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PHASE TRANSITION IN REINFORCED RANDOM WALK AND
RWRE ON TREES'

By RoBIN PEMANTLE

Massachusetts Institute of Technology

A random walk on an infinite tree is given a particular kind of positive
feedback so edges already traversed are more likely to be traversed in the
future. Using exchangeability theory, the process is shown to be equivalent to
a random walk in a random environment (RWRE), that is to say, a mixture
of Markov chains. Criteria are given to determine whether a RWRE is
transient or recurrent. These criteria apply to show that the reinforced
random walk can vary from transient to recurrent, depending on the value of
an adjustable parameter measuring the strength of the feedback. The value
of the parameter at the phase transition is calculated.

1. Introduction. The idea of a reinforced random walk is due to
Coppersmith and Diaconis. Imagine a person getting acquainted with a new
town. She walks about the area near the hotel somewhat randomly, but tends to
traverse the same blocks over and over as they become familiar. To model this,
Coppersmith and Diaconis (1987) have defined the following process which they
call reinforced random walk. A random walk is taken on the vertices of an
undirected graph, beginning at a specified vertex. Initially all the edges are given
weight 1, but whenever an edge is traversed the weight of that edge is increased
‘by a fixed parameter A. To choose the next move from a particular vertex, an
edge leading out from the vertex is chosen, with the probabilities for the various
edges being proportional to their weights. So for example, if after one step the
walk has reached a vertex with & neighbors, it will return to the starting point
on the next step with probability (1 + A)/(k + A). For a more formal descrip-
tion of reinforced random walk, see Coppersmith and Diaconis (1987).

This paper studies the case where the graph is an infinite tree (acyclic graph).
The starting point of the investigation is a well known result from exchangeabil-
ity theory. We apply this to the sequence of edges chosen each time the walk is
at a fixed vertex. In Coppersmith and Diaconis (1987) such an approach via
de Finetti’s theorem is used to analyze a reinforced random walk on finite graphs.
For A = 1, they calculate the distribution of the random limiting fraction of the
time the walk spends on each edge. The calculation involves the homology of the
graph. Since the graphs considered in this paper are acyclic, the full force of
these results is not needed; we use only the single result known as Polya’s urn.

In Section 3 Pélya’s urn is used to construct a random walk in a random
environment (RWRE) that is equivalent to the original reinforced random walk.
In Sections 4 and 5 we study RWRE using Chernoff’s (1952) theory of large
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deviations. Section 4 contains a sufficient criterion for a.s. transience of a certain
class of RWRE. Section 5 gives a sufficient condition (via the stationary
measure) for positive recurrence of the RWRE. The only cases remaining
unsettled are transitional points where certain equalities hold. We apply these
results in Section 6 to the RWRE from Section 3; surprisingly, the calculations
for this class of RWRE reduce to a few lines. Thus the recurrence or transience
of reinforced random walk on an infinite binary tree can be established except for
one value of A. '

2. Main results. Say the reinforced random walk is recurrent iff the prob-
ability of return to the root is 1. At the end of Section 3 it will be clear that the
usual equivalences hold: The walk is recurrent iff it returns to the root infinitely
often a.s., and it is transient iff it returns to the root finitely often a.s.

The mean recurrence time is always infinite. To see this for A > 1, let », be
one of k vertices adjacent to the root and let », be adjacent to », and distinct
from the root. Then the probability of going from », to », at least n + 1 times
before returning to the root is at least

(L/R)(1/(2 + A))((1 +24) /(2 + 34)) X ---
(2.1) X((1+2nA)/(2 + (2n - 1)A))
> 1/k(2 + (2n - 1)A).

The sum of these diverges, so the mean recurrence time is infinite. For A < 1 the
mean recurrence time is also infinite but we need Lemma 2 to see this.
Nevertheless, we can define a notion of mixed positive recurrence. In Section 3
the walk is decomposed into a mixture of Markov chains, the mixture being
necessarily unique in the recurrent case. Call the walk “mixed positive recurrent”
whenever the Markov chain is a.s. positive recurrent under the mixing measure.

THEOREM 1. For a reinforced random walk on an infinite binary tree, there
exists A, = 4.29 so that

(2.2) for A < A, the walk is transient;

(2.3) for A > A, the walk is mixed positive recurrent.

It should be noted that the author does not know whether increasing A
always makes a reinforced random walk more recurrent in any quantitative
sense. It seems reasonable to conjecture that the probability of return to the root
is monotone in A.

In more generality, we can allow the tree itself to be random as long as
everything is sufficiently i.i.d. in the following sense. Let each vertex » have
M(v) children with M(») ii.d. and bounded and E(M) = A > 1. So for binary
trees M(v) = A = 2. Let the transition probabilities from » to its neighbors
V1, Vg, ---, ¥y be denoted by the vector p with p, being the probability of
transition to the parent of » and the conditional distribution of p given M being
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symmetric in coordinates p,,..., p,. Let
prob(transition from parent of » to »)

24) () =

So ¢ is the same on the class of all children of the same node and is i.i.d. on such
equivalence classes except at the root and any of its children. (As a harmless
fiction we sometimes pretend these exceptions do not exist.) Let

(2.5) m(r) = inf{exp(—rt)E(¢'): t € R}

be the rate function for In(¢) as in (4.7). Assume that E(In(¢)) exists, possibly
+ 0. The following theorem collects all results on RWRE.

prob(transition from parent of » to grandparent of ») °

THEOREM 2. Conditional on the tree being infinite:
(2.6) If E(In(¢)) > O then the walk is a.s. transient.
If E(In(¢)) < 0 and sup{Arm(In(r)):0 < r < 1} <1 then the

(2.7) walk is a.s. positive recurrent.

If E(In(¢)) < 0 and sup{Arm(In(r)):0 < r < 1} > 1 then the
(2.8) \ .

walk is a.s. transient.

(2.9) If E(¢) < 1/A then the walk is a.s. positive recurrent.

If 1 <E(¢) < oo then the suprema in (2.7) and (2.8) need

(2.10) only be evaluated at r = 1.

Boundedness of M is not really needed except in (2.7); even here it may be
replaced by a weaker condition. (2.9) is always included in (2.7) but is given for
ease of calculation.

3. Reduction to RWRE. In this section we study reinforced random walk
in order to prove the equivalence in Lemma 2. Our notation for trees is as
follows. The set of vertices or nodes is a finite or countable set T. The starting
node, or root, is denoted p. Every node » other than p is adjacent to a parent
par(»), which is closer to the root, and zero or more children, denoted c1(»), c2(»),
etc. We will write », < », for », an ancestor of »,. A branch of length n < w0 isa
sequence of nodes of length n beginning with p where each is the parent of the
next. T, denotes the set of nodes at distance n from p.

Fix a single node ». It has parent », and children »; for some possibly empty
set of i. Edges e; connect » to »,. When the reinforced random walk first reaches
v, the edge weights must be 1 + A for e, and 1 for each other edge. If the walk
returns later to » it must do so along the same edge by which it left. So the
weight of one edge will increase by 2A while the others remain fixed. As long as
the walk keeps returning to », the weights of e; increment in this fashion. It is
easy to see that the sequence of edges by which the walk leaves » is an
exchangeable sequence stopped at a random time. In fact it is equivalent to
Poélya’s urn, a version of which was first introduced by Eggenberger and Polya
(1923).

Poélya’s urn contains balls of different colors. At each turn a ball is drawn and
replaced along with n extra balls of the same color. Of course the probability of
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choosing a color is just the fraction of balls in the urn of that color. The
mathematics still makes sense (although the mechanism does not) if n is allowed
to be nonintegral. Letting n = 2A and the initial numbers of each color equal
1 + A for color 0 and 1 for each other color, gives the sequence of edges chosen at
each visit to ». The following results can be obtained from Feller (1957, Volume
2, Chapter VII, Section 4) using rational approximations. :

LeMMmA 1 (Polya’s urn). Let the urn begin with w; balls of colouri,1 < i < k.
Then the sequence of draws is distributed as a mixture of sequences of i.i.d.
draws with the common probability of choosing color i being a random variable
;. The vector p ranges over the unit simplex and has the Dirichlet distribution
with parameters w,/n,...,w,/n. In particular if W = w, + --- +w, then the
density of p; on (0,1) is given by

(3.1)  [T(W)/T(w/n)I(W = w,/n)]xt/n=D(1 — x)™ /"7,

A consequence of the acyclicity of the graph is that the sequence of edges
chosen from » is (except for a random stopping time) independent of what
happens on edges not incident to ». So we can model the reinforced random walk
by independent Pélya’s urns at each node, making the decisions about where to
go from that node. The urns can be replaced in turn, according to the lemma, by
random values py(v), py(»),..., Paey(¥) chosen with the specified Dirichlet
distribution independently at every node. Conditional upon these choices, the
walk is a Markov chain with transition probabilities prob(r — par(»)) = p(»)
and prob(» — ci(v)) = p,(v) for 1 < i < M(»).

For a binary tree, we give a formal description of this; the formalisms for the
general tree are equally routine. Let { A(v), B(»): » € T} be independent random
variables with A(p) = 0, the density of A for » # p given by

(32) [T((3+ A)/24)/T((1 + A)/24)T(1/A)] x0-2/28(1 — x)'/47!
and the density of B given by
(3.3) [T(1/A)/T(1/2A)T(1/24)] x/24-1(1 — x)"/%4 7.

Then the vector (A(»),(1 — A(»))B(»),(1 — A(»))(1 — B(»))) has the Dirichlet
distribution with parameters (1 + A)/2A,1/2A,1/2A. Let Z; be i.i.d. uniform
on (0,1) for i = 1,2,..., and let the random variable

yle—ler(V) x [1B(»)x Iz

veT ieN

be defined on some space €. For each w € {, generate a sequence of nodes
recursively by »,(w) = p and

Voin(©) = par(r,(0)), if Z,(0) < A(r,(w)),
- A(n(@), i AQ(0) < Z,()
< A(r(@)) + (1 = A(r(0)))B(2,(w)),
= c2(v,(w)), otherwise.

The following equivalence should now be clear.
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LEMMA 2. The distribution of the random sequence v,, v,,... is the same as
the distribution of sequences of nodes visited by a reinforced random walk.

The process w = (r{(w), vo(w),...)is our RWRE. A(», w) and B(», w) are the
random environment; conditional upon their values for all » € T, the Z; de-
termine a Markov random walk. (Unfortunately the distribution function for A
does not vary pointwise monotonically with respect to A so it is difficult to
compare the RWRE'’s for different values of A.)

We can now prove that the mean recurrence time is infinite even for A < 1.
Let R be the mean recurrence time given the values of A and B at all nodes so
that the mean recurrence time is E( R). By looking at the subtree below the first
node visited we get the equation

E(R) =2+ E((1 - A)/A)E(R).

But for 0 <A <1, we get 1 <E((1 — A)/A) < oo by a calculation similar to
(6.2), so E(R) must be infinite.

Altering the values of A and B for finitely many » will not affect whether an
environment is recurrent. So recurrence is a tail property of the i.i.d. pairs
(A(»), B(v)) given the number of children of each node. It follows from the 0-1
law for tails that, in the case of binary trees, the environment must be a.s.
transient or a.s. recurrent. In other words, the mixing measure for the RWRE
does not mix recurrence and transience, so the claim at the beginning of Section
2 is established. For general trees one must first condition on the tree being
infinite. We use an argument due to Harry Kesten (personal communication).
The process is recurrent iff the process restricted to each subtree with root v for
v € T, is recurrent. So the recurrence probability is a fixed point of the offspring
generating function. If it is less than 1 it is bounded by the extinction probability
and hence equal to the extinction probability. So conditional upon nonextinction,
the recurrence probability is either 1 or 0.

4. Transience of RWRE. In this section and the next we discuss a general
RWRE on a binary tree with transition probabilities i.i.d. as described in Section
2. In particular, if we let

(4.1) C(cl(»)) = (1 - A(»))B(»),
(4.2) C(c2(r)) = (1 = A(»))(1 - B(»)),
(4.3) ¢(v) = C(v)/A(par(v)),

then this agrees with the definition of ¢ in (2.4). The main results of this section
are the transience criteria for RWRE, (2.6) and (2.8). We restate them here.

THEOREM 3. Suppose that for some r € (0,1]
(4.4) Am(In(r)) > 1.
Then the RWRE is transient.

The proof breaks into three pieces: Lemma 3, which is a transience criterion
for a single environment, Chernoff’s identification of the rate function for large
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deviations and a lemma on branching processes, providing the hypotheses for
Lemma 3.

LEMMA 3. Let keN, M R* re(0,1] and 8 > 0 be fixed constants.
Suppose a nonempty set of nodes S € T can be found such that if S; denotes
-8 N T,,, the nodes of S at distance ik from the root. Then

(4.5) [reSandvy<v]=reS;
(4.6) vy €S, = card{r € 5, ;1 vy <} > rk;
for each branch segment vy < v, < --- <,
47) withvy € S, and v, € S,
' Y In(¢(v)) = kIn(r) +&;
1<i<k
(4.8) o(») ' <M forallveS.

Then the environment is transient.

To see the intuition behind this lemma, suppose r = 1. Then (4.5) and (4.6)
say that S contains at least one infinite branch. By (4.7) and (4.8), the liminf
average of In(¢) along initial segments of any branch in S is at least 8/k. For
any such branch, the Markov chain gotten by considering only moves along that
branch will be transient; this is because the sequence ¢ =TI, ,¢(»)7!
summable, which is the standard test for transience in the one-dimensional case.
But any environment containing a transient subtree is transient either because it
wanders to infinity on the subtree or because it fails to return to the subtree
infinitely often.

Proor oF LEMMA 3. We find the appropriate martingale to generalize the
standard test to the case r < 1. Define a function s: T \ {p} — [0,1] by s(») =
for » ¢ S and by

s(v) = card{y' €S, ,:» < v'}/card{y’ € S, : par(») < »'}
for » € T, with ik < j < (i + 1)k. Clearly, the sum over i of s(ci(»)) is 1 for any
ves. See Figure 1 for an example of the function s. Now define £: T — R* by
t(p) =1 and for » #+ p by #(») = (s(v)¢(v) H(par(v)). Define u: T - R* by
u(v) = Ev'svt(v,)'

I claim that u(»;) is a bounded martingale for any », # p, where v, vy,... isa
random walk on the given environment, stopped if it reaches p. To see it is a
martingale, just calculate

E(u(vis))lv;) = A(v)u(par(y,)) + ZC(cj(Vi))u(cj(”i))
(4.9) = u(%) +A("i)[_t(”i) + Z¢(Cj(vi))t(cj(Vi))]

= u(v) + A(v)/t(5)| -1+ z_s<cj<u,->>] = u(v,)

for »; € S. For »; € S the result is true because t(»;) = 0
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So

S, [ W3 w3 ]

Fic. 1.

For boundedness, first consider the case » € S;. Find », € S;_;, with », <.
Then I1, ., .,8(»') is a telescoping product and is at most r® by (4.6). Also
I, ., <,9(») ' <e®r * by (47). Then #(») < #(»,)e® and by induction
t(v) < e . Now for any » € SN T,, apply (4.8) to see that #(v) decreases at
least geometrically in n. Therefore u is bounded on S. But for » & S, u(v) =
u(par(»)) so u is bounded on all of T.

We conclude by the bounded martingale theorem that u(»;) converges a.s. to a
limit u with E(z) = E(u(»,)) > 1. Then prob(u = 1) < 1 so the walk stays away
from the root with nonzero probability. O

The case (2.6) is easily disposed of using Lemma 3 and the strong law of large
numbers, so we assume for the remainder of this section that E(In(¢)) < 0. At
this point we require Chernoff’s estimates for the probabilities of large devia-
tions.

THEOREM 4 [Chernoff (1952), Theorem 1 and Lemma 6]. Let S, =
X, + .- +X,, where the X; are i.i.d. with common distribution function F.
Define

(4.10) m(r, F) = inf{exp(—rt)E(exp(¢X,)): t € R}.
Assume r > E(X,) > — 0. Then

(4.11) prob(S, > nr) < m(r, F)"

and '

(4.12) anI:o m; " prob(S, > nr) = oo foranym, < m(r, F).

Furthermore, m(r, F) is continuous in r and strictly decreasing between
C = E(X,) and D = essential sup(X,) with m(C; F)=1 and m(D, F) =
prob(X,) = D.

"~ We will apply this with F = ®, the distribution function for In(¢). With m(r)
denoting m(r, ®), the notations in (4.10) and (2.5) agree. Roughly speaking,
(4.12) tell us that under the condition (4.4), there are enough branches on which
In(¢) averages more than In(r) to make (4.5)—(4.8) possible. To make this into a
proof we need some facts about branching processes.
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The branching processes we will consider begin with a single ancestor. Each
individual bears a random number of children which is i.i.d. and equals i with
probability p,. Let f(x) be the generating function for the p;’s, with f’(1) =
M < 0, and assume M > 1 so the process is finite with some probability b < 1.

LeEmMA 4. Pick any K > 0, M, < M. Then
lim prob( size of the nth generation < KM") = b.

n—oo
Proor. See Harris [(1963), Theorem 8.1 and Remark 1, pages 13-14]. O

Say a branching process is d-infinite for d € N if there is some nonempty
subset of individuals such that each individual in the subset has at least d
children in the subset. Say that a given individual has a d, n-subtree if n = 0 or
the individual has at least d children each of whom has a d, n — 1-subtree.
Suppose that B is a branching process with generating function f and C is the
process with generating function f(r + (1 — r)x), being identical to B except
that births are aborted with probability r.

LEMMA 5. Suppose that for the process C, the probability of an individual
having at least d children is at least 1 — r. Then the process B is d-infinite with
probability at least 1 — r.

Proor. We show by induction that the probability of any individual having
a d, n-subtree is at least 1 — r. The case n = 0 is trivial. Now assume it is true
for some arbitrary n. Then the probability of an individual having a d, n + 1-
subtree is just the probability of having at least d children, provided that the
ones who will not have a d, n-subtree are aborted. By the induction hypothesis,
children will be aborted with probability at most r, so by the hypothesis of the
lemma, the probability of having a d, n + 1-subtree is at least 1 — r.

Thus the probability of the initial ancestor having a d, n-subtree for all #n is
at least 1 — r. Since each node has only finitely many children, the process will
be d-infinite in these cases. O

For any branching process, B, let B™®) denote the process whose nth genera-
tion is the nkth generation of B, with the relation of parenthood in B®
corresponding to ancestry in B.

LEMMA 6. For a branching process B, let f, b, M and M, be as in Lemma 4.
Then there is some k € N such that '

(4.13) prob( B® is | M} |-infinite) > (1 — b) /2.

ProOF. By Lemma 4 we can pick N large enough so that for all i > N,

(4.14) prob(size of ith generation of B > 4Mj/(1 — b)) > 3(1 — b) /4.
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By increasing N if necessary we can also assume that the following holds: Given
a population of size at least 4MYN /(1 — b), each member of which is killed
independently with probability (1 + b)/2,

(4.15) prob(at least M} of them survive) > 3(1 — b) /4.

Now let £ = N and apply Lemma 5 to B*) with the probability of abortion
equal to (1 + b)/2. Then

prob(having at least M children in B‘™ with abortion)
> 1 — prob(fewer than 4M" /(1 — b) children in B™) without abortion)
— prob(from at least 4M /(1 — b) conceptions fewer than M} are born)
>1-(1-b)/4—(1-b)/4=(1-b)/2 by (4.14) and (4.15).
So (4.13) follows from Lemma 5. O

Proor oF (2.8). Fix r with Arm(In(r)) > 1. Fit in a few more constants:
m(In(r)) = (1 + 8,)/Ar> (1 + 8)Ar > (1 + &) /Ar > 1/Ar.

Apply (4.12) of Chernoff’s theorem with m, = (1 + 8,)/Ar < m(In(r)). Then for
N sufficiently large and §, sufficiently small,

(4.16) IE(card{v € Ty: Y In(é(v")) > NIn(r) + 80}) > A1+ 8,) /)",

v'<p

We can now pick M sufficiently large to amend this to

E(card{v € Ty: Y In(¢(»)) > NIn(r) + 8,

v <p

(4.17) and ¢(») "' < Mforall » < V})

> M1 + 8,)/r)".

Now define a branching process B with p as its initial ancestor, whose individu-
als are elements of Ty, Ty, T,y, ... such that », € T,y has» € T, , )y as a child
iff vo<vand X, _,.,In(¢(r)) = Nin(r) + 8, and ¢(»)"' <M for all », <
v" < v and v is the first child of par(») that qualifies under these conditions. By
Lemma 6 there is a j such that BV is [((1 +8)/r) Nl-inﬁnite with nonzero
probability. In fact j can be chosen large enough so that the expression in
greatest-integer brackets is at least (1,/r)’~. Now the criterion given by Lemma 3
applies with 2 = jN to show that the probability of transience is nonzero. By the
reasoning in Section 3, this means the probability of transience, given an infinite
tree, is 1. O

5. Recurrence of RWRE. The main result in this section is a proof of (2.7).

Suppose E(In(¢)) < 0 and sup{Arm(In(r)): r € (0,1]} < 1.

(2.7) Then the RWRE is a.s. positive recurrent.
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To prove (2.7) we calculate a stationary distribution. Sufficient conditions for a
measure u to be stationary are that for every », i,

(5.1) p(»)C(ci(v)) = p(ci(v))A(ci(7)).
If we let u(p) = 1 and for » # p let
(5.2) p(v) = A(»)~ p<I;[g¢(V’),

then p is stationary, satisfying (5.1). If p(T) < oo then the walk is positive
recurrent.

The statement (2.9) follows immediately, since in this case E(u(T)) is finite so
w(T) is a.s. finite.

Roughly speaking, the reason p is finite under the hypotheses of (2.7) is that
there are fewer than r~" nodes of measure r” for each r < 1. This must be
formulated precisely and then integrated over r € [0,1]. The methods are
elementary, though in the case of Lemma 8 a more elegant argument ought to be
possible.

Let f(») = A(»)u(v). Note that f(»v) depends only on transition probabilities
of nodes strictly above ».

LEMMA 7. Fix any k € (1,0) and r € (0,1]. Assume IE/(ln(4>)) < In(r). Let
J,={v €T, f(v) =r~"}. Then

prob(card(,) > (Akm(In(r)))" for infinitely many n)=0.

Proor. For each » € T,, (4.11) gives prob( f(») = r") < m(In(r))". So

(5.3) E(card(J,)) < (Am(In(r)))"
and so
(5.4) E(Zcard( Jn)/(Akm(ln(r)))n) is finite.

In the event that card(J,) > (Akm(In(r)))" infinitely often, the sum in (5.4)
would be infinite; the event therefore has probability 0. O

LEMMA 8. Lemma 7 holds with p. in place of f.

PROOF. Let G,= {» € T,: p(v) > r"}. Suppose to the contrary that for
some a > 0, )
(5.5) prob(card(G,) = (Akm(In(r)))" infinitely often) = a.

By continuity of m we can choose r, and k, so that r>r, >0, k> &, > 1,
m(In(r,)) < 1 and k,;m(In(r,)) > km(In(r)). Then (5.5) holds with r, and &, in
place of r and k. Pick k, so that k, > k, > 1 and k,m(In(r,)) = b < 1 for some
b. By Lemma 7 with , and k, in place of r and %, we can pick N, large enough
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so that

(5.6) prob(card{» € T,: f(») > r}

> (Akym(In(r,)))" for some n > N,) < a/2.

By picking a larger N we can assume that prob(C(v) < (r,/r)*) < 8/L for any
fixed 8, where L is a bound for M(»). [This is the only place that the
boundedness of M is used. Any weaker condition still implying the truth of this
lemma can be substituted in (2.7).] We fix § small enough so that

for any n > N, and any collection of individuals killed
(5.7) independently with probability §, the probability of the
fraction of survivors being at least b is greater than 1 — a/2.

Now if the event in (5.5) occurs, pick the first n > N for which card(G,) >
(Ak,m(In(r))))". For any v, € G, and any child » of »,, f(») > r™®"! unless
C(v) < r*1/r™ < (r,/r)" Thus the event in (5.6) will hold for 7 + 1 unless

ncard{v:par(») € G, and C(») < n(rl/r)}
(5.8) (Meym(in(r,))) card{»: par(») € G,}
< (Akym(In(ry)))™
But (Ak,m(In(r,)))"** < Ab(Ak,m(In(r,)))", so if (5.8) holds then
(5.9) card({v:par(v) € G, and C(v) > (r;/r)"})/A card(G,) < b.

While the event par(v) € G, is not independent of C(»), it is easy to see that
prob(C(») < x) can only decrease when conditioned on par(») € G,. [Given the
values of A(»’) and B(»’) for p < v’ < par(v), the indicator function of the event
par(v) € G, is a decreasing function of A(par(»)). Since A(par(»)) is independent
of this o-field, prob(A(par(»)) < x) increases for any x when conditioned on
par(v) € G,. Then prob(C(r) < x) must decrease since C(v) = (1 — A(par(»)))Y
where Y is independent from all the preceding variables.] If we think of a node in
G, as being killed if the value of C at any of its children is less than (r,/r)",
then we can apply (5.7) to show that the probability of (5.9) is less than a/2.
Thus the event in (5.5), having probability at least a, entails the disjunction of
events in (5.6) and (5.9), each having probability less than a/2, a contradiction.

O

To finish proving (2.7) we use a compactness argument to estimate u(T,). Let
sup{Arm(In(r)): r <1} =1 — §, and pick 8, and 8, with 1 —§, <
1 — 8, <1 — §; < 1. Let Fbe the collection of intervals' {(g(x), x): x € (0,1)} U
{(g(1),1]} where g is any function such that

(5.10) g(x) <x and Axm(ln(g(x))) <1-8, forx e (0,1].

These cover (0,1] so, by compactness, pick a finite subcover J of #. Let
(ayy by)y...y(ayy by), (a1, 1] be the elements of o written in ascending order of
a;. Since E(In(¢)) <0 and m(E(In(¢))) = 1, we can assume without loss of
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generality that E(In(¢)) < In(a,) < In(1/A). Apply Lemma 8 to each (a, b) € J
with r = @ and 2 = (1 — §;)/(1 — §,). Then there is a.s. some N such that for
all (a, b) € J (including a = 1),

(5.11) card({r € T,: p(v) = a™})

< [M@ - 8;)/( - 8,))m(In(a))]” forn > N.
Then letting a, = 0, b, = a;, @,,, = 1 and assuming n > N we get that

uw(T,) < . ‘Zk 1a,’-'ﬂcard{v €T, p(r) >a;}
<Nal+ Y b[Am(In(a;))(1 - 8)(1 - 8,)]" [by (5.11)]

1<i<k
<(k+1)1-28)" [by(510)],
so u(T) is finite.

6. Proof of Theorem 1 and further questions.

Proor oF THEOREM 1. Applying (2.7) and (2.8) to equations (3.2) and (3.3),
it remains only to calculate A,. We first establish (2.10). Suppose 1 < E(In(¢)) <
oo and also that m(0) < 1/A. Then for any r € (0,1], (2.5) gives us

(6.1) Arm(In(r)) = inf{Ar'~‘E(¢): t € R}.

By assumption this is less than 1 for » = 1. The infimum for r = 1 must occur at
some ¢t < 1 since E(¢) > 1 implies E(¢*) > (E(¢))* > E(¢) for ¢t > 1 by Jensen’s
inequality. But for positive r and ¢ < 1, (6.1) is increasing in r, so the supremum
of (6.1) over r € (0,1] must be less than 1, establishing (2.10).

Now we calculate m(0) as a function of A. Unravelling the definitions gives

m(0) = inf{E[B(1 — A)/A]": t € R}
= ilgf[I‘((S + A)/20)T(1/24)/T((1 + A)/2A0)T(1/A)T(1/24)T(1/24)]

6.2
( ) xff[y(l _ x)/x]tx(l—A)/2A(1 _ x)l/A—1y1/2A—1(1 _y)1/2A—-1dxdy

= infD((1+ 4)/24 ~ O)T(1/24 + ¢)/T((1 + 4)/24)T(1/24).

Since log(T') is concave, the minimum is reached when ¢ = }, making the two
factors in the numerator equal. For A > A, = 4.29, the expression (6.2) is less
than 1/2. Using (6.2) and (6.3) with ¢ = 1 gives E(¢) = 1/(1 + A) for A > 1 and
E(¢) = oo for A < 1. Also it is easy to see that E(In(¢)) < 0 for A > 1 since for
A =1 the distributions of A and 1 — A are identical. Then the conditions of
(2.10) and (2.8) are satisfied for A > A, and (2.7) applies for A < A,. O

Questions of reinforced random walk on other graphs are still wide open.
Diaconis originally asked me about the d-dimensional integer lattice Z¢. 1
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believe it is not even known whether there is a A > 0 for which the reinforced
random walk on Z? is recurrent!
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