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INEQUALITIES FOR MULTIVARIATE COMPOUND
POISSON DISTRIBUTIONS!

By RICHARD S. ELLIS

University of Massachusetts

This paper proves a converse to a theorem of L. D. Brown and Y. Rinott
concerning positive dependence ordering for multivariate compound Poisson
distributions.

We say that a one-parameter family of probability distributions {Q,, ¢ > 0}
forms a compound Poisson family if for each ¢ > 0,
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F,

where A > 0 is fixed and Fj, denotes the k-fold convolution of some distribution
F. Q, represents the distribution of the random sums U, - - + Uy, where {U}
are independent with common distribution F and N(t) is a Poisson (At) variable
independent of {U;}. In this paper we prove a converse to a theorem of Brown
and Rinott (1988) involving compound Poisson families.

Let n be a positive integer, define &= {A: A C {1,...,n}}, and to each
nonempty set A in ./ associate a number #(A) > 0. Let @, be a compound
Poisson family and let {Z,, A € .2/} be independent random variables with Z,
distributed according to @, 4. Define X = (X,..., X,)) by

(2) Xi= Z ZA’ i=1,...,n.
A:i€A

X is said to have a multivariate compound Poisson distribution with parameter
t = {#{(A), g # A €/} based on the family @,. Let Y have a multivariate
compound Poisson distribution with parameter t* = {¢*(A), @ # A € o/} based
on the same family @,. Part (a) of the following theorem proves a converse to
Theorem 1.2(i) in Brown and Rinott (1988). Part (b) of the following theorem is
proved in Theorem 1.2(ii) in Brown and Rinott (1988) in somewhat greater
generality (for multivariate infinitely divisible distributions). We have included
part (b) because its proof is similar in spirit to that of part (a).

In a preliminary version of their paper, L. D. Brown and Y. Rinott had a
proof of part (a) for the multivariate Poisson case. I am grateful to them for
bringing the problem to my attention.
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THEOREM 1. (a) Assume that P{U, > 0} and that E{exp(aU,)} < o for all
a > 0. Then

(3) P(X>c} <P{(Y=>c¢}, forallceR",
implies that

(4) Y #A)< Y t(A), forallB+ @,Be«.
A:ADB A: ADB

(b) Assume that U; > 0 and U, # 0. Then
(5) P(X<c} <P(Y<c}, forallceR",
implies that
Y HA) = Y t*(A), forallB+ @,Be«.
A: ANB+ 2 A: ANB# o

ProOOF OF THEOREM 1(a). Let B be any nonempty set in &/ and let «a,
i € B, be positive numbers. Then

(6) Z"‘tXi= Z"‘i Z Z, = Z ( Z ai)ZA'
ieB i€eB A:icA A:ANB+#o ‘\icANB

Note that for each set A satisfying A D B, the corresponding term in the sum
contains all of the «;, i € B; for each set A satisfying A N B # &, A 2 B, the
corresponding term in the sum contains only a proper subset of the a,, i € B.
For each nonempty set A in &/,

(7) Zy=U+ -+ UN(t(A))’

and so for a > 0,

(8) log E{exp(aZ,)} = At(A)[m(a) — 1], where m(a) = E{exp(al,)}.
Since {Z,, A € &/} are independent,

9) logE{exp(ZaiXi)}= ¥ )\t(A)[m( ¥ ai)—l].

ieB A:ANB+ @ i€cANB
If we set each «;, i € B, equal to £ > 0, then

log E{exp(k Y Xi)} = Y A(A)[m(B|k) - 1]

(10) ieB A: ADB
+ Y  A(A)[m(A N BE) - 1].
A:4nBe o
Similarly,
log E{exp(k.ZBYi)} = ) ; B)xt*(A)[m(|B|k) -1]
(11) e tAD

+ Y  At(A)[m(A N Blk) —1].
A: ANB+ @
ApB



660 R.S.ELLIS

If |B| =1, then the second terms on the right-hand sides of (10) and (11) are
absent.
By hypothesis P(X > ¢} < P{(Y > ¢} for all ¢ € R™. Thus,

(12) AN (Xze) <P N (e},

i€B i€B
for all real c;, i € B. This implies that [see Brown and Rinott (1988), Section 1,
or integrate by parts]

(13) log E{exp(k Y Xi)} < log E{exp(k Y Y;)}
i€B i€B
Lemma 2 below together with (10) and (11) implies that
(14) log E{exp(k y X,.)} _ m(|B|k)(>\ Y H4) + 0(1)), as k — o,

ieB A: ADB

(15) log E{exp(k Y Y,)} = m(|B|k)()\ Y t(A)+ 0(1)), ask > 0.
ieB A:ADB .

Part (a) of Theorem 1 is a consequence of (13), (14) and (15). O

LEMMA 2. Assume that P{U, > 0} > 0 and that m(a) = E{exp(aU,)} <
for all a > 0. Then m(|B|k) = o0 as k - «w and

m(|A N Blk)
Pl m(Blk)
for each set A satisfying AN B+ @, A2 B.

(16)

Proor. There exists ¢ > 0 such that P{U; > ¢} > 0. Thus,
(17) m(|Blk) = E{exp(IBIkU,) - 1y, 4} = eP*P{U, > ¢},

which tends to oo as 2 — oo. If A satisfies ANB# &, A2 B, then
|A N B| < |B| and

m(A N Blk) e4NBlke 4 E{exp(|A N B|kU,) - 1{U,Zs)}
<
m(|Blk) E{exp(BIkU,) - 1y, 0}

e|AﬁB|ke 1

= e|B|ksP{U1 > e} + e(BI-IANB)ke

which tends to 0 as 2 = o0. O

PROOF OF THEOREM 1(b). Let B be any nonempty set in .« and let a;,
i € B, be positive numbers. By hypothesis, P{X < ¢} < P{Y < ¢} forall¢c € R™
Thus,
(18) A N{X<e}) <P N(T<a),

i€B i€B
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for all real ¢;, i € B. This implies that [see Brown and Rinott (1988), Section 1,
or integrate by parts]

(19)  log E{exp(—k ¥ Xi)} < log E{exp(—k Y Y)} for k > 0.

i€B i€B
As in the proof of part (a),
(20) log E{exp(—k ¥ X,.)} — Y AHA)[m(-1A N BE) 1],
ieB A:ANB+ 2
@) togBlep(-k LX)} T Ar(4)m(-1anBE) - 1],
ieB A:ANB+ 2

where m(a) = E{exp(alU,)}. For each set A satisfying A N B + &,
(22) klim m(—]A N Blk) = P{U, = 0} < 1.
— 0

Hence part (b) follows from (19), (20) and (21). O
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