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and Technion-Israel Institute of Technology

Initially we consider “the” standard isonormal linear process L on a
Hilbert space H, and applying metric entropy methods obtain bounds for the
probability that sup,Lx > A, C € H and A large. Under the assumption that
the entropy function of C grows polynomially, we find bounds of the form
cNexp(— 132/0?), where o? is the maximal variance of L. We use a notion of
entropy finer than that usually employed and specifically suited to the
nonstationary situation. As a result we obtain, in the nonstationary setting,
more precise bounds than any in the literature.

We then treat a number of examples in which the power « is identified.
These include the distributions of the maxima of the rectangle indexed,
pinned Brownian sheet on R* for which a = 2(2% — 1), and the half plane
indexed pinned sheet on R? for which a = 2.

1. Introduction. Our motivation comes from the theory of empirical
processes, where X,..., X, represent i.i.d. observations from some k-dimen-
sional distribution, and our aim is to test the hypothesis that the parent
distribution is given by a measure »: »(A) = P{X; € A} on the unit cube. A
natural test procedure is to form the empirical measure »,: »,(A) =
A/n)X?  1,(X;) (14 is the indicator function of A) and compare », to v via a
Kolmogorov—Smirnov type statistic of the form

(1.1) sup {(Vnlp(4) = v(4)},

for some family 2 of Borel subsets of [0,1]%. It is well known [Dudley (1978,
1984)] that vVn (v, — ») converges weakly to a Gaussian process on .7, under
conditions related to the size of &/. Consequently, the study of (1.1) reduces, in
the limit, to the study of the supremum of a particular Gaussian process over a
class of sets. ‘

Unfortunately, however, it is also well known that it borders on the impossible
to obtain the exact distributions of Gaussian maxima and that, except for certain
special cases, the only results available relate to the tail of the distribution. In

Received December 1984; revised January 1987.

1Research supported in part by AFOSR Contracts 84-0104, 85-0384 and F49620-85-C-0114 while
visiting the Center for Stochastic Processes, Chapel Hill, North Carolina.

2Research supported in part by the Wolf Foundation.

AMS 1980 subject classifications. Primary 60G15, 60G57; secondary 60F10, 62G30.

Key words and phrases. Gaussian processes, isonormal process, supremum, metric entropy,
Brownian sheet, empirical processes.

1339

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%y%'?’)

The Annals of Probability. STOR ®

WWw.jstor.org



1340 R. J. ADLER AND G. SAMORODNITSKY

this paper we shall be concerned with proving results of the form

(1.2) P{ sup X(x) > A} < cX"exp(—%X"/ﬁ), A large,

x€S

where S is a parameter set for a zero mean Gaussian process X, c¢ is a (generally
unknown) constant, 62 = sup, c gE{X?(x)} and «a is a parameter depending on
certain relationships between the size of S and the covariance structure of X. We
shall be interested in identifying the smallest possible a. Bounds on the sup in
(1.1) (for large n) then follow from (1.2) by taking S = &/ and X = Brownian
sheet (defined below).

In order to handle as many choices of S as possible, we shall concentrate
initially on the most general of Gaussian processes, the so-called isonormal
process. This process, together with the requisite notion of entropy, is defined in
the following section. There we also formulate and prove tail bounds akin to
(1.2), and in Section 3 we apply the general results to specific problems related to
set-indexed Brownian sheets.

2. The isonormal process and a Fernique inequality. The central idea is
to study one, canonical, Gaussian process, and then relate any particular process
to this one. It is defined as a linear map L from a real, infinite-dimensional
Hilbert space H into real Gaussian variables with EL(x) = 0 and EL(x)L(y) =
(x, y) for all x, y € H and is called the isonormal Gaussian process on H [cf.
Segal (1954) and Dudley (1967, 1973)].

Since Gaussian distributions are uniquely determined by their means and
covariances, the isonormal process L can be regarded as the only real Gaussian
process for, if {x,, ¢ € T'} is any real Gaussian process with mean Ex, = m,, then
L(x,— m,) + m, is another version of the process, where we take L%(Q, P) for
H. On H, L “remembers” the covariance structure of x,, and, by its linearity,
also keeps track of all joint distributions. Thus, we can in general neglect the
specific joint distributions of x, on (2, P) and work only with the abstract
geometric structure of the function ¢ —» x, — m, € H. To see precisely how this
works in practice, see the examples in Section 3.

In order to study the structure of H, we shall require the notion of metric
entropy. Let || - || be the induced norm on H, and for ¢ > 0 let N(C, €) = N,(¢)
be the minimal number of points x,,...,x, from C such that, for all y € C,
min,{||x; — y||} <e. We assume N finite for each & > 0. Consequently, there
exist sets A),..., Ay, covering C such that, for all n, ||x — y|| < 2¢ for all
x,y€ A,. Set HC(e) = log Ny(¢). Then H(¢) is the metric entropy function of
C. Metnc entropy is known to play an important role in continuity problems for
Gaussian processes and can also be used to study suprema problems. In particu-
lar, let us now and hereafter assume that H(e) exhibits at most a logarithmic
growth, or, more conveniently, that there exist positive constants a@ and k such
that

(2.1) Nq(e) < ae™*,
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for small enough &. Then for large enough p > 2 and all A > (1 + 4« In p)'/2,
(2.2) P{ sup |Lx| > A(o + 2p‘2)} < 3(7/2)" 2 ap®y(7),

xeC

where
(23) o= suplial = sup [E(L*=)]",  ¥(0) =v2/m [ du

[Inequality (2.2), when specialized to Gaussian processes defined on a Euclidean
space, is due to Fernique (1975). The proof for the isonormal process requires
only minimal, essentially notational, changes. Details can be found in Adler and
Samorodnitsky (1985). The case ||x| = ¢ for all x € C is.treated in Weber
(1980).]

Whereas (2.2) provides a route to essentially the best bounds for
P{sup, ¢ o|Lx| > A} when L has constant variance this is not necessarily the case
if ||x|| is nonconstant on C (c.f. comments at the end of this section), and it will
be the case of nonconstant variance that will interest us in the following section.
To obtain sharper results in the nonstationary situation, we need to impose an
additional restriction on C and shall assume that it possesses some sort of scaling
property. In particular, for each § > 0 let &, be a partition of C satisfying
(2.4) sup |x —y| <6, forall A €9,

x, yEA
Define NZ(0) = #%. Clearly, NJ(6) = Ny(0), since the latter entropy is re-
lated to a %, of minimal cardinality. In general, however, we shall want to
choose ¥, so that both entropies are effectively the same. Now we introduce the
“scaling hypothesis,” by assuming the existence of a function f such that in
addition to (2.1) we have

(2.5) N,(f(8)e) < ae™, forall A€ 9,

and small enough &6 > 0. Such an f always exists. [Take f=1! Clearly,
however, for this partitioning procedure to have any value, we shall want to
choose ¢, and f such that as well as (2.4) and (2.5) holding we have that
f(8) \ 0 as 8 \ 0. Nevertheless, it is not necessary to assume this now, and the
bound in Theorem 2.1 is correct for any f. If f does not decrease to zero with 0,
however, it is uninteresting.]

Note that it would be nice to replace (2.5) with the more pleasing condition
N,(f(8)€) < Ny(&) comparing entropies. However, such a condition turns out to
be impractical in examples, since we generally do not have the precise form of

N(¢), but only its growth rate.
' Note, also, that we can always take NF(6) to be nonincreasing and f left
continuous. Consequently, fixing some p > 2, the function

, g(0) =0 +2f(6)/p*
can also be taken to be left continuous, so that its inverse
g (n) = sup{0: g(6) <n}
is well defined.
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THEOREM 2.1. Suppose for ¢ € (0,¢,], Ny(¢) < ae™", and, furthermore,
that for all 6 € (0,0,] we have that f satisfies (2.5). Then for every p >
max(2, g5 /%), 0, = sup,  4|%|l, any A € %, and all A > g(8)(1 + 4k In p)*/?,

P{ sup |Lx| > )\} < 24/([)\ -g(0)1 + 4k In p)l/zl/aA)
x€A

(26) +8ap™y(A/&(6))
+8ap?*a,\"exp(—A2/203 )exp(N\2g?(8)/20}).

An easy consequence of (2.6), that we shall require later, goes as follows. Set
0, == g ([N’(1 + 4x1In p)]~'/?), and take A € %, . Then for appropriate ¢, =
ci( D, K, 04), €y = (P, k), bounded for g, bounded away from zero,

(2.7 P{ sup | Lx| > )\} < e A lexp(—1A2/62) + e ~%exp[ — INY(1 + 4k In p)].
x€A
[Substitute 8, into (2.6), and apply the inequality ¢(u) < /2/7u e~ *"/2]

Proor. The idea of the proof is simple. If 8 is small, then so are the sets in
%,. For A € 9,, choose some x* € A. For each x € A, write Lx = Lx* +
L(x — x*). Since ||x — x*|| must be small, L(x — x*) should be also small
(stochastically). To show this we consider L(x — x*) conditional on Lx*, using
an idea used previously in Adler and Brown (1986) and Berman (1985) for certain
Gaussian processes on R*. Consequently, Lx = Lx* + a smaller-order term. The
various conditions on Lx* and the smaller-order term that make |Lx| > A are
what lead to the various terms in (2.6). Details are as follows.

Take A € %, and let x* be a point in A satisfying ||x*|| = sup,||x|. Consider
the process L*x :== L(x — x*) = Lx — Lx*, and let A* be its image in £%(Q, P).
Let I be the (identity) operator on A* that simply identifies each element of A*
as a Gaussian variable. The inner product (u, v) of ¥ = L*x and v = L*y in A*
is given by E(L*x, L*y), I is isonormal on A* and supg.|fu| = sup,|L*x|.
Furthermore, it is trivial to check that

sup|lulls < 8 and ||z — ol = |lx — ¥
A‘

Thus, the entropy function for I is identical to that for L on the original space.
Consequently, comparing (2.5) and (2.1) it follows from (2.2) that

(2.8) P{ sup|L*x| > A[6 + 2f(o)p-2]} < gapzxf”e—uz/z du.
A A
\;Furthermore, precisely the same bound holds if we replace L*x by L**(x) =

Lx — E(Lx|Lx*). This follows as for L*, on noting that ||u — 0|l¢x < ||[¥ — V4,
which follows from an easy calculation on conditional variances.
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Now note that the event that interests us, sup,|Lx| > A, is included in the
union of the four events:

1/2

(2.9) |Lx*| > A — g(8)(1 + 4kIn p)™/~,
(2.10) sup|L*x| > A,
A

(2.11) supLx >A and 0 < Lz* <A —g(8)(1 +4xlnp)*?,
A

(212)  infLx < -\ and ~A+g(0)1 + 4kIn p)/* < La* < 0.

The probability of (2.9) is bounded by the first term in (2.6), while the second
term there bounds the probability of (2.10) by (2.8). The probabilities of (2.11)
and (2.12), which are clearly identical, are a little more involved to derive.

Note first that if n > 0, then E(Lx|Lx* =n) <, since x* is a point of
maximal norm. Consequently, E(Lx|Lx*) < Lx* on the set where Lx* > 0, and
so0 (2.11) is contained in the event

supL**x > A — Lx* and 0 < Lx* <A—g(0)(1+4xIn p)%
A

But L**x and Lx* are independent, so the probability of this event can be
bounded by

fOYP(ssz**x >A— u)p(u/oA)o_;ldu,

with y = A — g(8)(1 + 4« In p)'/2. Applying (2.8) for L**, we can bound this by
A A—u
2 2k - -1 du

Set z = A(A — u) and note p(x + y) < p(x)e™*” to further bound this by

2ap** A 0 z 9
— z/04
Aoy p(“A)fO x]z()\g(a))e .

This is now a standard integral, and turns out to be no more than half the last
factor in (2.6). This completes the proof of the theorem. O

‘ In what follows we shall require the following easy consequence of Theorem
2.1, necessary because the behaviour of the right-hand sides of (2.6) and (2.7) is
not good for very small o,.

CE)ROLLARY 2.1. Theorem 2.1 and inequality (2.7) continue to hold if we
replace o, in the right-hand side of (2.6) and (2.7) by any o > o,, as long as we
double all constants.
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ProOF. Note firstly that if Z,, t € T, is any a.s. bounded collection of
variables, and Y independent with P(Y > 0} = P{Y < 0} = 3, then

(2.13) P{ 3111‘p \Z,| > )\} < ZP{ sm;p|Zt +Y|> )\}.

Now take ¢ > 0, and Y zero mean Gaussian with variance o2 — ¢Z, indepen-
dent of Lx for all x € A, and define a new process L* by L*x = Lx + Y.
Consider the image of A under L*, call it A* as part of an #2 space of
Gaussian variables, where for any two points, u, v in the image such that
u= L*x, v = L*y, x, y € A their inner product (u, v), is given by E(L*x, L*y).
Then clearly

Null = %I + 0% — af,  |lu—olls =|lx — ¥l

Consequently, sup,.||u|l« = 0 and A* has the same entropy function as A. Let

I be the identity map on this set. Then I is clearly isonormal on A*, and

sup,.|Iu| = sup,|L*x|. Thus, we can apply Theorem 2.1 and (2.7) to I and then
apply (2.13) with Z = L to prove the corollary. O

' It is clear from (2.7) that for large A we find that the dominant term in the
bound is O(A~'exp(— 2A2/02)). But this is of the order of the probability that a
single zero mean Gaussian variable with variance o} is greater than \. That is,
we have replaced the supremum of L over A by its value at one point only.
Essentially, this has been done by making A small as A becomes large, since
A € 9, and 6, will be small for A large. That is, we have achieved at this stage
a discretization of the supremum problem. This is actually the heart of the
solution of the general problem, for all we need do now is sum the bounds of
Theorem 2.1 and its corollaries over the various sets in ¥, to bound the
supremum over the whole of C.

To sum these bounds efficiently, we require further assumptions on the
structure of C, as in the following, final result, for which we set

Csy ={xeC:|x|>8}, C;={xeC:|x|<5},
and recall that 6, was defined as g~ '([A%(1 + 4« In p)]~1/?).
THEOREM 2.2. Suppose N(e) < ae™* for ¢ € (0, ¢y], and that there exist

constants ¢, B, y and 8, such that for-each 6 € (0, 8,] there exists a partition %,
of C and a constant n4 so that

(2.14) n(8,,8,,0) < c(8, — 8,)’NZ(0) + ny(8,—8,)", 0<8,—8, <8,
where

(2.15) n(8,,8,,0) = #{A e g An G nC;| * 7).

Then there exist constants c, and c, such that for sufficiently large A

(2.16) P( sup |Lx| > A) < ¢;NZ(8,)A~172Be™X /20" 4 cypg N1 200N /277,

xeC

where ¢ = sup, . ol Lx||.



SUPREMA OF GAUSSIAN PROCESSES 1345

ProoF. For fixed A define the sequence {§;} given by
82 = 102, 82=062—(m—-i)\72, i=1,...,m,

where m := 1 + [162)\?]. Clearly, it will suffice for us to bound P(supc+ |Lx| > A).
Apply Corollary 2.1 to obtain

{Suplel > A} <c Z n(sz 1’ u 0)\)>‘ 1exp(__)\2/82)
080 i=1

Note that 8, — §,_, < 1/(6A%). Take A large enough for (2.14) to hold, and
substitute to bound the above sum by

(2.17) c[o_B)\_l‘zﬂN"(H,‘) + nog"’}\‘l'z"] Y exp(—1A2/82).
i=1

Thus, to complete the proof we need only bound the last summation by
cexp(— 1A2/0?). This can be done as follows. Set a;= exp{— iN?/(o® —
(m — i)A"2)}. It is easy to check that a;_, < a;e”'/2°" < a,, so that the sum in
(2.17) is bounded by

a

m
a, Y (e*)* < ?ﬁ/‘u* = cexp(—1N%/02).

This completes the proof. O

CoMMENT. Theorems 2.1 and 2.2 have much in common with Theorémé 2.1.1
of Weber (1978) and the results in Weber (1980). In both cases Weber treats only
spaces C for which ||x|| is constant over C (i.e., processes of constant variance),
and has results dependent only on the behaviour of the entropy function. That
his results cannot be expected to always yield minimal powers of A in a bound
like (2.16) follows from the fact that it is easy to construct examples of processes
with the same « in (2.1) but with suprema tail distributions behaving like A% al
for quite different a. [An example is given in Adler and Samorodnitsky (1985),
where the reader can also find more results akin to those of this section.] In fact,
for none of the examples of the following section, do either Weber’s general
results, or those of Berman (1985) (in the case of Example 3.1), yield the best
powers of A.

3. Examples. Our examples deal not with the isonormal process on Hilbert
space H but with processes whose parameter space is somewhat less abstract.
Thus, we shall have to translate these processes to the isonormal case. But this is
easy, for if X, is a zero mean Gaussian process on, say, a metric space (S, d) with
continuous covariance function R(s, t), then we simply identify H with the %2
space of X, and C ¢ H with the set {x € H: x = X, for some ¢t € S}. For
x =X, y=X, in C we have (x, y)y = R(¢, s). Clearly, L is now the identity
operator S0 that Lx is simply x identified as a Gaussian variable rather than an
element of H. Furthermore, sup,  o|Lx| = sup, 5| X,/

Entropy calculations are only slightly more involved, for we shall generally
partition C by first partitioning S (this is usually geometrically simpler) and
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then letting the above identification induce a corresponding partition on C. We
shall work the first example carefully to explain what is happening. In the later
two, we shall skimp on detail.

All the examples are connected with Brownian sheets. Let A, be Lebesgue
measure on [0, 1]%. The zero mean Gaussian process W defined on Borel sets in
[0,1]* with covariance :

(3.1) E[W(A)W(B)] = A(A N B),

is called the set indexed Brownian sheet. The pinned version of W, denoted by
W(A) = W(A) — A (A)W([0,1]%) has covariance

(3.2) E(W(A)W(B)) = A, (A N B) — A, (A)A(B).

For the special case of W indexed only by k-intervals of the form A, = [T~ [0, ¢,],
we write W(t) .= W(A,) and W(t) = W(A,), and call W(t) and W(t) the point
indexed sheet and pinned sheet, respectively. W(t) is of particular interest as a
natural k-dimensional generalisation of Brownian motion while W( A) arises as a

weak limit in the empirical measure setting of the introduction [cf. Dudley
(1978)]. We start with the point indexed pinned sheet.

ExaMPLE 3.1. There exists a finite ¢ such that

(3.3) P{ sup |W(t)| > )\} < cN2h-Dg 2%,
[o,11*

[This result was originally established in somewhat greater generality in Adler
and Brown (1986), where it was also shown that this bound serves, for different
¢, as a lower bound as well. It is not, however, obtainable from any other general
Gaussian bound. Using Berman’s (1985) result, for example, the best bound
possible is only O(A2t~le~2¥) ]

We rederive the result here to show how it can be obtained from the general
theory. We shall apply Theorem 2.2, so we are basically concerned with finding a
good bound for n(é,, §,, 8), and the other factors in (2.14).

We commence by noting

W(s)|* = E[(W(t) - W(s))’]

(3.4) 1
< A(flt.Afls) < Z lti - sil’

i=1
for all s,t € [0,1]%. Now, for each 6 > 0 set m, =1+ [k6~2] ([x] := integer
part of x) and define a partition I,, of (0,1]* by

n, n;+1
I,={Ac[o0,1]* A= ( ,n,.=‘0,1,...,m—1}.
- {actoata- (2, mo] a

Furthermore, let %, be the partition I, induces in H, the #2 space of W. By
(B4),if x, ye A € G, then ||x — y|| < 0, so that ¥, is a partition of the type
required for Theorem 2.2, and

(3.5) NZ(0) =1+ [k/62]* < 3k*0-2*,
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the inequality following by simple algebra. By (3.5), C has polynomial entropy
with k < 2k. We now check the scaling property.

Fix e > 0, set p, =1 + [¢~2], divide each A € I, into p? equal k-intervals
and map these into the corresponding A € ¥,. Applying (3.4) once again, it is
easy to check that

N,(0¢) < 3e %, foralle < (2k) “and A € ¥,.

Thus, we can take f(8) = 6 in (2.5) and, for some p > 2,
(3.6) , 8, =A"'[(1 +2p~2)(1 + 8kIn p)*| ",

All that remains is to investigate n(8,, 8,, §). Firstly note that it suffices to
consider 8, > %, for we can break C into two parts, over which |x|| <  and
|lx|| > %. Over the first part the inequality (2.2) gives us an upper bound of
O(e~®") for the tail of the supremum, which is clearly of smaller order than the
desired (3.3). Thus, the case §; < 1 can be neglected. Now note that cg N Gs, is
the image of the following set, in which we write [t| for £, X - -+ X{,:

1(8,,8,) = {t: 612 <[l - [t]) < 822}
1/2 1/2
(3.7) ={t3-(-80)" <mi<i-(1-8)")
ult: 3+ (3 -8) << 3 + (4 - 82)7).
The second line follows via a little elementary algebra. To count the number of
A from I, that intersect (8, §,) it suffices to count the number of lattice points
of the form (n,/my,..., n,/m,) falling in I(§,, §,). But this is relatively easy,
for if we fix n,,..., n,_,, then some more algebra applied to (3.7) shows that no

. more than 322 (8, — 8,)"/?m, values of n, are permissible. Allowing n,, ..., n,_,
to vary, we thus obtain

n(8,,8;,8) < c(my)""'(8, - 8,)"°m,

< c(k)072*(8, — 8,)"”

< c(8, - 8,)> NZ(9).
But this is all we need, for substitution into (2.16), on noting that 62 = 1 for this
problem, immediately establishes the required (3.3).

ExamMpLE 3.2. Let %, be the set of all k-intervals of the form [s,t] =
1% .[s;, ¢;] contained in [0,1]%. Then there exists a constant ¢ such that
(3.8) P{ sup |W(4)| > A} < cN2C@h- D=2V
Ry,

Before we prove this result, we shall establish its sharpness by showing that
there exists a ¢’ such that

(3.9) N2k D=2 ¢ P{ sup W(A) > A}.
Ry
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We shall prove this for £ = 2. For k2 > 2 the proof is basically the same, the
notation is just a little longer. Let A = [s, t] be a rectangle in [0,1]%, and define
a mapping T: %, — [0,1]* by

t2_82

t,—s
T([S,t]) = ¢ - » by ¢ yta |
1 2

Clearly, we must have 0 < s; < £, < 1, i = 1,2, for [s, t] to be in %,, and so it is
easy to see that T is one—one and onto. The inverse mapping is defined by

(3.10) T~ Y2y, 23, 23, 24) = [(22(1 — 21), 2,1 = 23)), (22, 24)].

Now define a process X(z) on [0,1]* by X(z) = W(T~Y(z)). This process is
clearly Gaussian with zero mean, and it follows from (3.10) and (3.2) that

(3.11) E[X’(@)] = MT'(=2) - (MT"(2)))" = 2| - 2I”.

This is the variance of the point indexed sheet on [0,1]*. After a page or so of
elementary algebra, one can derive the rather useful inequality that for any
A,BeR,,

M40 B) < TT[T(4) A (B,

where T,(A) is the ith coordinate of T(A). An immediate consequence of this is
that

E(X(X@)] = E[WT- W) < [Tucr o~ al- bl

That is, the covariance function of X is dominated by that of the point indexed
sheet on [0, 1]*. Consequently, by (3.11) and Slepian’s inequality [Slepian (1962)],
the tail of sup X dominates that of the sheet. Theorem 2.2 of Adler and Brown
(1986) states that this, in turn, dominates ¢’A%e 2" for some ¢’ [or ¢'A22*~Dg=2¥
for general k], so that (3.9) is proven.

Now to the upper bound. We shall give the main steps of the derivation and
skip all the algebra, most of which is similar to that in the previous example. To
define ¥, set my =1 + [2k/02], and let ¥, be the image in H of the partition
of &, given by U;c,s)A(d), where L #(0) is the set of all integer 2&-tuples of
the form (jO®, j®,..., j®, j@) with jO <j®,...,i=1,...,k, Jjo =
0,1,...,my—1,i=1,..., kI = 1,2, and A(J) is the collection of all k-intervals
[x,y] satisfying |x; — jO/mg| < 02/2k, |y, — j®/my| < 0%/2k, i=1,..., k. It
is easy to see that ¥, is a partition of the required form, and that

NZ(0) < 3.4*k2H9~4k = cf—**,

Consequently, we have polynomial entropy with parameter k = 4k. Continuing
the same procedure, it is easy to see that, for each A € &, N,(f¢) < ce™**, so
that as in the previous case we have f(6) = 6 and 6, = cA ™.
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Now consider C; N Cs,, which we can write as

k k k 2
{B = [lxe 51 82 < (10— ) - [nm—m] < s}

Again we can assume 8§, > 1, and follow the procedure of the previous example
to eventually obtain

n(8,,8,,0) < cNJ(0)(8, — 8,)/%, fors,— 8, < cf2.
If 8, — 8, > c0?, then dividing the interval (§,, 8,) into subintervals of length at
most cd2? we obtain, from the above bound,
n(al, 82’ 0) < 0(82 - 81)0_1N0g(0)'
Overall we obtain
n(8,,8,,8) < cNZ(6)(8, — 8,)"* + cd7'NL(6) (8, — 8,).
Substituting all the above into Theorem 2.2, together with the fact that ¢ = 1,
we prove (3.8).

In the final example we treat W indexed by all half squares in R? i.e., the
space

2, = {Ac[0,1]: A =[o0,1]?
N{(x,y): ax + By+ y <Osomea, B,y € [—oo,oo]}}.
ExAmPLE 3.3. For the Brownian sheet indexed by half squares, we have

(3.12) P{ sup|W(4)| > 7\} < cA%e 2%,
2,

for some finite, positive c. .

Note firstly that if A € 9,, then W(A) = — W(A®). Consequently, we need
only consider half of 9,, say those half squares that contain at least one of the
points (1,0) or (1,1). We write this as 27 .

Let S,,..., S, denote the four sides of the unit square, {(x, y): 0 <x, y <1}
on which, respectively, x =0, x =1, y =0, y = 1. To define ¥, set m, = [0~2]
and x{*¥)() the point on S, at a distance i/m, from its start. Now let
A(0, k, 1, i, j) be the collection of all half planes in 2; with boundary intersect-
ing S, between x® and x{*), and S; between x(l) and x(Ql, k1=1,...,4,
k+1ij=0,1,..., mg — 1. These A provide a partltlon of 25, and we take
the induced partltlon in the #2 space of W as 9,. Clearly, 9, has the properties

we generally require and, furthermore,
(3.13) NZ(6) = (;)(m, + 1) < 24674,

Consequently, we have polynomial entropy with x = 4. To further subdivide
these sets, simply subdivide each interval [x(®), x(*) ] more finely, so that s1mple
calculations yield that N,(ef) < 4¢~* for each such A. Consequently, f(0) =
and for p > 2,

6, =A"'[(1+2p72)(1 + 8l p)/*|
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It remains to estimate n(81, 8, 0), for which we must describe C; N Cj,. As
before, this is made up of the image of all half squares whose intersections with
[0,1]12 have area S satisfying either

(3.14) a, =1+ (% _ 822)1/2 <S<1+ (% _ 812)1/2= b,
or
1) a-i- (-0 <ssi- (-8 - n

We further divide Cj N Cy_, into the image of half squares whose intersection
with [0,1]2 is a proper quadnlateral and those that yield a triangle. We shall
count only the first case. The second can be treated similarly and yields same
order of magnitude bounds on n(8,, 8,, 6). Because of symmetry, we need only
treat quadrilaterals including all of the side S,, for we then simply add a factor
of two to our counting to account for the side S;. Such quadrilaterals can be
parametrized by two points u and v representing, respectively, the points of
intersection of the boundary of the half plane with the sides S, and S, of [0, 1]2.
Then the area of the quadrilateral is given by 1 — 1(u + v). For such a quadri-
lateral to be in the preimage of C{ N Cj,, it thus follows from (3.14) and (3.15)
that

(3.16) 20-b)<u+v<21-a;), fori=1lor2.

For any A(6,3,4, j,, Jo) € Y that contains a set from C;| N C;, we have that
O<u-—j/myg<0% 0<v-—j,/my<6?

for some u and v satisfying (3.16). Thus,

(3.17) 20— b)myg—4<j,+j,<2(1—a;)m,, fori=1lor2.

For fixed a;, b; the number of pairs (Jjj, j,) satisfying (3.17) is no more than
4my[1 + (b; — a;)m,]. Note that via a little algebra

16(6, - @) = (1 - 487)7" = (1 - 483)""" < (8, - )%
Thus,
n(8,,8,,0) < 4my + (8, — 81)1/2m3
< c87% + (3, - 8,)*NJ(6).

Since these calculations are good for (say) 8, — 8, < 1 we can now apply
Theorem 2.2 and the fact that o = } to obtain (3.12) and so complete the proof.
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