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BERNOULLI PERCOLATION ABOVE THRESHOLD:
AN INVASION PERCOLATION ANALYSIS
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Cornell University, Cornell University and University of Arizona

Using the invasion percolation process, we prove the following for Bernoulli
percolation on Z¢ (d > 2): (1) exponential decay of the truncated connectiv-
ity, 7/, = P(x and y belong to the same finite cluster) < exp(—m|lx — yID;
(2) infinite differentiability of P,(p), the infinite cluster density, and of
x’(p), the expected size of finite clusters, as functions of p, the density
of occupied bonds; and (3) upper bounds on the cluster size distribution
tail, P, = P(the cluster of the origin contains exactly n bonds) <
exp(—[c/log n]nt¢~ /%), Such results (without the log n denominator in
(3)) were previously known for d =2 and p > p,, the usual percolation
threshold, or for d > 2 and p close to 1. We establish these results for all
d > 2 when p is above a limit of “slab thresholds,” conjectured to coincide
with p,.

1. Introduction and results. Many of the properties of Bernoulli percola-
tion can be characterized in terms of the behavior of large finite clusters. This
behavior is well understood below the threshold at which the expected cluster
size diverges. In particular, both the (truncated) connectivity function and the
cluster size distribution tail are known to decay exponentially ([10], [13], [3]). On
the other hand, previous results about these quantities above the percolation
threshold ([15], [2], [14]) are quite incomplete. This note represents a moderately
successful attempt to remedy this situation by exploiting the relation between
standard percolation and a recently invented dynamic growth model known as
- invasion percolation ([16], [5], [21], [8]).

In this paper, we will treat standard Bernoulli bond percolation on Z° (4],
[14]), in which the nearest neighbor bonds are independently “occupied” or
“vacant” with probability p or 1 — p. All our results can easily be extended to
Bernoulli site percolation and to lattices other than Z?. It is natural to think of
the hypercubic bond percolation model as a random graph whose vertex set is Z d
and whose edges are the occupied nearest neighbor bonds. The cluster C(x) of x
in Z 9 is then defined as that connected component of this random graph which
contains the vertex x. Its size or volume |C(x)| is the number of occupied bonds
in C(x). For x, y in Z% we then define the connectivity,

(1.1) 1., = P(y € C(x)) = P(x € C(y)),
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and the truncated connectivity,

(1.2) 1/, =P(y € C(x) and |C(x)| < w0).

Other basic quantities of interest are the cluster size distribution,
(1.3) P,=P(|C(0)|]=n); n=0,1,2,...,

the infinite cluster density,

(14) P, = P(lC(0)|= ) =1~ ¥ B,

n=0

the expected cluster size,

(1.5) x = E(|C(0)]),
and the expected size of finite clusters,
(1.6) X' = E(IC(O) |“|C(0)|<oo) = ) nP,.

n=0

Our main results are stated in terms of the above definitions with |C(0)| as the
number of bonds in C(0). They also hold (with suitable changes of constants)
when |C(0)] is replaced by the number of sites in C(0).

There are many possible definitions of a threshold or critical point for p.
These are nontrivial (i.e., not equal to 1 or 0) for every d > 2, but are rigorously
known to coincide only for d = 2 ([12], [14]). Two of these thresholds are

(1.7) 7, = sup{ p: x(p) < o0}
and
- (1.8) p. = sup{p: P,(p) =0}.

It is of course clear that =, < p..
For p in (0, 7,), there exist constants (depending on p) m, and m, in (0, ),
such that

(1.9) exp(—m,|ly — x|)) < 7, =7/, < exp(—my|ly — x|) forx, yinZ?, '
where ||x|| denotes (e.g.) the ; norm of x in Z? and constants ¢, and c, in (0, 00)
such that .

(1.10) exp(—cn) < P, <exp(—c,n) forn=1,2,....

The lower bounds of (1.9)-(1.10) are elementary. The upper bounds were origi-
nally obtained in [10] and then rederived in [13], [3].

A lower bound for 7/ as in (1.9) is easily seen to be valid for any p in (0,1) and
any d. For example, by considering a path from x to y containing exactly
[l — x|| occupied bonds and surrounded by at most (2d — 2) (Jly — x|| + 1) + 2
vacant bonds, one obtains

(1.11) 7, (1-p)*[p( -p)

(2d- 2)] lly—=xIl
A lower bound for P, above threshold is less elementary. It is known ([2]) that
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for p in (p,, 1), there exists c; = c5( p) < oo such that
(1.12) P, > exp(—c;n@~V/?) forn=1,2,...,

a result which was first derived for p close to 1 in [15]. We remark that this
explicitly shows that an upper bound as in (1.10), i.e., an exponential tail for the
cluster size distribution, cannot be valid above p,. Furthermore, the lower bound
(1.12) is valid for a large class of nonindependent percolation models ([2]).

The focus of this paper is on upper bounds complementary to (1.11)-(1.12)
above threshold. Previously such results were known only for d = 2 or for p close
to 1. The upper bound for d = 2 and p > ; (= p, = 7,),

(1.13) P, < exp(—c,n'/?),
was first obtained by Kesten ([14]). For general d, it is known ([15]) that
(1.14) P, < exp(—c n(@-1/4)

for p close to 1. In fact, it is not hard to show ([8]) that (1.14) holds for
p>1—a* where n* is the analogue of =, for the dual percolation model
(bonds for d = 2, plaquettes for d = 3, etc.). An argument similar to that of [8],
but for 7’ rather than P,, yields an exponential upper bound for 7/, as in (1.9)
forp>1—-=* Sincel —w*=1-m,= ;== =p, for d =2 ([18], [19], [12]),
the two-dimensional noncritical behavior of 7, 7/, and P, are all well char-
acterized.

In this paper, we treat dimension d > 3 and derive upper bounds complemen-
tary to (1.11)-(1.12) and some related results above one or the other of two
thresholds introduced in [1], p?;_, and /%, whlch are conjectured to coincide
. with p_ (and 7). To define p2°,_,, first denote by pXy for K=0,1,2,..., the
percolation threshold defined as in a 8) but with Z¢ replaced by Zd 1 x
{0,..., K}; pZ4_, is then the limit of pX, , as K — co. The threshold 5, is
deﬁned similarly as the limit of pc 2, the percolation threshold in (Z")2
{0, ..., K}?~2, where (Z*)? is the positive quadrant of Z2. Our main results are

as follows

THEOREM 1. For d > 2 and p > p2,_,, there exists m = m(p) > 0 such
that ’

(1.15) 17, < exp(—ml||y — x|) forallx,yinZ°.

Our proof of Theorem 1 leads to an inequality relating the critical behavior of
m(p), P,(p), and a quantity characterizing the approach of pX, ; to p¥,_;.
See the remark following the proof of Theorem 5 in Section 2.

As a fairly direct consequence of Theorem 1, we obtain the following result
concerning the smoothness of P_ and x’.

THEOREM 2. For d > 2, both P, and x’ are infinitely differentiable func-
tions of p on (pg4-1,1).
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We note that infinite differentiability of P, _(p) on (p,,1) was known previ-
ously only for d = 2 ([18]), although continuity of P,(p) on (5,1) for d > 2
follows from uniqueness of the infinite cluster ([1]) and the results of [20].

Finally, we obtain upper bounds on P,.

THEOREM 3. For d > 2 and p > pY,, there exists ¢ = c¢(p) > 0 such that
(1.16) P, < exp(—[c/(logn)| n¢=v/4) forn=2,3,....

The extra ingredients needed beyond Theorems 1 and 3 to complete (together
with (1.11)—(1.12)) the characterization of the asymptotic behavior of v’ and P,
above threshold would be a proof that =, = p, = p?°,_, = p, and a replacement
of ¢/(log n) by a somewhat larger “constant.”

The proofs of Theorems 1 and 2 are presented in Section 2 of this paper; that
of Theorem 3 in Section 3. Theorem 2 is a consequence of Theorem 1 and
conventional percolation theory arguments. On the other hand, our proofs of
Theorems 1 and 3 are based on the use of invasion percolation as a tool for
analyzing standard Bernoulli percolation. We complete this section with some
equivalent definitions of invasion percolation and a proposition which gives two
simple but crucial inequalities relating the invasion and standard percolation
models. For a more detailed discussion of invasion percolation, see [8] or [6].

Invasion percolation was introduced and studied numerically as a model of
transport in a random medium in [16], [5], [21]. There are at least three
equivalent definitions of the model ([8]), all of which are useful in obtaining
results about invasion percolation itself and in relating it to standard percola-
tion. These definitions are as follows.

- (i) Deterministic invasion. Denote by B, the set of nearest neighbor bonds

on Z¢ Let {W,: b € B,} be iid. random variables uniformly distributed on
[0, 1]. The invasion percolation process is specified by a sequence & = C, C C, C
C, -+ of random subsets of B, defined as follows. C, is that bond b touching
the origin with the minimum value of W,. For n > 1, C,,, is the union of C,
with the single additional bond b in dC, with the minimum value of W,, where

(1.17) dC, = {b: b shares an endpoint with some b’ in C,} \ C,.

Denote the sequence of bonds absorbed into the growing invaded region by b, so
that C, = {b,,..., b,} for each n. Denote the sequence of W values of these

absorbed bonds by
(1.18) Xn = Wb .

(i) Dynamic growth. This is an algorithmic procedure in which bond values
are assigned to bonds in B, as needed while the invaded region is growing.
Choose some deterministic ordering on B,. Let Y}, Y;,... be ii.d. and uniformly
distributed on [0, 1]. For each of the 2d bonds touching the origin, assign one of
Y,,...,Y,, according to the chosen bond order. The Y; assigned to the bond b is
then defined to be W,. Define C, as above. Note that there are now 2d — 1
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bonds in dC, which do not touch the origin and therefore have not been assigned
values; to each of these bonds b, assign in order one of Yy, ..., Y,4;_; and
define that to be W,. For n > 2 define C, as above and then define W, for each
b€ dC,\ JC,_, by assigning in order one of the next unassigned Y;’s. Define b,
and X, as above. '

(ili) Percolation cluster method. This is an intermediate scheme which is
dynamic in the sense of method (ii) but provides partial advance global informa-
tion in the sense of method (i). Let y be in (0,1) and choose a random
configuration w of occupied bonds from the standard Bernoulli bond percolation
model with density y. Then, as in method (ii), values are assigned dynamically to
bonds as they join the boundary of the invaded region. Here, however, if b is
occupied (in w), its value is assigned uniformly from [0, y], while unoccupied
bonds are assigned values uniformly from [y, 1].

Within any of the above formulations, we define for 0 # x € Z¢, the time T,
at which x is invaded as

(1.19) T = min{n: C, touches x}, ifC, = |J C, touches x,

x n=1

+ o0, otherwise.

Here, C touches x means that x is an endpoint of some b € C. Thus T, < oo if
and only if x is eventually invaded. T}, is defined to be 0.

The following proposition states two simple inequalities which explain why an
. analysis of invasion percolation should be useful in obtaining Theorems 1 and 3.
In the proposition, we specifically display the p dependence of 7’ and P,.

PROPOSITION 4. Ford > 1 and any p in (0,1),
(1.20) 7.(p) < P(T, < 0 and X, > p for somen > T,) forallxin Z°,

(1'21) Pn(p)SBn+l(p)EP(Xn+l>p) fo_rn=0;1,29-°-°

Proor. These inequalities are essentially immediate in the context of the
percolation cluster method (method (iii) above) with y = p. Indeed, to prove
(1.20) it suffices to show that if the invasion process is constructed on any
configuration w which contributes to 7J,(p), then T, <00 and X,, > p for some
n > T,. To this end, suppose that, in the configuration w, C(0) is finite and
contains x. Then the invasion process on w will have {b,,..., b,¢q,} coinciding
with the bonds of C(0), so that T, < |C(0)| < co. Furthermore, b gy ., must be
a vacant bond of w and hence X1 > p. Inequality (1.21) follows in the same
fashion by considering Bernoulli configurations at density p in which |C(0)| = n.

O
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2. Decay of the truncated connectivity.

PROOF OF THEOREM 1. Let z € Z¢ and assume, without loss of generality,
that 2z, > |2,|,...,|24_|. Defining Ty to be the time at which the invaded region
first reaches the hyperplane x; = N, i.e,,

(2.1) Ty =min{T,: x,= N},
we may easily bound the right-hand side of (1.20) by

(2.2) 16.(p) < P(T, < o and X,, > p forsome n > T, ).
Since
(2.3) 2q = max|z| > lzll/d,

Theorem 1 is an immediate consequence of the following:

THEOREM 5. Suppose d > 2 and p > pE, | for some K > 0. Then for
N >0,

(2.4) P(Ty < 0 and X, > p forsomen > Ty) < (1 — p(K, p))

where p(K, p) > 0 is the probability that |C(0)| = oo (i.e., P,) for standard
Bernoulli bond percolation on 29! x {0,..., K}.

N/(K+1)
’

ProoFr. This argument uses a combination of the dynamic growth method
and a variation of the percolation cluster method fitted to percolation in slabs.
Let L;, for j € Z, denote the slab which is a translate by (j — 1)(K + 1) of
z4! X {0,..., K},

(25) L;=29'x {(j-1)(K+1),(j—1)(K+1)+1,..., j(K+1) - 1}.

Let us denote by y; the time at which L; is first invaded and by S; the site at
which it is first invaded; y; = inf{T}: x € L;} and S is the y such that y; =
(defined only if y; < c0). Invasion percolation may be constructed by using the
percolation cluster method (with y = p) within each slab L; by choosing a
configuration w; (for Bernoulli percolation on L;) at the time {; when it is first
needed. The bond variables for bonds between L; and L;,, may be assigned
according to the dynamic growth method, as they are needed. Furthermore, w;
may be chosen by first choosing a configuration w} from a Bernoulli percolatlon
model on Z¢~! X {0,..., K} which is mdependent of all previously chosen w,’s
and all previously assngned bond variables, and then translatmg in Z so that the
origin in Z?~! x (0,..., K} is shifted to S;.

Define Dy p) as the event that in w the cluster C(S)) is infinite. If Ty < oo
for some N > 0, then Yy, < oo for every integer N’ > 0 such that (N’ — 1) X
(K + 1) < N. The largest such integer N satisfies

(2.6) N> N/(K +1).
If Y5 < oo and Dy p) occurs for some j = 1,..., N (say j’), then clearly X, < p
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for every n > y;. and hence
P(Ty, < o0 and X, > p for some n > Ty)

@7 < P(npﬁ < o0 and 6 (Dl(p))c)

By the above construction, conditional on {5 < 00, Dx(p) occurs with prob-
ability p(K, p) independently of the occurrence of D,(p),..., Dy_,(p). Thus

P|lyx < o0 and () (Dj(p))c

Jj=1

(2.8) = (1 - o(K, p))P| ¥5 < o and (il(l%(p)f)

<(1-p(K, p))P|¥5_, < o0 and ﬁl(l’j(p))c)-

Jj=1

Since
(29) P(‘I’l < o0 and (Dl(p))c) = P((Dl(p))c) =1- (K, p),

(2.4) follows inductively from (2.6), (2.7), and (2.8). This completes the proof of
Theorem 5 and hence of Theorem 1. O

REMARK. (2.2), (2.3), and (2.4) combine to give the explicit bound

o(K, p) g
d(K+1)"x" for all x in Z°.

Let us define the inverse correlation length (£(p))~! as the supremum of those
m > 0 such that

(2.10) 75, < (1 - p(K, p))"V @K+ exp(

(2.11) 14, < exp(—m||x|]) for all sufficiently large x.
Then (2.11) implies that

d(K+1)
(2.12) é(p) < KD

Let us next define a length scale K( p), associated with the convergence of pf d-1
to pg?d— 1 by
(2.13) K(p) = min{K: p(K, p) 2 (3)Po(P)},
where I_Jm( p) is the percolation density in the half-space, Z¢~! X {0,1,2,...}.
Then (2.12) yields

d (K(p) +1)

(2.14) p) <5 X0

The inequality (2.14) is nonvacuous only if the length scale K(p) is finite.
This can be verified whenever the infinite cluster in the half-space is unique and
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contains an infinite path within some finite slab, Z¢~! x {0, ..., Ky}, a condition
which is known to hold whenever p > 2, ([1]). Indeed, when this is the case,
the probability that the origin is connected to an infinite path within the slab
Z9'x {0,..., K} converges, as K — oo, to P,.

_ Assuming that p, = p?;_; = Y, and that as p approaches p_ from above, £,
P_, and K exhibit power law behavior in some appropriate sense,

&p)~(p-p)"", Pup)~(p-p)’, and
K(p)~(p-p)",
one may obtain from (2.14) the critical exponent inequality
(2.16) v < B +k.

(2.15)

Proor orF THEOREM 2. We first obtain an estimate on the tail of the finite
cluster distribution as a corollary of Theorem 1. There is a positive constant A,
depending only on d, such that |C(0)| = n implies that some x in Z¢ with
lx|| = hn'/¢ belongs to C(0). Thus, by elementary arguments and (1.15),

P, < P(|C(0)| < o0 and x € C(0) for some x with ||x|| > An'/?)
@17) = X %< XL exp(—mixl)

Izl = Ant/? llxl|= hn/?
< exp(—m;n/¢) forn=0,1,2,...,

where m,(p) > 0 whenever m(p) > 0. As an immediate consequence of (2.17)
one has that all moments of the finite cluster size distribution are finite:

o0
E(|CO)[*Nop<e) = L n*B,< 0 fork=1,2,....
n=0

Furthermore, it follows from (2.10), (2.17) and the monotonicity in p of p(K, p)
that Yn*P, is uniformly convergent away from P q-1; 1., that for any ¢ > 0,

(2.18) lim  sup { Y nkPn(p)] =0, fork=1,2,....
T ® p2plateln=N

The proof will be completed by using standard arguments ([18]) to show that

(2.18) implies infinite differentiability of P, and x, in fact of all moments of the

finite cluster size distribution. Since
o0

(219) P p)=1- L P(p) amd x(p)= Y. nP(p),

n=0 n=0

it suffices by (2.18) to show that P,(p) is infinitely differentiable and that for
each k, there is some H;, and &’ so that

d k
(2.20) l(——) P(p)| < Hn*P(p) forn=0,1,...,

dp

\
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where %’ is independent of p, and H, is uniformly bounded on compact subsets
of (0,1). Now if A denotes a (bond) lattice animal, i.e., a possible configuration of
a finite C(0), |A| denotes the number of bonds in A and |dA| denotes the number
of boundary bonds of A, then

(2'21) Pn(p) = E plAl(l _p)|3AI,
A:|Al=n
and hence P, is smooth. It is straightforward to show that

(-;‘;;)kpmu ~p)"

where H is a polynomial in p~! and (1 — p)~! independent of m and n. Since
for any |A|, |dA| < 2d|A)|, it follows that (2.20) is valid with H, = (2d)*H} and
k’ = k. The proof is now complete. O

(2.22) < Hi(p) [max(m,n)]*p™(1 - p)",

3. Upper bounds on the finite cluster size distribution. Note that as a
consequence of the truncated connectivity bound (1.15) of Theorem 1, we have
already obtained in (2.17) an upper bound on the cluster size distribution. This
upper bound, in view of the lower bound (1.12) and the high density upper bound
(1.14), has the wrong power of n (for d > 2). Our object in this section is to
obtain the upper bound (1.16) of Theorem 3 which has the correct power of n
[but also an unfortunate logarithmic factor which, as explained in Section 1, is
known not to be needed for d = 2 ([14]) or for p close to 1 ([15], [8])].

The proof of Theorem 3 uses an extension of the invasion percolation tech-
nique introduced above in the proof of Theorem 1 together with renormalization
methods such as those of [1] and [7]. It also exploits an elegant inequality of
Loomis and Whitney [17] concerning the volumes of (d — 1)-dimensional projec-
tions of subsets of Z¢ Since this inequality is perfectly suited for use in
percolation and other models of aggregation, we state it as a separate theorem in
order to bring it to the attention of other researchers in the field. We omit the
proof which involves nothing more complicated than Hoélder’s inequality and
applies equally well to subsets of R<.

THEOREM 6 ([17]). Suppose A C Z¢, d > 2. Denote by A; fori=1,...,d,
the (d — 1)-dimensional projection of A perpendicular to coordinate i

3.1) A= {(xy, 024 1) €T (g,0n, Xy yy Koy Xy en s Xg_1) €A

for somexy € Z}.
Denote by |N’| the number of sites in A’. Then

d
(3:2) [TiAd =A%
i=1

We remark that the proof of Theorem 6 shows that equality holds between
the two sides of (3.2) (for finite |A]) if and only if A is a generalized rectangle,
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i.e., if A is the product of its d one-dimensional projections. We further note that
(3.2) implies that

(3.3) max|A,| > |A|€@7V/9
12
which is the only consequence of Theorem 6 that we will use below.

Proor oF THEOREM 3. By (1.21), it suffices to bound P(X, ., > p) by the
right-hand side of (1.16) for p > $%,. By adjusting the constant c, it clearly
suffices to obtain the bound only for large n. At time n, the invaded region C,
contains exactly n bonds and hence touches at least n/d sites in Z¢. Let C, ;
denote the (d — 1)-dimensional projection perpendicular to coordinate i of the
set of sites touched by C,. By (3.3), at least one of these projections contains
(n/d)@=Y/? or more sites. Thus

d
gy 7P =P Xz pand U {6z (/)
34 et

< dP(X,,,>pand [C, 4 = (n/d)"" 7).

The remainder of the proof parallels that of Theorem 5 but with two major
differences. First we replace the slabs, L; (j € Z) of size (0)¥ ! X K used
previously, by pillars, U; (j € Z¢7?) of size (K,)*™* X oo:

(35) U=U,;=({0,...,K,}*"'xZ) +j(K,+1,..., K, + 1,0).

Second, the K, ’s, unlike the previous K, will be chosen to increase with n. This
will be done in such a way as to insure that the following quantity is bounded
away from zero as n — oo:

(3.6) p.(p) = inf P(the cluster C(x) in standard Bernoulli bond
) ¥E€%mo  percolation on U, , contains more than n bonds).

As in the proof of Theorem 5, it is most convenient to consider the invasion
percolation process as constructed by using the percolation cluster method
within each pillar, with the Bernoulli configuration assigned at the time the
pillar is first invaded, and using the dynamic growth method for the bonds not
within a pillar. For each n, we define 6, (=0, ;), for j = 1,2,..., as the time
that the jth pillar is invaded (the slabs are ordered (randomly) in the order of
invasion) and ¢; (= ¢, ;) as the “beachhead” point (on the surface of that jth
pillar) which is invaded at time ;. Thus 6, =0, ¢, = (0,...,0), and the event
0; < n is identical to the event that C, touches at least j distinct pillars. If fewer
than j pillars are eventually invaded, then §; = oo and o; is undefined.

Denote by C(o;) the Bernoulli cluster of o; within the jth pillar. A (lengthy)
moment’s thought yields the following inequality, analogous to (2.7):

. u
(87 P(X,,,>pandf,<n)<P|,<nand ) (lC(oj)| sn) .
j=1

We may use (3.4) together with (3.7) to bound P(X,,, > p), since
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|C,, al = (n/d)“™D implies that C, touches at least (n/d)¢~V/4/(K, + 1)4-!
pillars. Let us define

(3.8) M, = [greatest integer < (n/d) /(K +1)*7"].

Then

Mn
P(X,,,>p) <dP|6y <nand (|C(oj)| < n))

J=1

(3.9)
< dP(ﬂM” < oo and O;(|C(oj)| < n))

The conditional probability that |C(e,,)| < n is not independent of the history
of the percolation process up to time 6,, (as was the analogous slab probability
which led to the first equality of (2.8)) since it depends on the position of the
beachhead point ¢,,, but this conditional probability is bounded above by
1 = p,(p). Thus,

P(GM < o0 and ) (|C(oj)| < n))

Jj=1

0, < oo and dl(|C(oj)| < n))

Jj=1

< (1 -p(p))P

(3.10)
N lloto)] ) -

<(1- pn(p))P(oM—l < o0 and 1

Hence by (1.21) and (3.9), we have the inequality
(311)  Py(p) < B,y(p) = P(X,., > p) < d(1 - p(p)™",

where p,( p) is defined in (3.5)-(3.6) and M, is defined in (3.8). If K, is chosen so
that for some K < oo,

(3.12) K, < K(logn)”“ " forlargen,

then M, will be eventually larger than c¢’n‘?~Y/¢/(log n) for some ¢’ > 0 and
consequently (3.11) will imply (1.16) for some ¢ > 0, providing that

(3.13) liminfp,(p) > 0
n—oo
for such a choice of K,,. The following theorem implies that K, can be chosen so

that (3.12) and (3.13) will be simultaneously satisfied, providing p > p%,, and
hence completes the proof of Theorem 3. O

THEOREM 7. Define
(3.14) U(K)={0,...,K}* ' x {0,...,n+ 1)
and p, (K, x) to be the probability, in standard Bernoulli bond percolation on
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U/ K ) with bond density p, that |C(x)| > n. If d > 3 and p > B, then there
exists a sequence of positive integers, K, such that

(3.15) limsupK,/(log n)* ™ < o0
and
(3.16) inf {p, (K,,x):n2>1,x€ d,U(K,)} >0,

where 3,U(K,) denotes the x,= 0 portion of the boundary of U (K,) per-
pendicular to the x; axis.

PRrOOF. If p > p%,, then there is some N < oo such that p > p),, where
PY, is the percolation threshold in a quadrant layer Ly = (Z *)? x {0,..., N}*2
Define A = (p — ﬁg’z) so that, at bond density p — A there is also percolation
in the quadrant layer L N

First we will show that there exist constants ¢, < o0 and ¢, > 0 (independent
of n) such that if K, > c,(log n)'/¢“~Y, then for n > 1,

(3.17) max {p, ,_a(K,,%): x € 3,U(K,)} = c,.
x

In other words, we will show that, at density p — A, some point x in d,;U(K,,)
has |C(x)| > n with uniformly positive probability (in contrast to (3.16) which
says that, at density p, every point x in d, U (K,) has |C(x)| > n with
uniformly positive probability). By adjusting c,, it clearly suffices to prove (3.17)
for n large. )

To establish (3.17), we will rely on the construction of [1] which shows that
whenever the bond density exceeds ﬁc’j’z, it is possible to construct renormalized
" “block” bond events B} between nearest neighbor “sites” i, j of a rescaled
lattice VV-L-9. Here VN-1:7 is a rotation of L, through 45° parallel to the
x,, X, plane, with squares of side J as “sites” and a nearest neighbor Euclidean
distance |i — j| = V2 L. (See [1] for precise definitions.) The relevant properties
of the renormalized bond events are as follows: (1) The density of block bonds
may be made arbitrarily large in the sense that P(B}"5”/) —» 1 as L and o tend
to infinity in an appropriate manner. (2) The bond events are transitive in the
sense that if both B"%Y and BJ:j57 occur, then the sites i and & are
connected by a path of occupied bonds in L ~- (3) Although the bond events are
not entirely independent, the only dependence is due to bond events that share a
vertex. The relevance of this construction for our purposes is that whenever the
bond density exceeds 1’52’2, it is possible to estimate the probability of certain
events by choosing the scales L and J of the lattice V- %+ so that P(B}"}7) is
in a Peierls regime and doing estimates on (say) 2d independent sublattices.

Let 8 > 0 and consider the system at density p — A. Choose L and ¢ so that
(3.18) 1— P(BYj9) < e 2d0atd,

where A, is the Peierls constant for the numbers of contours composed of
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(d — 1) cells passing through a given (d — 2) cell. Take n much larger than L.
Let €, denote the event of a crossing of the box U,(K,) by occupied bonds from
the point x € d,U,(K,) to some point on the opposite (i.e., x;="n + 1)
boundary, so that N _%° is the event that there is no left-right crossing of
U,(K,). A straightforward counting argument shows that

(3.19) P(ﬂ‘f;) < (const)[2(d — 1)nK 22| e~ 853",

(See [7], Theorem 4.1b and use the additional factor of 2d in the exponent in
(3.18) to guarantee an independent sublattice estimate.) Thus if

(3.20) n < eki'/2,

then P(N,%°) < e ¥ for some 8’ > 0. However, by the Harris-FKG in-
equality ([11], [9]), P(N ,€?) > [1,P(%Y), which implies that

(3.21) mfxl-';,_A(%x) >1-e%>0.

Since the event %, insures that |C(x)| > n, this proves the claim (3.17).

Next, we use (3.17) to obtain a lower bound on min , P,(%,). Denote by :EA the
maximizing point of (3.17) (or (3.21)) and consider any x € d,U,(K,). Let G, 3,
denote the event that x and X, are connected by a path of occupied bonds
within U (K ). Clearly, if the event G, ; N €;, occurs, then &, occurs; hence, it
suffices to bound By (G, ;, N %;,) below. In order to do this, we will bound the
probability that G, ; N €, “almost occurs” at density p — A, and then use a
lemma of [1] which allows us to relate this to the probability that G, ;, N ;,
actually occurs at density p. The lemma is as follows:

Let A be an event which is nondecreasing in the sense of FKG, and let
EM(A) D A denote that set of configurations in which the event A occurs if the
configuration is altered on no more than M bonds. Then

(3.22) P,(A) = eMP,_(EM(4)).
We will also use the easily verified fact that for any nondecreasing events, A
and B,
(3.23) EM*My(A A B) ¢ EM(A) N EM(B).
We have ‘
P(%)>P( X, % %A)

(3.24) > QE-Np,_(EAIN(G, . 0 %,))

> A2(d—2)2NPp_A(E2(d—2)2N(G

X, Xp

)) m;?XPP—A((gx)'

E

Hence it suffices to bound

P, Ex-N(c, ).
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F1c. 1. Connection of x to x, within Ty(K,,).

To do this, we first note that if each of the points x and X, is connected to the
center x, of d,U(K,) within U(K,), then G, ; occurs. Thus

P, o BTN, ) = B,y BX4'N(G, NG, 2,))

> [n}cinpp—A(E(d—WN(Gx,xo))r,

where x € d,U,(K,). Thus we must show that, with uniformly positive probabil-
ity, any point in d,U,(K,) can be connected to x, within U,(K ) (by altering at
most (d — 2)2N bonds). In fact, we will show that this occurs in the “leftmost”
N layer (along the x; axis) of U (K,):

(3.26) T(K,) = {0,..., K,}* ' x {0,..., N}.

For simplicity, let us first consider d = 3, for which Ty(K,) is simply a
K, X K, X N rectangle, the x; =0 plane of which is the square boundary
d,U(K,) of size K, X K,. Take x € d,U,(K,) and assume, without loss of
generality, that x lies in the “upper right” quadrant of U,(K,) (see Figure 1).

For the remainder of this argument, it is convenient to consider Ty (K,) as
being embedded in the N layer Ly = Z2% X {0,..., N}¥~2. Let D* (D") denote
the event that x, is connected to infinity within the upper left (lower right)
quadrant of the N layer centered at x,. Let D, denote the event that x is
connected to infinity within the lower left quadrant of an N layer with x,
translated to x. If D* N D~ N D, occurs, the two-dimensional projection of the
path from x must intersect the projection of one of the paths from x,, so that
the actual paths must be within a distance N of each other. Thus, by the
Harris-FKG inequality .

(327) P,_J(E™G, ,,)) = P,_A(D'NDND,) = [BY¥p - 4)]’ ind=3,

where Po’,f’ »4(p — A) is the percolation probability for the quadrant N layer L
in dimension d.

The construction is somewhat more intricate for d > 3. Now we can regard
Ty(K,) as consisting of N + 1 (d — 1)-hypercubes, each of size KZ~!, the

(3.25)
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“leftmost” of which (along the x, axis) is the boundary d,U,(K,). The object is
to show that any point within d,U,(K,) misses being connected to the center
point x, by at most (d — 2)2N bonds. Thus consider the point % =
(%1, Bgyeooy £g_1,0) € UK ,). Let us take a “slice” of Ty(K,) of size K2 X
N4-2, which contains the point £,

(3.28) SNHK,)={x:0<x;x, < K,; &~ N<x3<%g5...;

Zg1—-N<xy ,<%;_ ;0<x;<N}.

In this expression, we have assumed, without loss of generality, that £, > N for
k =3,...,d — 1. We can repeat the previous layer construction (see Flgure 1)in
an attempt to connect £ to the central point of 3,S%%(K,). It again costs no
more than [ Y- 9(p — A)]? to insure that the two-dimensional projections of the
paths intersect. In this case, however, the actual paths must be within a distance
(d — 2)N (= maximum distance between two points in a cube of size N¢~2),

In order to “connect” the central point of 9,S%%(K,) to x,, we must repeat
this argument on d — 3 additional slices Sj“(K,), orthogonal to the slice
3,Sv*%(K,), each time “connecting” the central point of the boundary of one
slice to that of the next slice. Each such “connection” costs [PN 4p— A)]® and
is guaranteed to miss by no more than (d — 2)N bonds. Thus, at a total cost of
no more than [ PY-¢(p — A)]*¢~2, we can insure a connection between x, and £
which is missing a maximum of (d 2)[(d — 2)N] bonds. We have

(3.29) mian—A(E(d_2)2N(Gx,xo)) > [BY4(p - 4)]*¢?,

which, along with (3.21), (3.24), and (3.25), provides a uniform lower bound on
min, P (%) and thus completes the theorem. O
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Note added in proof. Although it does not directly affect our results, in this
paper we distinguished between the critical points p, ‘and =, [cf. (1.7)-(1.8)]. It
has now been proved that p, = =, in all dimensions [see M. V. Menshikov, Dokl.
Akad. Nauk. SSSR 288 1308- 1311 (1986) (in Russ1an), M. V. Menshikov, S. A.
Molchanov and A. F. Sidorenko, Itogi Nauki i Tekhniki (Series of Probability
Theory, Mathematical Statistics, Theoretical Cybernetics) 24 53-110 (1986) (in
Russian); M. Aizenman and D. J. Barsky, Comm. Math. Phys. 108 489-526
(1987)]. Of more direct relevance is a recent proof that the quantity 7, [cf. (1.2)]
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has a well-defined rate of exponential decay: —1/¢’(p) = lim,,_, ,n~'log 74 (),
for which our m( p) in Theorem 1 provides a nontrivial bound (see J. T. Chayes,
L. Chayes, G. R. Grimmett, H. Kesten and R. H. Schonmann, in preparation).
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