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ON THE DISTRIBUTIONS OF L, NORMS OF WEIGHTED
UNIFORM EMPIRICAL AND QUANTILE PROCESSES

By MIKLOs CsorGO! AND LaJos HORVATH?

Carleton University and Szeged University

The asymptotic distributions of L, functionals of weighted uniform
quantile and empirical processes are studied. The asymptotic laws obtained
are represented in terms of Gaussian and Poisson integrals.

1. Introduction. Let U,, U,,... be independent uniform-(0, 1) random vari-
ables (r.v.’s) with the corresponding order statistics U, , < U, , < -+ < U, ,of
the first n of these, and define their uniform empirical quantile function by
U,0) =0,

U(s)=U,,, (k-1)/n<s<k/n, k=1,...,n,
and the uniform quantile process
u,(s)=n"?(s—-U(s)), 0O0<s<l.

Define also the uniform empirical distribution function

0, U..>s,
En(s)= k/n, Uk,nSS<Uk+l,n7 k=1,--.,n_1,
1, U,.<s,

and the uniform empirical process
eu(s) = n(E,(s) —s), 0<s<l.

We assume, without loss of generality, that the underlying probability space
(R, &, P) is so rich that it accomodates all the r.v.’s and processes introduced so
far and also later on.

It was shown in M. Cso6rgd, S. Csorg6, Horvath and Mason (1986) that the
optimal Chibisov (1964)~O’Reilly (1974) weak convergence of e, and u, in
weighted metrics does not even imply the convergence in distribution of the
supremum of u, and e, for all possible weight functions. Hence the asymptotic
behaviour of different functionals of these processes requires separate investiga-
tions. In this spirit the notion of weighted supremum convergence of the uniform
empirical and quantile processes in terms of the Erdés—Feller-Kolmogorov-
Petrovski upper class functions for Brownian motion was introduced in M.
Csorgb, S. Csorg6d, Horvath and Mason (1986). A complete characterization of
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the asymptotic behaviour of weighted supremum functions of u, and e, can be
found in Mason (1983, 1985), M. Cs6rgé and Horvath (1985a), M. Csorgo,
Horvath and Steinebach (1987) and M. Csorg6é and Mason (1985). When giving a
complete characterization of the asymptotic behavior of weighted supremum
functionals of the general (not necessarily uniform) quantile process, M. Csorg6
and Horvath (1985b) and Horvath (1987) showed that the limit laws obtained
describing the tail behaviour of these functionals are governed by the three
domains of attraction of extreme value distributions.

In this paper we study the asymptotics of the L, norms, 1 <p < oo, of
weighted u, and e, processes. The asymptotic distribution of functionals of the
form [|u,(s)IP/q(s)ds and [|e,(s)’/q(s)ds will be studied with various limits
of integration. Our results are also new for L, and L,. All in all they amount to
dealing with weight functions that are the boundary of what is possible in
forming Cramér-von Mises type L,-weighted statistics for empirical distribu-
tions and quantiles and their L, analogs.

Due to symmetry of the processes e, and u,, our results will be proven only
on the intervals [1/(n + 1),1/2], [1/(rn + 1), k,/n] and [%,/n,1/2]. It will be
clear that they can be also formulated in the following forms:

a(n) [ 1Z,(00P/a(¢) dt - by(n) =g £,
1/(n+1)
ax(m) [""\2, (P /a(£) dt = i) =5 &

aa(n).[;l/;:+l)lzn(t)lp/0(t) dt — by(n) -5 &,

as n — oo, where Z, is either e, or u,, a;(n), b,(n), i = 1,2,3, are normalizing
sequences, and the £; are nondegenerate r.v.’s, i = 1,2,3. The various limits of
integration are needed to show which parts of the random sample will determine
the asymptotic behaviour of weighted L, norms of u, and e,. Intuitively, it is
clear that extreme value order statistics will govern the limits in the heavy
weighted case, while the middle of the random sample will dominate in the light
weighted case. We will usually assume that {&,} and {m,} are sequences of
positive numbers such that as n — oo,

(1.1) 1<k,<n, k,— oo,
(1.2) k,/n— 0,

and

(1.3) 15m,,$n, n—m,— o,
(1.4) m,/n - 1.

Assuming (1.1)-(1.4), the independence of the r.v.’s £;, £, and £, can be discussed
on the basis of a theorem of Rossberg (1967) as it was done by M. Csorgd and
Mason (1985) in the sup-norm case. Hence we will omit these details here. The
methodology of the present paper was applied to similar studies of the general
quantile process in M. Cs6rg6é and Horvath (1985b).
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Our results are stated in Section 2. Section 3 examines preliminaries. In
Section 4 we prove our L, results.

2. Results. Let g be a positive function on (0,1/2], i.e,, inf; _, _, »q(s) > 0
for each 0 < § < 1/2. The process {B(s); 0 < s < 1} denotes a Brownian bridge
and {W(s); 0 < s < oo} stands for a standard Wiener process throughout.

THEOREM 2.1. Let q be a positive function on (0,1/2], 1 <p < o0, and
assume

(2.1) f1/2s1’/2/q(s) ds < oo.
0
Then with {k,} as in (1.1) and (1.2) we have, as n — oo,
(22) [ ws)/a(s) ds > [1B(s)P/a(s) ds,
kn/n 0

(2.9) [ Ju(s)P/a(s) ds 50,

1/(n+1)
and
(24) [597 1e(s)P/a(s) ds =5 [1B(s)P/a(s) ds,

Un(kn/n) 0

(25 U8 e (5 /q(s) ds =g 0.

U.(1/n)

REMARK 2.1. Combining (2.2) and (2.3) we obtain convergence in distribution
with limits of integration from 1/(n + 1) to 1/2 immediately. Now we show that

(26) [ us)e/a(s) ds »o [V1B(s)P/a(s) ds,
0 0
if and only if
(2.7) fs(l/q(s)) ds < o0, for some § > 0.
0 .
We have

L as)e/a(s) ds
> no [00(U, , )" /q(s) ds I(U, < 1/(n + 1))
0
> np/zful'"ﬂ(ul’"/z)”/q(s) dsI(U, , < 1/(n+ 1)),
0

where I(A) is the indicator function of the set A. Hence it follows that if (2.7)
does not hold, then

(2.8) lim ian{ [
n—oo 0

1/(n+1)

lu(s)/a(s) ds = oo} >1-e L.
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The sufficiency part is immediate, since

[ s )e/ats) ds = 0,(1) [

1/(n+1)

(l/q(S)) ds = OP(I)’
by (2.7).

REMARK 2.2. Assuming (2.1) we have
L[5 eI /a(s) ds = ne2 [ 57 /g(s) ds
= (nl,)* [*"s07 /q(s) ds = 0y(1),
and hence by (2.4), (2.5) and the latter line we get
L7 e )P /a(s) ds =g [1B(s)P/a(s) ds.
We note also that condition (2.1) is equivalent to
E[1B(s)P/a(s) ds < o,

which implies that the asymptotic r.v. of Theorem 2.1 is well defined. Shepp
(1966) showed that if p = 2, then (2.1) is equivalent to the almost sure finiteness
of [3/2B%(s)/q(s) ds.

From now on we assume that the weight function g is regularly varying at
zero. This means that g(s) = s’L(s), —o0 < » < oo, where L is a slowly varying
function, i.e., L(s) is positive on (0,1,/2], Lebesgue measurable and

(2.9) liiréL(ks)/L(s) =1, forallA > 0.

We note that condition (2.1) holds true for all g, regularly varying at zero with
exponent » <1 + p/2.

THEOREM 2.2. Let L be slowly varying at zero and {k,} be as in (1.1) and
12). If —o <v <1+ p/2, then as n = o0,

k \'~@®2+) (k. n | (s)P
(_1) L(_)fkn/ (o)

(2.10) n n )1 /n+1) $"L(s)
~g [[s7IW(s)P ds,
0
and
k,\""(®/2*) 1k ) len(s)IP
(_ﬁ) L(_n)fvn(kn/ )| V( i
(2.11) n n [Jya/m  s"L(s)

>, fls"’|W(s)|p ds.
0
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REMARK 2.3. If —o0 <» <1, then

(2.12) (%)P_(pan(-k—'f)

n

fkn/n Iun(s)lp

1
oLty © e /0 s~ | W(s)P ds.

Ifl<v<p/2+1and

(2.13) fsl/(s”L(s))ds = o0, forsome § >0,
0
then
Ry \" =P Ry \ /(S
2.14) liminfP{ |2 Zn) e _ Y
(2.14) h,fr_l,l:.} {(n) L(n)[) s"L(s)ds 00}21 e

We also note that when 1 <» <p/2 + 1, then (2.13) holds for any slowly
varying function L.

REMARK 24. If —o0 <» <p/2 + 1, then

k, \"P2ED (RN Uk, /n)l€n(S)P 1 ‘
'n\Fn, —-v 14
(2.15) ( n ) L( n )fo s"L(s) * o /08 IWis)f s

The theorems and remarks introduced thus far are concerned with light weight
functions. In M. Cs6rgé and Horvath (1985a) we pointed out that there is a
distinct borderline between light and heavy weights in the supremum norm. In
the latter case the weight function (s(1 — s))/2, the standard deviation of a
Brownian bridge, is the separating line, first studied by Eicker (1979) and
Jaeschke (1979). This weight function cannot be replaced by s/2L(s), as it was
noted in Remark 2.3 of M. Cs6rg6é and Horvath (1985a). The next theorem is an
L -approximations version of the Eicker-Jaeschke theorems.

THEOREM 2.3. As n — oo we have

n/(n+1) ||un(3)|p - |Bn(s)|p|

2.16 ds = Op(1),
(2.16) ',;/(n+1) s(1—s)?**! (1)
and

1-A/(n+1) | len($)P = |B,(s)P|
2.17 ds = Op(1), x>0,
(2.17) f>\/(n+1) s(1 = s)P**! o(1), fora

e (s)P —|B(s)?

U]’,, 8(1 _ s)p/2+1

where the { B,} are Brownian bridges as in Theorem 3.1.

This theorem enables one to study the corresponding L, norm of a Brownian
bridge for the sake of deducing limit theorems for the L, norms of weighted
empirical processes. In particular, we obtain the following interesting central
limit theorems.
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COROLLARY 2.1. Let n/(n+ 1) <k, <m,<n?/(n+1), and assume that
asn —> o,
m, n—k,

(2.19) - 0.

k, n—-m,
Then we have

oD log| ™2 " N e N N ) ds
B\ %, n-m, korn (s(1 — 5))P/%*1
(2.20)
Cmlog| T 2R N0,1)
m o8 k,n—m, 2 Y

where D = D(p) is a positive constant, m = m(p) = E|N(0,1)|" and N(0,1)
stands for the standard normal r.v.

COROLLARY 2.2. Let 0 < k, < m, < n and assume (2.19). Then, with k} =
max(k,,1) and m* = min(m,, n — 1), we have

2D log| ™n 1 ka T vmamy el
kY n—my Upka/m) (s(1 = 8))7*"

(2.21) mt n— k>

_mlog(k—: — m* )} g N(O, 1),

n

where D = D(p), m = m(p) and N(0,1) are as in Corollary 2.1.

We note, for example, that if p =2, then D = D(2) =2 and, of course,
m=m?2)=1.

Next we study the L, convergence of u, and e, with heavier weights
[p/2 +1 < v < oo in our weight functions of the form s”L(s)]. The first such
result is concerned with integrating over the middle part of the unit interval for
the empirical processes involved. This, in turn, will result in Gaussian asymptotic
behaviour.

THEOREM 2.4. Let L be slowly varying at zero and {k,} be as in (1.1) and
1.2). If p/2 +1 < v < o0, then as n = o,

k v—(p/2+1) k ul(s 4
(2.22) (_") L(_ﬁ)fl/zi)_l_ ds -, fls"‘(p+2)|W(s)|p ds,
n ()

n g, ns"L(s)
ko \v—(p/2+D) k U,1,/2) le (s)lp 1
2.23) [~ Bn) (U AN P+ P ds.
(2.23) ( n ) L( n )/U,,(k,./n) sL(s) © 72 Ls e

We note that in all of our results so far U,(t) can be replaced by ¢ in the limits
of integration.
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Let

[x], if x is not an integer,

l[x]]={

We also introduce the partial sums S, S,,... of independent exponential r.v.’s
with expectation 1 and the corresponding Poisson process

[x] -1, ifxisaninteger.

(2.24) N(t) = f iI((S;<t<S;,,]), 0<t<oo,

i=1
where I(A) is the indicator function of set A.
When integrating over the tail parts of the unit interval, the L, behaviour of
u, and e, ceases to be Gaussian in the limit in the heavy weighted case.

THEOREM 2.5. Let L be slowly varying at zero and {k,} be as in (1.1) and
1.2). If p/2+1 < v < o0, then as n = 0,

(225) o207 L/m) [ (WP /(°L($) ds s [T Sy~ of

for all A > 0.

It is clear from the form of this limiting distribution that A cannot be replaced
by A, — 0.

THEOREM 2.6. Let L be slowly varying at zero and {k,} be as in (1.1) and
12). If p/2+1<v< o0, thenasn > o,

(226)  n@V7L(1/m) [ e ()P /(8L (s)) ~ [N - o,
Un(1/n) 5
and for all X > 0,

n#A VL) [ f"““"/"ﬁe,,(s)w(sm(s)) ds

(2.27) .

—>9f t~"IN(t) — ¢” dt.
A

REMARK 25. If p/2+ 1 <v<p+1,then

e (1/m) [ Mo (5)P/(sL(s)) ds
(2.28) w ‘
=5 [EING) - o dr,

and if p + 1 < » < o0, then
(p/2+1)—» Uy (k,/n) D »
(2.29) n L(1/n) fo le.(8)1P/(s"L(s)) ds -4 .

In (2.26)—(2.29) we can replace U (k,/n) by k,/n.



L, NORMS OF WEIGHTED EMPIRICAL PROCESSES 149

3. Tools and background. One of the main tools in this paper is the
following weighted approximation of M. Csorg6, S. Csorg6, Horvath and Mason
(1986).

THEOREM 3.1. We can define a sequence of Brownian bridges {B,(s);
0 <s<1)} such thatasn > o,

(3.1) sup n°lu,(s) = B,(s)/(s(1 = 5))"* ™ = 04(1),

1/(n+l)<s<n/(n+1)
for every 0 < a < 1/2, and for all A > 0,

(3.2) sup nfle,(s) = B,(s)I/(s(1 — 8))"* " = 04(1),

A(n+1)<s<1-A/(n+1)
for every 0 < B < 1/4.

For a simple proof of Theorem 3.1 we refer to M. Csorgé and Horvath (1986)

and Mason (1986).
The next useful results are due to Wellner (1978).

THEOREM 3.2. For any 0 < ¢ <1 there exist positive constants A, and A,
such that we have for all n,

(3.3) PAs<Uf(s) <Ays;1/(n+1)<s<n/(n+1)} >1—¢
and
(3.4) PAS<E,(s)<A5;0<s<1}>1-c¢.

Now using the well-known representation of uniform order statistics in terms
of partial sums S, of exponential r.v.’s

(3.5) (U s 1<k<n}=45(8,/S,,;1<k<n}

and the weak law of large numbers we easily get the following theorem of
Smirnov (1949).

THEOREM 3.3. Let {k,} be as in (1.1). Then as n — oo,
(n/kn)Un(kn/n) -p 1.

Let {V(t); — o0 < t < 00} be the Ornstein—Uhlenbeck process with EV(¢) = 0
and covariance function exp(— |t — s|). This process is a stationary Gaussian
Markov process. We need the following central limit theorem.

THEOREM 34. As T — oo,
(3.6) (DT)‘I”(fOTw(t)th— mT) -, N(0,1),
where D = D( p) is a positive constant,
m=m(p) = (2m) " [~ |xpexp(~/2) d,

and N(0,1) stands for the standard normal r.v.
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A long elementary calculation gives D = D(2) = 2.

Mandl (1968) proved (3.6) when the starting point of V is fixed. Following the
proof of Theorem 9 on page 94 in Mandl (1968) we obtain (3.6).

Additional tools needed in this paper are the results for regularly varying
functions. The following results are from de Haan (1975) (cf. Corollary 1.2.1 and
Theorem 1.2.1).

THEOREM 3.5. Let L be a slowly varying function at zero. Then

3.7 i L(S) 1[=0 0 b
. — 1= <a<b<oo.
(3.7) sli% azl)]\gb L(Xs) ’ ¢= ”
Also, if v < 2, then
$*77/L(s)

(3.8) K, (s)= UL 2-vy, slo,
and if [21/(tL(t))dt < oo for some 8 > 0, then

1/L(s
(3.9) /L(s)

510 a1/ (eL(2)) dt

The results of the next theorem were obtained by M. Cs6rgd and Horvath
(1985a).

THEOREM 3.6. Let L be a slowly varying function at zero and {k,} as in
(1.1) and (1.2). Then for all p. > 0, ‘as n - o, we have

(3.10) k" sup L(k,/n)/L(s) = 0(1),
1/(n+1)<s<k,/n
(8.11) sup s*L(k,/n)/L(sk,/n) = 0(1),
1/k,<s<1
(3.12) max i"*L(1/n)/L(i/n) = O(1),
(3.13) (k,/n)*  sup L(k,/n)/(s*L(s)) = 0(Q1),
k,/n<s<1/2
and
(3.14) sup (ns)™™ LQ/n) —1|=o0(1)
' 1/(n+1)<s<k,/n L(s) '
4. Proofs.

ProoF oF THEOREM 2.1. Given any 0 < & < 1/2, by (3.1) we get
1/2
(4.1) [ lua(s)P = 1B(s)P|/a(s) ds = o,(1).
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By Markov’s inequality we obtain

(4.2) lim lim‘supP{ [ BJs)r/a(s)ds > a} o,
1/(n+1)

eld po

for all & > 0. Now using (3.1) with a = 0, we have

[ juas)P/a(s) ds
1/(n+1)
<27[*  lu,(s) - B(s)P/a(s) ds
1/(n+1)
(4.3) .
+27 [ |B,(s)P/q(s)ds
1/(n+1)
= 041) [s*%/q(s)ds + 2 [ |B,(s)/a(s)ds.
0 1/(n+1) ‘
Therefore ’
(4.4) lim limsupP{ / © u(s)P/a(s) ds > 3} =0,
el po 1/(n+1)

for all § > 0. Hence (2.2) and (2.3) are proven. The proofs of (2.4) and (2.5) are
similar, and hence are omitted. O

Proor or THEOREM 2.2. For later use we note that if p > 1, then we have
(4.5) llal? — bIP| < p22~'|a — b? + p2P~1|b]P " |a — b|.
Using the Markov inequality, (3.8), and assuming1 + ¢/2 — 7> 0,7 <1 + /2,

we obtain
k,\7"@2+D (. LIW(8)e
limsupP{(—-’i) L(__)fk,./ |W(e)| dt>K}
n 0

o 00 n t'L(¢t)
m(q) . kn 7—(q/2+1) kn ky/n t9/2-
=K nlln:o(n) L(n)fo L(¢)dt
1+q/2 -1
for all K > 0. Consequently,
kn T—(gq/2+1) kn n /nlw(t)|q
. —_ — 1" dt=0,1),
(46) F) R e - ow
and a similar argument also yields
kn T—(gq/2+1) kn £ /nIB(t)lq
4.7 — — " t = Op(1).
(47 2] T ey e o

Let 0 < a <1/2 so that » < p/2 + 1 — pa. First using (4.5) and then (3.1), we
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obtain
k,\"~®/24) (k- n |lua(s)P = |B(s)P
(_ﬁ) L(—)/k"/ I24,( )I” Bs)]
n 1/(n+1) s’L(s)

2p_1(kn)”“"/2“’L(kn) [ lu,(5) = B,(s)P
S —— —
P n 1/(n+1  8"L(s)

k,\*2/2+D [k w IB(s)PYu,(s) - B,
o ) ) e AP ) 2B
(4.8) n 1

J(n+1) s”L(s)

v=(p/2+1) b §P/EPa
= 0px(1 nPx|" —ds
o )( ) ( ) /1/<n+1) L(s)

v=(p/2+D) [P . B(s)"
(—ﬁ)n_“fk"/ (s) ds
1

k,
+0P(1)( ) n /(n+1) 8" 2*2L(s)
= OP(]-):

where we have used (3.10) with p = pa/2, and (4.7). Thus, in order to prove
(2.10) it is enough to verify

k,\"~®2*D (ko \ cpm |B(S)P 1
—_ _ n -V 4
(4.9) ( - ) L( - )fl/(,,ﬂ)s.”L(s) ds—@j;s |W(s)P ds.

First we observe that (4.5), (3.8) and (4.6) imply
(ﬁ)”“m“’L(&z) [rn AW W) - sy
n 1/(n+1) s"L(s)
v—(p/2+1) ( k )

Sp2p—1(_,i'i
n

k,\"~ @20k, koyn |W(s)P™!
+p2P-1 L{— 1w " ——ds
P ( ) ( n )l ( )|f1/<n+1> s"7'L(s)

n
n

~—

WP " s772/L(s) ds

(4.10) 1/(n

= 0p(1).
Integrating, we obtain

k \»—(p/2+D) [} . |W(s)P
( n) L( n)/kn/ |W(s)| ds
1

n /(n+1) 8"L(s)

(4.11)
(kn)_p/2L(kn)/‘1 |W(tkn/n)|p
n (/ky)n/(n+1)) 'L(thk,/n)
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Let 0 < & < 1. Then by (8.11) with 0 < p < p/2 + 1 — » we have

k,\7P2 (k,\ rs sk, sk,
R R T L e S
n n Y1 /k,)(n/(n+1)) n n

k )‘P/2/3|W(sk"/n)|pds

_r
n Sv+u
s|W(s)P

Sv+y

(4.12) < 0(1)(

0

ds.

=9 0(1)f

0

Consequently, by our choice of u and », we have as 8 | 0,
(4.13) [AW(s)p /s # ds > p 0.

0
Utilizing (3.7), it follows that

(&) 2 [

(4.14) n
= (1 + 0(1)) fs s~ W(s)PP ds.
Hence, by
(4.15) {B(s);0<s<1} =5 {W(s) —sW(1); 0 <s<1}

and (4.10)—(4.14), we have (4.9), which completes the proof of (2.10).
Using (3.2) and (3.3) it can be shown, similarly to (4.8), that

b o\*—(p/2+D [} w lle(s)P = |B.(s)P
(4.16) (—) L(_zz)fvn(knmll ()|” B, (s)"|
n n |Ju,a/n) s"L(s)

Thus (2.11) will be proved provided we can show
k \v—(p/2+D) [} | B,(8)P
(_n) L(_ﬂ)/Un(kn/)l ( )l ds

n n Jlyam  s"L(s)

(4.17)
-, j;ls“"|W(s)|" ds.

On account of (4.9) we will have (4.17) if we show

(4.18) (ﬁ)”_(p/“l)L(ﬁ)/Un(l/n)vv(nu)IBVn(s)|p ds 5,0
n Jlua/myarsn+ry $°L(s)
and
ko \*—(p/2+1) o m|B.(8)P
(4.19) (_z) Uptlen/m)V Cln/ )| ”n( ¥ g0
n Uy(kn/m) A(kpy/n) S"L(8)

ds = 0p(1).
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For every A > 1 we have

. kn v—(p/2+1) }\/n|B(s)|p
w (e S o

by (3.8) and (3.6). Now using Markov’s inequality and Theorem 3.2, we obtain
(4.18). Let 0 < § < 1. Combining (4.15), (4.10) and (3.7), we get

(kn)v—(P/2+1)L( kn)/(1+8)k,,/n|B(3)|p
(~8)k,/n 8"L(s)

(4.21) "

Sy fl+ss"’|W(s)|p ds.
1-8
As 8 |0, then
(4.22) [ sw(s)P ds -,
8

Consequently, Theorem 3.3, (4.21) and (4.22) result in (4.19). This also completes
the proof of (2.11). O

Proor oF REMARK 2.3. Using (3.8) and (3.10) we obtain

bk \?—(p/2+1) k n u,(s P
(.__’ﬁ) L(—ﬁ)fl/( +1)| ( )l ds
0

n n s”L(s)
(4.23) k \?»"(P/2+D 1/(n+1)
_n _"lop,p/2 p -p
s(n) L(n)zn fo "L(s) ds{(U, ,)" + n"?}
= OP(]‘)’

Hence we get (2.12) from (2.10). The statement of (2.14) follows by (2.8). O

Proor oF REMARK 2.4. We have by (3.8), (3.3) and (3.10) that
k v—(p/2+1) k U.(1/n) sP?
_r LI = ine2 ™ ——ds
(n) (n )” L
4.24 k,\?~(P/2%D _y41 L(k,/n
o B O”(I)(*) wora(u, ) L/
n ‘ L(U,,,)
= 0p(1),
and now (2.11) implies (2.15). O
ProOOF OF THEOREM 2.3. First we note that it follows by Markov’s inequality
that

(428)  nme [T B ()P (s0 = )T ds = 0,(1),
n
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for a > 0. Using (4.5) and (3.1) with a > 0 we get immediately

[y |l (8)IP — 1B, (s)P°|
1

s+ (s(1 = 5))P2!

— P
5p2P-1fln/(n+1)|un(s) B,(s)i

(4.26) 1y (s(1 - )P
n/n+ 1) |Un(8) — By(8) - |By(s)IP?
+p2et [ /1) |Ua(8) = By(s)] |/2+£ o
1/(n+1) (s(1 —8))”
= 0x(1).
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Hence (2.16) is proven. In a similar way we get (2.17) from (3.2). Now (2.17) and

Theorem 3.2 imply (2.18). O

PROOF OF COROLLARY 2.1. It is easy to check that
log((b/a)1~a)/(1-b))/2

(21) [IB(s)r/(s(1 ~ )" ds =2 [ V(o) de,

for all 0 < a, b < 1. Hence Theorems 2.3 and 3.4 imply (2.20). O

PrOOF OF COROLLARY 2.2. Letl <r, <n —n/(n + 1). Using Theorems 3.2

and 3.3, routine calculations yield

r B,(t)P
fUn(rn/n)V(n/n) | ( )I — di = Op(l),
Unra/myn(r/my (81 — t))P
e, (t)P
1 le,(£)l dt = 0,(1)

U (81 = £))P?H!

and

o len(P
fou, W_‘ dt = 0x(1).

Then (2.21) follows immediately from (2.18) and Theorem 3.4. O

PrOOF OF THEOREM 2.4. By (3.13) we get with any a > 0,

bk \v—(p/2+1) B (s)P !
(4.28) lim (_;n) ( ) aEf1/2 I n( )l ds = 0.

"/nSV 1/2+aL(s)

n—oo

Hence by Markov’s inequality we have, as n = oo,

b o\v—(0/2+1) [ B B, (s)P!
( n) L(_n)n_af1/2 | ()I

4.29 — — o ds =o0p(1).
( ) n k,,/nS"_l/2+aL(8) OP( )
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Now applying (4.5), (3.1) with & > 0 and (3.13) with p = a, we obtain
(k,,)”‘“’”“’L( kn) % [1a(s)P = 1B,(s)P°|
ko s’L(s)

n
k,\"~P2*D (R 12 |u,(s) = B,(s)P
_r Ll -2 |p2Pr-1 n n
. ( n) (n )” {fkn/n SLG)  ©

172 |B.(8)P'|u,(s) — B,(s)|
o L(s) ds}

ds

n

(4.30)

n P« 1/2sp/2—pa—V+nds

k,/n
k, v—(P/2+1)L( kn) L (12 IBn,(s)lp_l
n ) n n j;n/nsv—l/2+aL(s)

kn v—(p/2+1)—p
n )

- 0,00

+op(1)( ds

=0 P(l) .
Consequently, in order to verify (2.22), it suffices to show that

(ﬁ)"‘(””“)L(ﬁ)/lﬂ |B(s)| &

n n )k, /ns’L(s)

(4.31)
1
-4 f s P\ W(s)P ds.
0
Similarly to (4.29) it can be seen that
el
k

n s s'L(s)
Hence by (4.5), (3.13) and (4.32) we obtain

B\~ R s [W(S)P = [W(s) — sWLP|
(4:33) (7) L( )fj SL(s)

Letting s = %, /(nt) and using the fact that
{tW(1/t);0 <t <1} =, {W(¢);0 <t < o0},

(4.32) -

ds = op(1).

n

ds = 0p(1).

we have

n

(k )v—(p/2+1)L(kn)f1/2|W(s)|"ds

n n k,/n S'L(s
(4.34) n L)

=5 L(.I_cﬁ)fl tV-(p”)M dt.
n Yok, /n L(k,/nt)

Let 0 <8 <1, and p > 0 be such that » > p/2 + 1 + p. Then by (3.13) and
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Markov’s inequality we get

k,\ rs |W(¢)P
4. lim L PlLl -2 t"—(P/Z)—
( 35) 31?1 ,r,IiS::p { ( n )'/;k,,/n L(kn/nt)

dt > e} =0,

for all ¢ > 0. From (3.7) we have

(4.36) L(k,/n) | W) /L (k,/(nt)) dt —g [ £ PD|W(E)] dt.
8 8

Since 8 in (4.36) can be taken arbitrarily small we obtain (4.31) by (4.33), (4.35)
and (4.15). This completes the proof of (2.22).
Similarly to the proof of (4.30) it can be shown that

k,\"~ @240 (kN cuas |le(s)IP = IB(s)P|
4.37 — L|— " ds = 0p(1).
s (5] ) Gihm  SL(s) o)
If we can show that
k,\""#/2D (k. B,(s)]
n Iy /myA (k) 8"L(S)
and
Eo\v-(p/24D [} B (s)P
wam () e e O g ont),
n JJyaszaase 8"L(s)

then (2.23) will follow from (4.31). Using (3.13) and Markov’s inequality we
obtain

(4.40) }sim lim sup ds > e} =0,
l

n— oo

k \v—(p/2+1) [} . |B(s)P
Al e
(

n
n n 1-8)k,/n s"L(s)

for all £ > 0. Now Theorem 3.3 and (4.40) imply (4.38). The proof of (4.39) is
similar and hence omitted. The proof of (2.23) is now complete. O

PrOOF OoF THEOREM 2.5. By (3.14) we have

o= M/, (YPIL(L/m)/ L) — 11

/n

(4.41)

= o(1)n‘1’/2“>+"‘”fk"/"s"‘”|un(s)|1’ ds,
A/n

for all 0 < p < v — (p/2 + 1). Consequently, it is enough to prove Theorem 2.5
with L = 1.
First we note that as n —» o,

(442) n “fw £ %Spng 41 — | dt _)P/;\ Sy, — t9dt,
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if « > ¢/2 + 1, and by (3.5) we have

n(p/2+1)—vj’kn/n|un(s)|p
A/n s”
(4.43)

- n \? ke,
—p ¥ /(s—) L St = S .
n+1 n

Now applying (4.5) and (4.42) we obtain
e ka/n,_, '
(4.44) n¥27v7p/2 j;\/ ¢ “Slnt|+1 = 88,11° = IStreg+1 — tn|p|dt = op(1).
n

Now observing that S, ,/n —p 1, (2.25) follows from (4.42)-(4.44). O

Proor oF THEOREM 2.6. First we note that by combining (3.3) and (3.7) we
get

(4.45) sup (ns)*|L(1/n)/L(s) - 1] = 0p(1).
U,(1/n)<s<U,(k,/n)

Hence, similarly to (4.41) we obtain
nr/zsns (S0 o (WPIL(L/m)/L(s) - 1) ds
U.(/n)
(4.46)

_y [Unlkp/n)
= op(n)ntr/zvncr [BM Nonre (s)p as,
Uy(1/n)

whenever 0 < p <» — (p/2 + 1). Hence it suffices to prove (2.26) and (2.27)
with L = 1. We have by (3.5)

_y [Unky, _
nP*1 "f /Mg "|E (s) — s|Pds
U,1/n)

k,—1
e _ UG+ R
(4 47) — Z np+1 v/ (¢ )/n)s Vll/n _ Slpds
’ i=1 Un(i/n)

k,—1-
(n/sn+1)si+ls_,,
i=1 (/S 1S

li — s|” ds.

Next we show that

(/8,41 VDS,

(4.48) max f 's7’|i — s|P ds = 0p(1)

1<isk,~19(n/8,,, A DS,
and
(n/S,+1V1D)S; .
(4.49) max /B DS "|i — s|P ds = 0p(1).
1<i<k,=1Y(n/S, ., ADS;,

Details of the proof are given only for (4.48). The proof of (4.49) is similar. We
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consider
T g oo
n n Ml on r
(450) < lslitéa}::_lsi m - 1‘((3,,“ \% I)Si) (Sn+1 \% l)Si— i
n n - i
+ lsxir;a;e::_lsi §n—+—1 - 1‘((5,”1 A 1)S,~) (Sn+1 A 1)Si— i
=AY + AD.
We will only deal with A. The details for A®) are similar. We have
Aﬁ,‘)s( . \/1)_” —1| max S?‘"( Vl)S~—ip
S, i1 S,+1 l<i<k,~1 ' S,i1 :
n P
= O0p(1)n~1/2 151233:-1{3" 5. 1+ S, - i|}
n p
(4.51) = Op(1)n"'/2 - 1| S, 1+ Op(1)n=172 lrsnias)senls,- — P
- 00| 22 (& w040
k \P/? p
+OP(1)(—;") n‘”’/""l/z{k;l/2 12?2"'3" - il}

=0 P(l)‘
Now using the law of iterated logarithm for the Poisson process {N(¢); 0 < £ <
oo} we obtain

ky—1

\ Siv1 _yps -

Y f 's7’i — s|P ds = /S”’"]s "IN(s) — s|P ds
(4.52) i=1 S S,

o0
- f s "N(s) —sfPds as.,
Sy
which also completes the proof of (2.26).

In order to prove (2.27), we first observe that for any & > 0 there exist an n,
and j,1 <j < k,, such that for all n > n,

(4.53) PU_, ,<Mn<U,}>21-g¢,
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by Theorem 3.2. Hence by (3.5) a proof of (2.27) reduces to show that

k
——s
n

J

np“_”{f%/s"“s_" s
(4.54) Mn

P k1o
ds + Z k41 St —y
k=j “Se/Sp+1

- fxs[""]t-"w(t) — P dt + op(1) —y ﬁwt‘”lN(t) — tiP dt.

n

E

The latter in turn goes along the lines of the proofs of (4.48), (4.49) and (4.52). O

ProoF oF REMARK 2.5. By (3.5) we have with K(s) = 1/K p—(8),

np+1"‘L(l/n)fu"(l/n)sp_”/L(s) ds
0

(4.55) =5 n?* 1L (1/m) [ $/5asp-r /() ds
0

= K(85//8,:1)(5,/8,:1)" " "nP L (1/n) /L(S,/S,4y),
where by (3.8) :

(4.56) K(S1/8,11) »p1/(p+1 - v),
and by (2.9) and (3.7)

(4.57) L(1/n)/L(8,/8,.,) =p 1.
Consequently,

n””“'”L(l/n)/;U"(l/n)len(S)l"/L(s) ds =5 8P/ (p+1—»)

- f “IN(e) — o dt,
0

and therefore (2.28) follows from (2.26).
To prove (2.29), we notice that whenever

(4.58) fssp_”/L(S) ds = o0, forsome 8§ > 0,
0
then
U,(1/n) ,
[ e ()P /((5)) ds =0

If, on the other hand, the integral of (4.58) is finite for some 8 > 0, then
v=p+1,and

f:l/(sL(s)) ds < o0.
Hence
L(/n) [*M1/(sL(s)) ds = K(U,0/m)L(1/n)/L(T(1/2)) >p e,
by (4.57), and because K(x) — oo as x — 0 by (3.9). O
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