(X;, )| >J’7\(y)} dy
1 & o f (X, )| |F(X,9)] .
) TZ/E{ &+ 2 F(Xy, ), VIB)

F(X,, )| >jx<y)} .

This last expression is exactly 1/2»|F|, with the first » — 1 terms missing. It is
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easy to check that each of the missing terms is dominated by 8. Thus, |F|, <
2vcE(*F*) + (v — 1)B. We conclude from (3.9) that

|Fle + B < (2ve + v)E(*F*)
and Step 2 is complete.

STEP 3 (discussion). We shall write A ~ B to denote equivalence up to terms
of order B, i.e., a relationship of the form

coB—c;B<A <c,B+ cy,B forsomec;>0.

It is then enough to prove

\F, = Ef {l (Xl’y)llog+( ( |F(X,, y)| : );

2(|F(X,, )], viB)

(3.11) |F(X,, ¥)| Zj?\(y)} dy

|F | F(x, y)|
|F(x7 )|1|F(7 y)ll

1

~a(F) = [

1
JAEEIY Jiras

Put
A= {(3,0): iMy) <|F(Xy(0), y)| < (i + DA()}.

After interchanging orders of summation, we may express the left side of (3.11)
as I + II, where

m-£ [ {IF(XI, y)|10g+(H)( ] }dy
and
(1) = }_:1 f {IF(XI, y)l( ,:El 1 ;mgﬂ%ﬁ ;Ai} dy,
with
ay = ag(w) = (]F(Xl, -)ll/ﬁ) v
and

v =7v(w, y) =|F(X,, y)|/2B.
It is understood that upper (respectively, lower) limits of summation are to be
rounded down (up) to the nearest integer. Now I ~ 0, which means that these
terms may be dropped from further consideration. Indeed,

E{j(;llF(Xp y)llog+(—2lf;()§:ﬁ'))l| ) dylog+(———lF(Xl;’ ot )}
|F(X17 ')|Llog*L
B

< E|F(X,, ')|Llog+Llog+
<B.
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For the estimation of (II), first note that we may replace
W1 |F(X, y)|

Y =log

J=ag J 2B

ivas 1 F(X,, F(X,, 1 F(X,,
fv/\ v O_IOgI (X, y)l d = 1 g2 I ( 1 y)l ~ Zlog? | ( 1. y)l .
o x 2Bx 2 2Ba, 2 2B(y APV ap)

This may be seen by recalling that a, > 1 and using the Riemann sum upper
and lower bounds to the integral. This involves adding or deleting a term from
the preceding sum, but such single terms, when substituted into II, produce
expressions dominated by 8.

Note that the condition y A i > « entails the condition

|F(X1: y)l IF(Xla‘)ll

>
AMy) B
on A;. Also, we have that
1 A(y)
(312) [ EIF(X,, y)llogh, —= dy ~ 0,
0 B
since, by (3.4) applied to one factor of log ,,
(y)
fEIF(Xl’ y)|10g+ B
1 |F(Xy, y)| Ay)
< E|F(X,, y)|I 1 d
_/(;( l ( 1y)|°g+ B 0g B Ly
(y)

= f M(7)log, —=

1
< (1 + —)B.
e

But on A; we have

B

P )| M)
“2B(yAd) C BTR

hence, the negative log? term may be dropped from further consideration.
We now have

log?

e (1F<X1,y)11 g+(' ‘2,;(;0”') A)dy (a) + (o),
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where

IF(Xv y)l IF(Xv )Il IF(XI’ y)l
(@) = ['E{ 1P, 5ot g P TS g
and

(b) = f {IF(XI’ y) [log? 2I|F€(X11,’y))lll 1< IF(X;;,)II = IF()\)((_I}:)y)l}d

Using (3.3) and (3.12), we have

(@) = ['B{1rCe )it 2 o) 6

1 9 BIF(XU y)l .
~/(;E(IF(X1, y)llog+7\(y)|F(X1,')|l’ IF(XI’)|SB) dy,

since, by (3.3),

B B
EIF(Xl, ')Illogil_F—(Tfl_-)]— < —
Similarly,
1 BIF(Xl’y)I
b) ~ | E{|F(X,, y)log? ;
®)~ {' (Ko 2B TR, T,
IF(Xl»’)Il IF(Xl’y)I}
) “

1<

F(X log? ; .
' ( 1 y)|og+}\(y)|F(X1,-)|l"B<|F(X1’ )Il) dy

=£1E

Thus,

BIF(X,, y)|
(a) + (8) = [[EIF(X,, 5) log (x( F(X,,- )ll)

The proof is now completed by using (3.3) and the estimate

I LLEE PRI

4. Open questions. It seems quite likely that the methods of this paper
would extend to the case of triply indexed families of random variables, but the
additional complications may be formidable. Also likely is that the family
(F(X;,Y;)) may be replaced by the family (F(X;, X;), i # j), which exhibits a
more complicated dependence structure, with the same results as in Theorems 1
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and 2 holding. As evidence for this, it is known [7] that the condition

E Z ”F( X;) convergesas.asn A m— o
i= lj 1
J#*i

is equivalent to (1.4) and that the quantity

E|Y —

i#j

i

is equivalent in size to || F|| (combine the result of [16] with our Theorem 2).

In another direction, it is known that for nonnegative f the equivalence
Es*(f) = |flL10g, 1 €xtends to the case of general ergodic dynarmcal systems.
More precisely, let T be an invertible ergodic measure preserving transformation
of a finite measure space (Z, 4, p). Then

f sup

n

y(dx) |f|Llog+

(see, e.g., [4], [5] and the references cited therein). Now suppose S is another
such transformation. It is natural to conjecture that the analogous condition
||IF|| < oo is necessary and sufficient for the maximal function
n m
sup— E E F(T', 8%)

to be integrable p ® p.
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