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A CORRELATION INEQUALITY FOR THE SYMMETRIC
EXCLUSION PROCESS

By ENRIQUE D. ANDJEL
Instituto de Matemdtica Pura e Aplicada

We prove a correlation inequality concerning the occupation of disjoint
sets in the symmetric exclusion process. As an application we derive a
pointwise ergodic theorem for this same process.

1. Introduction. Let S be a finite or countable set and p(x, y) a probabil-
ity matrix on S. The exclusion process given by S and p is a Markov process on
X = {0,1)S whose formal generator  is given by the expression

@)= X plx, y)n(x)@ — () f(n.,) — F(n)),

x,y€S

where f is any cylinder real-valued function on X, 7 is an arbitrary element of
X and 7,, is obtained from 7 by interchanging the values of 7 at x and y. This
generator corresponds to the following description: Particles are put on the
elements of S in such a way that no two particles occupy the same site. These
particles attempt to jump at times given by independent Poisson processes of
parameter one. If a particle at x attempts a jump it chooses a site y, indepen-
dently of the Poisson processes, with probability p(x, y). If the site chosen is
occupied the particle stays at x, otherwise it goes to that site.

In this paper we will only consider the case in which p(x, y) is symmetric. In
this situation the process is known to satisfy the following correlation inequality:

If x,, x,,..., x, are distinct elements of S, then for all ¢ > 0 and all € X,
n n
(1) P{ITnz) = 1) < [Pz = 1),
i= i=

For the proof of this inequality as well as for the construction of the process the
reader is referred to [4]. This correlation inequality has been used to prove a
large deviation result ([3]) and a pointwise ergodic theorem ([1]). It also played a
role in studying the position of a tagged particle ([2]). In Section 2 we generalize
this inequality and in Section 3 we apply the generalization to extend the results
of [1]. If one drops from the assumptions the symmetry of p(x, y), simple
examples in which even (1.1) fails can be constructed.

2. A correlation inequality. The following theorem extends (1.1). In its
proof we will freely identify elements of X with subsets of S in this way:

Received April 1986.

AMS 1980 subject classification. Primary 60K35.

Key words and phrases. Symmetric exclusion process, self-duality, correlation inequality, point-
wise ergodic theorem.

717

[
3l
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )20

The Annals of Probability. RIKOAN

WWw.jstor.org



718 E. D. ANDJEL

n e {x €S: n(x) = 1}. With this in mind A, will denote the exclusion process
starting from A c S.

THEOREM 2.1. If A and B are disjoint subsets of S, then for all n € X and
allt > 0,

P T1 m(x)=1)SP(xl;L n(x) = 1)P( [T n(x) = 1)

x€AUB

Proor. Using the notation n(D) =TI, . pn(x), f(D,t) = P(n(D,) = 1) and
the self-duality property of the symmetric exclusion process (Theorem 1.1, page
363 of [4]), it follows that the inequality to be proved is equivalent to

f(AUB,t) <f(A,t)f(B,t).

We will first prove this assuming A and B are finite. Let |[A| =n and
|B| = m, where | | denotes the cardinality. We now think of the process (A U B),
in the following way: After an exponentially distributed time of ‘parameter
(n + m) an element of A U B is chosen at random. Each element has probabil-
ity 1/(n + m) of being selected. The selected element will then attempt to jump
according to p(x, y) and the jump will be done or not according to the exclusion
rule described in the introduction. Since the probability that the first attempt
occurs in the time interval (s, s + As) is (n + m)e™ "*™%As + o(As), we have

f(AU B, ) = f(AUB,0)e” "™ + [(n+ m)e=(r+m»
0

Z p(x’y)+ Z p(x’y) f(AUB,t—S)

x, yEA x,y€B

{ 1
X
n+m

1

-Z )y p(x,y)f(AnyB,t-S)]

n+m | x€A yEAUB

- E Z p(x’ y)f(AUBxy’t_s)]

n+m|, cpyeauB

1
n+m

+

(Y L)+ ¥ zp(x,y>]

| x€A y€B x€B yeA
Xf(A U B,t—'s)} ds,

where A, and B,, denote A U {y}\ {x} and B U {y} \ {x}, respectively.
To obtain a similar expression for f(A, t)f(B,t) we consider a Markov
process on X X X starting from (A, B) whose marginals are independent copies
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of the exclusion process. Reasoning as above we get

14, )1(B,t) = [(A,0f(B,0)e ™"+ [(n + m)e=trm»
Y plx,y)+ X p(x,y)]

1
X
n+m x,yEA x,yEB

Xf(A,t—s)f(B,t—s)

"~ [y ¥ p(x,y)f(Axy,t—s)f(B,t—s)}

n+m|.cayeauB

"~ [y ¥ p(x,y>f(A,t—s>f(Bxy,t—s)]

n+m | x€B y¢AUB

17

i | L, T (At =)t - s>]

n i m . > Y p(x, y)f(A, t—s)f(B,,, t - s)]} ds.
| x€B ycA

From these two expressions and the symmetry of p we obtain
f(A U B’ t) - f(A’ t)f(B’ t)

=f0‘e—<n+m>s{ Y p(x,y)+ X plx,)

x, yEA x,y€EB
X[f(AUB,t—s)—f(A,t—s)f(B,t—s)]
+ Y X pla,y)[f(A,UB,t—s) - (A, t—s)f(B,t~5s)]

(2 2) x€EA yEAUB

+Y Y pxy|[f(AUB,,,t—s)—f(A t—s)f(B,,,t—s)]

x€B ygAUB

+ Y X p(x,y)[2f(AUB,t—s) - f(A,,, t—s)f(B,t~s)

x€A yeB

—f(A, t—s)f(B,, t— s)]} ds.

We now define

G(t)= sup {f(CUD,t)—f(C,t)f(D,¢)}
AN

and
F(t) = sup G(s).

O<s<t

From these definitions we see that for all disjoint A and B of cardinalities n and
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m we have
f(AUB,t) <f(A,t)f(B,t) + F(t).
Note now that if x €A and y € B,then AUB=A, UB, and f(AUB, t) <
f(A,,, )f(B,,, t) + F(t). Hence
f(A U B,¢t) < F(t) + min{ f(A, ){(B, t), f(A,,, t)f(B,.t)}.
Using the inequality min{abd, cd} < (ad + bc)/2 which holds for any a, b, ¢ and
d € R, we see that
2f(A U B, t) <2F(t) + (A, t)f(B,,, t) + f(A,,, t)f(B,t).
From the last inequality, the definition of F(¢) and (2.2), we obtain

f(AUB,t)— (A, t)f(B,t)

< fote“”“”)s[ Y pxy)+ X plx,y)+ X X px,y)

x, yEA x,y€EB x€A yeAUB
+Y % pxn+2E ¥l y)]E(t - ) ds.
x€B ygAUB x€A yeB
Since p is symmetric and F is nondecreasing this implies that

f(AUB,t)—f(A,t)f(B,¢t) < F(t)]o’(n + m)e~ms gs.

Since the right-hand side only depends on |A| and |B| we have
G(t) < F(2) [(n+ m)e=rme ds,
0

and since the right-hand side is nondecreasing we can conclude that
F(t) < F(t)ft(n + m)e~(rms gs.
0

Since F(t) > 0 and the integral is strictly less than one we must have F(¢) = 0.
The theorem is now proved for finite A and B; for arbitrary sets A and B

consider sequences of finite sets A, and B, such that A,1 A and B, 1 B and

take limits on both sides of the inequality f(A, U B,, t) < f(A,, t)f(B,, t).

3. Application: A pointwise ergodic theorem. In this section we restrict
ourselves to the case in which S =Z¢ and p(x, y) is translation invariant,
irreducible and symmetric. In this case it is known that the set of extremal
invariant measures is {p,}, ., .;, where p, denotes the unique product measure
such that p,{n: n(x) =1} = p for all x € Z% For a proof of this result the
reader is referred to [4]. We now state, as an application of Theorem 2.1, a
pointwise ergodic theorem.

THEOREM 3.1. Let n be an element of X such that v, converges in distribu-
tion to p.,. Then for any f € C(X),

tim = [71(n.) ds = [() du,(n) s



SYMMETRIC EXCLUSION PROCESS 721 -

SKETCH OF PROOF. First prove the theorem for functions f of the form
f(m) = n(A), where A is a finite subset of Z% This can be done following the
proof of Theorem 2.1 of [1] and using the extension of (1.1) given in Section 2.
Then note that functions of the form n(A) generate a dense subspace of C(X).

REMARK. Theorems VIII.1.13 and VIII.1.24 in [4] applied to the case in
which the initial distribution is a Dirac measure show that the hypothesis of
Theorem 3.1 is equivalent to lim,Y p,(x, y)n(y) = p for all x € Z¢, where

n

0
pt(x’ y) = Z e—t____'_p(n)(x’ y)'
n=0 n:
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