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A CONVERGENCE PROPERTY FOR CONDITIONAL
EXPECTATION!

BY AUREL CORNEA AND PETER A. LOEB
Katholische Universitdit Eichstitt and University of Illinois

Convergence properties are obtained for repeated applications of the
operator f — |f — E(f)|, where E denotes conditional expectation. If, for
example, E is the integral with respect to a probability measure P, f € L*( p)
and T(f) = |f = E(f)], then T"(f) converges to 0 in L®(P) and £T"(f)
converges in L'(P).

Fix a probability space (X, %, p) and let &/ be a sub-o-algebra of #. Let
L(sZ, #) denote the set of functions f on X such that f € LY(#) and there is a
function H; in LY(«/) with |f| < H, almost everywhere. Given f € L(%/, %), let
E( ) denote the conditional expectation with respect to .« and let T( f ) denote
the function |f — E(f)|. Further, let M(f) be the greatest lower bound of the
“functions” in LY(%/) which dominate f almost everywhere. As usual, we are
really working with equivalence classes of functions and with relations that hold
almost everywhere with respect to (X, %, p). For example, M( f) dominates f
almost everywhere and has the smallest integral of the family of dominating
functions in LY&/). If &/ is the trivial o-algebra {X, ¢}, then M(f) is the
essential supremum of f,

THEOREM. Given f € L(/, #), the sequence M(T™(f)) converges to 0
almost everywhere and the series LPT™(f) converges in L\(%); in fact,
LFE(T™(f)) < 4M(|f|). If o is the trivial o-algebra, then T"(f) converges to 0
in L*(%).

REMARK. Let {#/,: n € N} be an arbitrary sequence of sub-¢-algebras of %.
For each n € N, let E, denote conditional expectation with respect to «7,, T\, be
the mapping f - |f — E,(f)| and V, be the mapping T, oT, o -+ oT,. Test-
ing the preceding results with L? methods, J. L. Doob in private correspondence
has shown that V,(f) converges to 0 almost everywhere when f € L% %). On
the other hand, if {.#/,: n € N} is an increasing sequence of sub-¢-algebras in %,
one can show with a slight modification of our proof that T*°E (V,(f)) < 4M(fD,
where M, denotes the greatest lower bound in LY(#/,) and f € L(.%¢,, %).

PROOF OF THE THEOREM. To prove the theorem we need some preliminary
results. First we note that T is subadditive, ie., .for all f,ge L(«, %),
T(f+8) < T(f)+ T(g). For each f e L(,#), T(f) is again in L(, B);
we set m(f) = —M(—f). Given h € LX), T(f + h) = T(f). If, moreover, h
—_——
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takes only the values 1 and —1, then T(hf ) = T(f ). If H = M(|f|), then f + H
is nonnegative almost everywhere and T(f+ H) = T(f); also note that
2M(f + H) < 4H = 4M(|f|). Thus for the proof we need only consider a non-
negative function fe€ L(%/, %), but we replace 4M(|f|]) with 2M(f) in the
statement of the theorem. For such an f we have M(T(f)) < M(f).

We define two new operators s and S on L(.%Z, #). The first is obtained by
setting s(g) equal to the characteristic function of the set U(g) in &/ where
(M(g) + m(g))/2 = E(g). (Where necessary, we change the value + o0 or — 0
to 0.) The second operator is S = E + sT — (1 — s)T. Fix g € L(«, #). Since

(1-s(g))m(g) +s(g)E(g) <S(g) <s(g)M(g) + (1-s(g))E(g)
and m(g) < E(g) < M(g), we have
m(g) <m(S(g)) < M(S(g)) < M(g).

On the subset of U(g) where g > E(g), S(g) = £. On the subset of U(g) where
g < E(g), we have

0<S(g) —g=2(E(g) - g) <2(m(S(g)) - g) < 2(m(S(g)) — m(g)).

Thus on the entire set U(g), |S(g) — g| < 2(m(S(g)) — m(g)). On the comple-
ment of U(g) we have by similar calculations the inequality |S(g) — g| <
2(M(g) — M(S(g))), so on all of X,

1S(g) — gl < 2(M(g) — M(S(g)) + m(S(g)) — m(g)).
It follows that
M(1S(g) - 8l) < 2(M(g) — M(S(g)) + m(S(g)) — m(g)).

To simplify our notation, we fix a nonnegative f € L(%/, #) and set f, = f
and f,= S"(f) for n > 1. We further set A, = 2s(f,) —1 for all n > 0. It
follows from the preceding calculations that

%Vnﬂ —hl =< ioo:M(Vnﬂ —fal) < 2(M(f) -m(f)) <2M(f).

In particular, f, converges almost everywhere. From the definition we have
foi1 = E(f,) + h,T(f,). Using this equality and the properties of T stated at
the beginning of the proof, one can show inductively that

Tn+1(f) = T( fn) = hn( fn+1 - E( fn)) = |fn+1 - E( fn)l'
Thus
E(Tn+1( f )) = hnE( fn+1 - fn) = |E( fn+1 - fn)l < E(lfn+1 - fnl)
< M(lfn+l - fnl)’

S0,

iE(T"( ) = %M(v,,ﬂ —h) < 2M(f).
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Now we note that
fiT"(f) - ?fE(T”(f)) <2[M(}).

Hence X°T"(f) is finite almost everywhere, so T™(f) converges to 0 almost
everywhere. Let F denote the limit of the f,’s. Since f,,, = E(f,) + h,T"*([),
F = E(F) a.e. by the dominated convergence theorem for conditional expecta-
tions. We may therefore assume that F is .oZmeasurable. By the subadditivity
of M,

M(T™Y(f)) = M(fpsr — E(f,)l) < M(f,., — FI) + |F — E(f,).

It is also easy to see that

M(f, = F1) < XM(fpsr — fel)-
Hence lim,, ,  M(|f, — F|) = 0, so lim,,_, .M(T"(f)) = 0 almost everywhere. O

ExaMPLE 1. Let X = {a, b}. Let # be the power set of X and let &=
{X, ¢}. Also let u({a}) = a and p({b}) = B with 0 < a < 1. Let D and V denote
the operators on L*(%#) defined by setting D(f)=f— E(f) and V(f) = |f].
Note that T = Vo D; we set W= DoV. It follows that ToV = VoW and for
any n > 1 and any f, T"*X(f) = V(W™(D({))).

Fix f with f(a) =1 and f(b) = 0. Now D(f) takes the values u, = 8 at a
and vy, = —a at b, whence aluy| = Blvy|. For n > 1, let W*(D(f)) take the
values u, at a and v, at b. If n > 0 and a|u,| = B|v,|, then

Upi1 = |U,] — (@lu,] + Blogl) = Blu,l — [0]) = |u,l(1 - 24),
Vui1 = [0l = (aluy] + Blogl) = allog] — [u,l) = |v,l(1 — 28)
and
alt, 1] = Blonal-

By iteration we have for all n >0, T""(f)(a)=|u, = B|1 — 2a|* and
T (£ )(b) = |v,| = all — 2B|", s0

, 1
+
I1-2« 1-|1—28

= max(a, B).

RE(TH(1) = af| 1=

ExaMpLE 2. Let (X;, %, pn;), i € N, be a sequence of probability spaces each
of the type of Example 1 with X, = {a,, b;}, p;({a;}) = «, and p;({d;}) = B;. Let
(X, &) be the direct sum of the spaces (X;, #;) and let p = X327 u;. Let o be
the o-algebra generated by the sets X,. Each of the operations E, T and M are
computed independently on each subset X; of X. Take f with f(a;) = 1 for each
i and f(b;) =0 for each i. Then T"*!(f ) a;) = Bl — 2a,|" If for all i we
choose a; < 1 so that (1 — 2a;)" = 1, we have T"**(f )(a,) > i. In this case, the
sequence T*( f ) does not converge in L®(%).
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