A CONVERGENCE PROPERTY FOR CONDITIONAL EXPECTATION¹

By Aurel Cornea and Peter A. Loeb

Katholische Universität Eichstätt and University of Illinois

Convergence properties are obtained for repeated applications of the operator $f \to |f - E(f)|$, where E denotes conditional expectation. If, for example, E is the integral with respect to a probability measure P, $f \in L^{\infty}(P)$ and T(f) = |f - E(f)|, then $T^n(f)$ converges to 0 in $L^{\infty}(P)$ and $\Sigma T^n(f)$ converges in $L^1(P)$.

Fix a probability space (X, \mathcal{B}, μ) and let \mathscr{A} be a sub- σ -algebra of \mathscr{B} . Let $L(\mathscr{A}, \mathscr{B})$ denote the set of functions f on X such that $f \in L^1(\mathscr{B})$ and there is a function H_f in $L^1(\mathscr{A})$ with $|f| \leq H_f$ almost everywhere. Given $f \in L(\mathscr{A}, \mathscr{B})$, let E(f) denote the conditional expectation with respect to \mathscr{A} and let T(f) denote the function |f - E(f)|. Further, let M(f) be the greatest lower bound of the "functions" in $L^1(\mathscr{A})$ which dominate f almost everywhere. As usual, we are really working with equivalence classes of functions and with relations that hold almost everywhere with respect to (X, \mathscr{B}, μ) . For example, M(f) dominates f almost everywhere and has the smallest integral of the family of dominating functions in $L^1(\mathscr{A})$. If \mathscr{A} is the trivial σ -algebra $\{X, \phi\}$, then M(f) is the essential supremum of f.

Theorem. Given $f \in L(\mathscr{A}, \mathscr{B})$, the sequence $M(T^n(f))$ converges to 0 almost everywhere and the series $\sum_{1}^{\infty} T^n(f)$ converges in $L^1(\mathscr{B})$; in fact, $\sum_{1}^{\infty} E(T^n(f)) \leq 4M(|f|)$. If \mathscr{A} is the trivial σ -algebra, then $T^n(f)$ converges to 0 in $L^{\infty}(\mathscr{B})$.

Remark. Let $\{\mathscr{A}_n \colon n \in \mathbb{N}\}$ be an arbitrary sequence of sub- σ -algebras of \mathscr{B} . For each $n \in \mathbb{N}$, let E_n denote conditional expectation with respect to \mathscr{A}_n , T_n be the mapping $f \to |f - E_n(f)|$ and V_n be the mapping $T_n \circ T_{n-1} \circ \cdots \circ T_1$. Testing the preceding results with L^2 methods, J. L. Doob in private correspondence has shown that $V_n(f)$ converges to 0 almost everywhere when $f \in L^2(\mathscr{B})$. On the other hand, if $\{\mathscr{A}_n \colon n \in \mathbb{N}\}$ is an increasing sequence of sub- σ -algebras in \mathscr{B} , one can show with a slight modification of our proof that $\Sigma_1^\infty E_n(V_n(f)) \leq 4M_1(|f|)$, where M_1 denotes the greatest lower bound in $L^1(\mathscr{A}_1)$ and $f \in L(\mathscr{A}_1, \mathscr{B})$.

PROOF OF THE THEOREM. To prove the theorem we need some preliminary results. First we note that T is subadditive, i.e., for all $f, g \in L(\mathscr{A}, \mathscr{B})$, $T(f+g) \leq T(f) + T(g)$. For each $f \in L(\mathscr{A}, \mathscr{B})$, T(f) is again in $L(\mathscr{A}, \mathscr{B})$; we set m(f) = -M(-f). Given $h \in L^1(\mathscr{A})$, T(f+h) = T(f). If, moreover, h

Received September 1987.

Key words and phrases. Conditional expectation, L1 convergence.

353

¹Work supported in part by NSF Grant DMS-84-01294.

AMS 1980 subject classifications. Primary 28A20, 60F25.

takes only the values 1 and -1, then T(hf) = T(f). If H = M(|f|), then f + H is nonnegative almost everywhere and T(f + H) = T(f); also note that $2M(f + H) \le 4H = 4M(|f|)$. Thus for the proof we need only consider a nonnegative function $f \in L(\mathcal{A}, \mathcal{B})$, but we replace 4M(|f|) with 2M(f) in the statement of the theorem. For such an f we have $M(T(f)) \le M(f)$.

We define two new operators s and S on $L(\mathscr{A}, \mathscr{B})$. The first is obtained by setting s(g) equal to the characteristic function of the set U(g) in \mathscr{A} where $(M(g) + m(g))/2 \ge E(g)$. (Where necessary, we change the value $+\infty$ or $-\infty$ to 0.) The second operator is S = E + sT - (1 - s)T. Fix $g \in L(\mathscr{A}, \mathscr{B})$. Since

$$(1 - s(g))m(g) + s(g)E(g) \le S(g) \le s(g)M(g) + (1 - s(g))E(g)$$

and $m(g) \leq E(g) \leq M(g)$, we have

$$m(g) \le m(S(g)) \le M(S(g)) \le M(g)$$
.

On the subset of U(g) where $g \ge E(g)$, S(g) = g. On the subset of U(g) where g < E(g), we have

$$0 \le S(g) - g = 2(E(g) - g) \le 2(m(S(g)) - g) \le 2(m(S(g)) - m(g)).$$

Thus on the entire set U(g), $|S(g) - g| \le 2(m(S(g)) - m(g))$. On the complement of U(g) we have by similar calculations the inequality $|S(g) - g| \le 2(M(g) - M(S(g)))$, so on all of X,

$$|S(g) - g| \le 2(M(g) - M(S(g)) + m(S(g)) - m(g)).$$

It follows that

$$M(|S(g) - g|) \le 2(M(g) - M(S(g)) + m(S(g)) - m(g)).$$

To simplify our notation, we fix a nonnegative $f \in L(\mathscr{A}, \mathscr{B})$ and set $f_0 = f$ and $f_n = S^n(f)$ for $n \ge 1$. We further set $h_n = 2s(f_n) - 1$ for all $n \ge 0$. It follows from the preceding calculations that

$$\sum_{0}^{\infty} |f_{n+1} - f_n| \le \sum_{0}^{\infty} M(|f_{n+1} - f_n|) \le 2(M(f) - m(f)) \le 2M(f).$$

In particular, f_n converges almost everywhere. From the definition we have $f_{n+1} = E(f_n) + h_n T(f_n)$. Using this equality and the properties of T stated at the beginning of the proof, one can show inductively that

$$T^{n+1}(f) = T(f_n) = h_n(f_{n+1} - E(f_n)) = |f_{n+1} - E(f_n)|.$$

Thus

$$E(T^{n+1}(f)) = h_n E(f_{n+1} - f_n) = |E(f_{n+1} - f_n)| \le E(|f_{n+1} - f_n|)$$

$$\le M(|f_{n+1} - f_n|),$$

SO

$$\sum_{1}^{\infty} E(T^{n}(f)) \leq \sum_{0}^{\infty} M(|f_{n+1} - f_{n}|) \leq 2M(f).$$

Now we note that

$$\int \sum_{1}^{\infty} T^{n}(f) = \sum_{1}^{\infty} \int E(T^{n}(f)) \leq 2 \int M(f).$$

Hence $\Sigma_1^{\infty}T^n(f)$ is finite almost everywhere, so $T^n(f)$ converges to 0 almost everywhere. Let F denote the limit of the f_n 's. Since $f_{n+1} = E(f_n) + h_n T^{n+1}(f)$, F = E(F) a.e. by the dominated convergence theorem for conditional expectations. We may therefore assume that F is \mathscr{A} measurable. By the subadditivity of M,

$$M(T^{n+1}(f)) = M(|f_{n+1} - E(f_n)|) \le M(|f_{n+1} - F|) + |F - E(f_n)|.$$

It is also easy to see that

$$M(|f_n - F|) \le \sum_{n=0}^{\infty} M(|f_{k+1} - f_k|).$$

Hence $\lim_{n\to\infty} M(|f_n-F|)=0$, so $\lim_{n\to\infty} M(T^n(f))=0$ almost everywhere. \Box

EXAMPLE 1. Let $X = \{a, b\}$. Let \mathscr{B} be the power set of X and let $\mathscr{A} = \{X, \phi\}$. Also let $\mu(\{a\}) = \alpha$ and $\mu(\{b\}) = \beta$ with $0 < \alpha < 1$. Let D and V denote the operators on $L^{\infty}(\mathscr{B})$ defined by setting D(f) = f - E(f) and V(f) = |f|. Note that $T = V \circ D$; we set $W = D \circ V$. It follows that $T \circ V = V \circ W$ and for any $n \ge 1$ and any f, $T^{n+1}(f) = V(W^n(D(f)))$.

Fix f with f(a) = 1 and f(b) = 0. Now D(f) takes the values $u_0 = \beta$ at a and $v_0 = -\alpha$ at b, whence $\alpha |u_0| = \beta |v_0|$. For $n \ge 1$, let $W^n(D(f))$ take the values u_n at a and v_n at b. If $n \ge 0$ and $\alpha |u_n| = \beta |v_n|$, then

$$u_{n+1} = |u_n| - (\alpha |u_n| + \beta |v_n|) = \beta (|u_n| - |v_n|) = |u_n|(1 - 2\alpha),$$

$$v_{n+1} = |v_n| - (\alpha |u_n| + \beta |v_n|) = \alpha (|v_n| - |u_n|) = |v_n|(1 - 2\beta)$$

and

$$\alpha |u_{n+1}| = \beta |v_{n+1}|.$$

By iteration we have for all $n \ge 0$, $T^{n+1}(f)(a) = |u_n| = \beta |1 - 2\alpha|^n$ and $T^{n+1}(f)(b) = |v_n| = \alpha |1 - 2\beta|^n$, so

$$\sum_{1}^{\infty} E(T^{n}(f)) = \alpha \beta \left(\frac{1}{1 - |1 - 2\alpha|} + \frac{1}{1 - |1 - 2\beta|} \right) = \max(\alpha, \beta).$$

EXAMPLE 2. Let $(X_i, \mathcal{B}_i, \mu_i)$, $i \in \mathbb{N}$, be a sequence of probability spaces each of the type of Example 1 with $X_i = \{a_i, b_i\}$, $\mu_i(\{a_i\}) = \alpha_i$ and $\mu_i(\{b_i\}) = \beta_i$. Let (X, \mathcal{B}) be the direct sum of the spaces (X_i, \mathcal{B}_i) and let $\mu = \sum_{i=1}^n 2^{-i} \mu_i$. Let \mathcal{A} be the σ -algebra generated by the sets X_i . Each of the operations E, T and M are computed independently on each subset X_i of X. Take f with $f(a_i) = 1$ for each i and $f(b_i) = 0$ for each i. Then $T^{n+1}(f)(a_i) = \beta_i |1 - 2\alpha_i|^n$. If for all i we choose $\alpha_i < \frac{1}{2}$ so that $(1 - 2\alpha_i)^i = \frac{1}{2}$, we have $T^{n+1}(f)(a_n) \ge \frac{1}{4}$. In this case, the sequence $T^n(f)$ does not converge in $L^{\infty}(\mathcal{B})$.

Acknowledgment. The authors are indebted to Professor J. L. Doob for helpful conversations.

KATHOLISCHE UNIVERSITÄT EICHSTÄTT OSTENSTRASSE 26-28 D-8078 EICHSTÄTT FEDERAL REPUBLIC OF GERMANY

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 WEST GREEN STREET URBANA, ILLINOIS 61801