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RATES OF CONVERGENCE FOR DENSITIES IN EXTREME
' VALUE THEORY

By E. OMEY
Economische Hogeschool St.-Aloysius

In this paper we prove a rate of convergence result for the density of
normalized sample maxima to the appropriate limit density. Also a local limit
theorem—with rates of convergence—for maxima of i.i.d. random variables is
proved.

1. Introduction and main results. In extreme value theory, not much is
known about the quality of convergence in the case of weak convergence of
normalized maxima to one of the limit distributions. Recently Smith (1982) and
Omey and Rachev (1986a,b) established uniform rates of convergence in uni-
variate and multivariate extreme value theory. Our focus in this paper is on
uniform rates of convergence of the density of normalized partial maxima to the
appropriate limit density.

Suppose X, X,,..., X,,... are i.i.d. random variables with common d.f. F
and let M, = max(X,,..., X,). If for some choice of a, and b,
lim P{a,'M, + b, < x} = G(x)
n— oo

for all x, then F is said to be in the max domain of attraction of G. When this
happens, G must be one of the following three extreme value types:

@ (x) = exp(—x79), x>0,a>0,
(1.1) ¥, (x) =exp(—(-x)*), x<0,a>0,
A(x) =exp(—e ™), =x€R.

In the case where F satisfies von Mises’ condition, de Haan and Resnick (1982)
proved the following result for the density of M,,:

LEMMA 1. Suppose F is absolutely continuous with bounded density f, which
is positive for all x sufficiently large. Let f(x) denote the density of a,'M,,
where a,, is defined by n~' = —log F(a,,). If for some a > 0, lim, _, [xf(x)]/
[1 — F(x)] = a, then as n - o, f,(x) = @.(x), uniformly in x.

In this paper we estimate the rate of convergence in
lim sup|f,(x) — @i(x)| = 0.
n—oo
For convenience our results are formulated in the case where the limit d.f.
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G(x) = p,(x). Using a monotonic transformation, similar results are easily
established in case G is one of the types (1.1). We present two types of results,
which complement each other. In our first result, we prove that if the difference
f(x) — g(x) is “small,” then also f,(x) — g(x) is “small.” Here and in the sequel,
g(x) is the density of G(x), i.e., g(x) = x 2G(x). In the second result, we use
second order regular variation to estimate f,(x) — g(x).

THEOREM 2. Let F and f be as in Lemma 1 and let F(0 +) = 0. If K =
sup, 5 ox' *5|f(x) — g(x)| < o for some s > 1, then

(1.2) limsupn®~!sup|f,(x) — g(x)| < oo,

n—o x>0
where f,(x) = n?F" Y(nx)f(nx) denotes the density of n~'M,,. Also
(1.3) limsupn®~!supx!*s|f,(x) — g(x)| < .

n— oo x>0

Under the conditions of the theorem, we also obtain the rate of convergence in
FY(nx) = P(n M, < x} - G(x) (n > o0).

COROLLARY 3 [Omey and Rachev (1986a), Theorem 2.4]. Under the condi-
tions of Theorem 2 we have

limsupn® ! sup|F"(nx) — G(x)| < oo.

n-» o0 x>0

REMARK. In general, the result (1.2) with < oo replaced by = 0 does not
hold, since this would imply that lim,_, , n°* F"(nx) — G(x)) = 0. In Omey
and Rachev (1986a, Corollary 2.8), however, we proved that

nli_t}:on“’_l(F"(nx) - G(x)) = ¢x°G(x)

provided lim x*(F(x) — G(x)) = €.

In our next corollary we provide a local limit theorem with rates, hereby
extending some of the results of de Haan and Resnick (1982).

COROLLARY 4. Under the conditions of Theorem 2, for any h >0 and
sequence d,, = 0 (n = o), we have

limsup min(d;*, n*~")sup|d,'P{x < n"'M, < x + d,h} — hg(x)| < co.

n— oo x>0

In our next result, we modify the conditions of Theorem 2 and we prove a
result which applies to d.f. F(x) for which f(x) ~ x 2u(x) (x > ), where u(x)
is slowly varying. Whereas u(x) — 1 (x = oo) under the conditions of Theorem
2, we now assume that u(x) is slowly varying with remainder function A (or A-sv
for short). A function L(x) is said to be A-sv if A(x) = 0 (x = ) and if for each
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t> 0,
L(xt)
L(x)

In order to formulate our result, we recall the following extension of Corollary 2
obtained by Smith [(1982), Theorem 1].

(1.4) =1+ O(h(x)), x—- .

LEMMA 5. Suppose that F is continuous and F(x) < 1 for allx € R. Assume
that L(x) :== —x log F(x) satisfies (1.4) for some positive functions h satisfying

h(tx)

(1.5) Bx~? < <% x=1,t>ty, B,%,t,,0>0.
h(t)
Let a,, be defined by —log F(a,) =n"'. Then as n - o,

sup|F™(a,x) — G(x)| = O(h(a,)).

The previous lemma is crucial in the proof of the following theorem.

THEOREM 6. Let L and a,, be defined as in Lemma 5 and assume that F has
a bounded density f. Let u(x) == x*f(x) and assume that L and u satisfy (1.4)
with h satisfying (1.5). Let f, be the density of a,'M,,, ,. Then as n > oo,

|

REMARK 1. The question of the optimal choice of the normalizing constants
a,, has been discussed by Smith [(1982), Section 4]. In the proof of Theorem 6 it
turns out that it was convenient to normalize M, ,, by a, instead of by a,,,.

n+1

u(a,) -1

(1.6) sup|f,(x) — g(x) = O(h(a,)) + O

n

REMARK 2. By using the regular variation of f and the choice of a,, we have
n+ lu(a,
an S e ) -1, ne e,

whence the rate of convergence in (1.6) depends on that in (1.7).
2. Proofs.

PRrROOF OF (1.2). Obviously
P{n"'M,<x} =F*nx) and f,(x)=n?F""Y(nx)f(nx).
Also g(x) = n®?G™ Y(nx)g(nx). Now we write
fu(%) = 8a(x) = R(F*"(nx) — G (n))( f(nx) - g(nx))
+n’G" H(nx)( f(nx) — g(nx))
+ng(nx)(F*(nx) — G"(nx))
=1+ II + III.
We estimate I, II and III separately.
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(a) First consider II: Using G* Y(nx) = G(nx/(n — 1)) and the inequality
(2.1) G(x) <xB(r), x20,7>0,
where B(7) = (1e')", we obtain

11| < n?(nx)* ' (n — 1) 7" 'B(1 + s)|f (nx) — g(nax))],

so that
(2.2) 11| < n%(n—1)"°"'KB(1 + s).
(b) Next consider III: Using the inequality
(2.3) la™ — b™| < m|a — bjmax(a™ !, b™ 1),
we have

[III| < n%g(nx)(n — 1)|F(nx) — G(nx)max(G" %(nx), F*~%(nx)).
First consider
I11, = n’g(nx)(n — 1)|F(nx) — G(nx)|G"*(nx).
Using (2.1) with 7 = s + 2 and using g(x) = x%G(x), we obtain
I, < n?(n—1)"° " (nx)F(nx) — G(nx)B(2 + s).

Since

' o K
IF(x) = G(x)l < [ 1f(w) - g(w)du< —x,

it follows that
KB(2 + s
(2.4) I, <n¥(n-1)"°" ¥.

Next consider
III, == n’g(nx)(n — 1)|F(nx) — G(nx)|F"~*(nx).
Let us first assume that u defined by
p = supx®|log F(x) — log G(x))

x>0

is finite and let {§,}, denote a sequence of positive numbers to be determined
later. Obviously we have

|log F"~*(nx) — log G"~*(nx)| < (n — 2)u(nx) .
Hence, if nx > §,, we obtain that
(2.5) F"%(nx) < {exp(n — 2)p8;*}G" *(nx).
Combining (2.5) and (2.4) we obtain
_._, KB(2 + s)
(2.6) sup III, < {exp(n — 2)p8, *}n*(n - 1)°" ——.

nx =8,
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In the case where nx <§,, we have F" *(nx) < F" %3§,). Using (2.5),
|F(x) — G(x)| < 2 and g(nx) < B(2), we obtain

(2.7) sup III, < 2B(2)(n — 1)n*{exp(n — 2)pd, *}G"*(8,).
nx<9§,
Choosing 8, = (n — 2)° with 1/s < § < 1, we obtain from (2.6) and (2.7) that
. KB(2 + s)
(2.8) limsupn® !sup II[, < ——.
n—o x20

(c) Now let us consider I: Using (2.3) we obtain
1] < max(I,,I,)
where
I, = n*(n—1)f(nx) — g(nx)| |F(nx) — G(nx)|G"~*(nx)

and I, equals I, with G"~2(nx) replaced by F"~%(nx). Using (2.1) with 7 = 2s +
1, we have

I,<n%n-1)(n-2)""""B(@2s+1)(nx)*""
X|f(nx) — g(nx)| |[F(nx) — G(nx)],

so that

(2.9) ' I,<n*n-1)(n-2) %" —B(2s : DK .

As to I, as in part (b), we obtain

(2.10) limsupn®~2?sup I, < M
n—oo x>0 s

(d) Now we remove the restriction that p < co. To this end, define the r.v. Z
with d.f. F, as follows:

0, x <0,
Fy(x) = { F(a), 0<x<a,
F(x), x>a,

where a is such that 0 < F(a) < 1. Obviously we have
supx®|Fy(x) — F(x)| < oo,
x>0
p = supx®|log F,(x) — log G(x)| < o0
x>0
and
sup|Ff %(nx) — F* %(nx)| < 2F" %(a).
x>0
Hence in considering I, or III,, we may replace F"~?(nx) by FJ} %(nx) at the
expense of the term 2F" %(a). Since F™" %(a) converges to zero geometrically
fast, the estimates (2.8) and (2.10) remain correct.
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(e) Combining the estimates (2.2), (2.4) and (2.8)—(2.10), we obtain
KB(2 + s) N B(2s + 1)K ?

S S

limsupn®~! supl|f,(x) — g(x)] < KB(1 + s) +

n—oo x>0

which proves (1.2). O

2

ProoF OF (1.3). As in the Proof of (1.2), we use the decomposition f,(x) —
g(x) =1+ II + III. First consider II: Using G(nx) < 1, we have

x40 < (nx) "f(nx) — g(nx)n' ~°G"}(nx) < Kn'~*.
Next consider III,: Using g = x2G(x) and (2.1) with 7 = 1, we have
nx
AL, < n1=5(n — 1)(nx)|F(nx) — G(nx)|G(F—1)(nx)_1
- KB(1)

<n" .
S

In a similar way III, and I can be estimated and this yields the proof of the
result. O

Proor oF COROLLARY 3. From (1.3), we have for some constant ¢ that
() = ()| < [If(w) — 8(w) du < €nt =,
Also from (1.2), we have for some constant ¢ that
[F7(nx) = G(2)] < [ V(w) - &(u) du < €n'
Combining these two estimates yields the proof of Corollary 3. O

PRrooOF OF COROLLARY 4. From (1.2), we obtain for some constant ¢ that
|P{x <n™'M, <x+d,h} — G(x + d,h) + G(x)| < €hd,n'"".
Now |g’(u)| is bounded by, say B; hence,
(G + d,h) ~ G(x)) — hg(x)] < d* [77 [ ()] duds

Bhd,
<
2

Combining these two estimates, we obtain

Bh%d

n

\d;'P{x < n"'M, < x + hd,} — hg(x)| < €¢hn'~* +

and the proof of Corollary 4. O
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Proor oF THEOREM 6. We have
fo(x) — g(x) = (n + 1)(F*(a,x) - G(x))f(a,x)a,
+g(x)(n + 1)(u(a,x) - u(a,))a,’
+g(x)((n + Du(a,)a,* - 1)
=1+ II + III.

First consider I: Since f is bounded and since f is regularly varying with index
—2, for some positive constants ¥, ¢ and ¢, and all ¢ > ¢,, we have

f(tx) - %, x>1,

f(e) ~ |\ ¥x2, x<1,tx>¢t,.

Also [ f(tx)]1/[f(£)] = x~2% (¢t > o0) uniformly in compact x-intervals of (0, ).
Assume first x > 1. From (2.11) and Lemma 5 we have

I=0((n+ Dh(a,)f(a,)a,),

which, using (1.8), is O(h(a,,)).

Next assume that x — 0. Smith [(1982), page 605] shows that for some &
(0 < & < 1) and ¢; (which may be taken larger than ¢,) and all x > a,'t;, one
has

(2.11)

|[F(a,x) — G(x)| < Kh(a,)x 271" ¥exp{ —x~ (14D},
Using this estimate and (2.11) we obtain that I = O(A(a,)) as x = 0, n = oo,
x > a;'ts. Finally, consider x < a, 't;. In this case we have
11| < (n+ 1)(F*(t;) + G(az'ts)) f(a.x)a,.

Now f is bounded and F™(¢y) = 0, G(a,'t;) — 0 geometrically fast. Since the
conditions of the theorem guarantee that A(a,) decreases at most as some power
of n, we also obtain the estimate I = O(A(a,)) here.
Next we consider f,(x) — g(x) when x < a, 't;. Using the boundedness of f,
we have
fa(x) < €(n + 1)a,F"(t,)

and, as before, f,(x) = O(h(a,)) (n = o) uniformly in x < a, ;. As to g(x),
using (2.1) we have g(x) = x " 2G(x) < B(7)x" "2 If 7 > 2, we obtain that

&(x) < ai™"

for some constant €. Now from (1.5) we have 0 < liminf, _, _ y’A(y). Hence

g(x) 2—1_0
A(a,) =0 %
and with a suitable choice of 7, we obtain that g(x) = O(A(a,)) uniformly in

x < a;'ts.

Now we consider II with x > a, 't;. Under the conditions of the theorem,
Corollary 3.6 of Bingham and Goldie (1982) applies: For some positive constants
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€, € and n, and all n > n, there holds
u(a,x) — u(a,)

u(a,)h(a,)
Since g(x) < B(7)x""2, we have
(n + Du(a,)h(a,)
a

< {‘5(1+logx), x>1,
T\ %xe, x<1

II=0

asn — 0.
n

Using (1.8) we obtain
II = O(h(a,)) asn— oo.

To complete the proof of the theorem, using the boundedness of g(x) it
immediately follows that

III1=0

‘n+1

n

u(a,) - ll) O
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