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THE SCALING LIMIT OF SELF-AVOIDING RANDOM WALK IN
HIGH DIMENSIONS!

BY GORDON SLADE

McMaster University

The Brydges—Spencer lace expansion is used to prove that the scaling
limit of the finite-dimensional distributions of self-avoiding random walk in
the d-dimensional cubic lattice Z¢ is Gaussian, if d is sufficiently large. It is
also shown that the critical exponent y for the number of self-avoiding walks
is equal to 1, if d is sufficiently large.

1. Introduction. A T-step self-avoiding random walk in the d-dimensional
cubic lattice Z¢ is an ordered (T + 1)-tuple w = (w(0), w(1),..., w(T')) with each
w(i) € Z% w(0)=0, |[w(i+1)— w(@)| =1 and w(i) # w(j) for i #j. A prob-
ability measure is defined on the set of T-step self-avoiding walks by assigning
equal probability to each walk. Although this model has a very simple definition,
very little has been proved about it on a rigorous level. Two basic problems are
to find the asymptotic behaviour as T'— oo of the number, c;, of T-step
self-avoiding walks and the expected value, R%, of w(T)2. The asymptotic
behaviour of ¢; and R% depends on the dimension d of the lattice, and up until
now the rigorous results for these quantities are primarily for very high dimen-
sions. A review of some general approaches to the problem for d > 2 is Freed
(1981). The problem has been studied numerically in lower dimensions, see, for
example, Madras and Sokal (1988).

In Kesten (1964) c; is studied for high dimensions and it is shown that

B, = Tlim HT=2d-1- (2d)—1 + O(2d)—2.

(The limit B; is known to exist in all dimensions [Hammersley (1957)].) It is
believed in fact that cy ~ const. BIT?"1, as T — o, for some d-dependent
exponent y. We will show that for d sufficiently large, ¢ ~ const. 87 and hence
y = 1. In Slade (1987) it is shown that for d sufficiently large R% ~ DT as
T — oo, where the diffusion constant D is greater than 1. This last result reflects
the Gaussian nature of self-avoiding walk in high dimensions. It is believed that
for d > 4 the scaling limit of self-avoiding walk is Gaussian (with logarithmic
corrections in d = 4). This view is supported by the work of Bovier, Felder and
Frohlich (1984), and for a related model, the loop-erased self-avoiding walk, by
the work of Lawler (1980, 1986).

In this paper we prove that the scaling limit of the finite-dimensional
distributions of self-avoiding walk is Gaussian, if d is sufficiently large. Our
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method is based on the lace expansion [Brydges and Spencer (1985)], which is
related to the cluster expansions of statistical mechanics and constructive quan-
tum field theory [Brydges (1986)]. The lace expansion was first used to study the
weakly self-avoiding random walk for d > 5. In the weakly self-avoiding walk
model, walks having self-intersections are not assigned probability 0, but rather a
slightly smaller probability than walks which do not self-intersect. In Slade
(1987) it was shown how the lace expansion could be used to study the strictly
self-avoiding walk, obtaining convergence of the expansion by taking d to be
large rather than by taking the probability penalty associated with self-intersec-
tions to be small as in Brydges and Spencer (1985).

To state our main result precisely, we first introduce some notation. For
t €[0,1] and w a self-avoiding walk, let
(1.1) X,(t,w) = n~%w([nt]).
Expectation with respect to the uniform measure on the T-step self-avoiding
walks will be denoted by ( - ), and Wiener measure on R¢ by dW. The measure

dW is normalized so that [e* B:dW = exp[ —Dk*t/2d], where D is the diffu-
sion constant referred to previously. Our main result is the following theorem.

THEOREM 1.1. Let N be a positive integer, 0 < t, <t, < -+ <ty<1and
let f be a bounded, continuous, real-valued function on RN. There is an integer
d, > 5 such that for d > d,,

lim (f(X,(t1,0)505 Xoltnr ©)))n1 = [#(B,,-.., B,) dW.

In other words, the finite-dimensional distributions of scaled self-avoiding
walk converge weakly to those of Brownian motion, in sufficiently high dimen-
sions. It would be of interest to refine our methods to obtain Theorem 1.1 for
d > 4, as well as to prove tightness and thereby show that self-avoiding walk
converges in distribution to Brownian motion in high dimensions. It follows from
Theorem 1.1 that for high dimensions, if self-avoiding walk does converge in
distribution, it must be to Brownian motion.

No effort has been made here to obtain the best possible value of d,. In Slade
(1987), d, is certainly greater than 12, since otherwise one of the norms
appearing in Theorem 4.1 there will be infinite. In addition, there are many
places, both in Slade (1987) and this paper, where infinite series are dominated
by an essentially geometric series whose ratio is proportional to an inverse power
of d. By taking d large the infinite series can be controlled, but the value of d,
becomes elusive, and possibly is larger in this paper than in Slade (1987). The
problem of controlling infinite series appears to be a more significant difficulty in
extending these methods to d > 4 than the divergent norms [which were avoided
in Brydges and Spencer (1985)]. '

In the remainder of this section we introduce the main ideas involved in the
proof of Theorem 1.1. Let

[0 ifw(s)# w(2),
U(w) = { -1 if w(s) = w(?),
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let 7> 0, let
Bla,b]={st:0<t-s<r,s,te[a,b]NnZ)
and let
(1.2) K.[a,0]= IT (1+Ude)).
sted,a, b]

Define

(1.3) N(x,T)=(@d)"T ¥ K.[o,T].
@:0—x
o|=T

The sum in (1.3) is over all simple random walks, i.e., nearest-neighbour walks
with no self-avoidance constraint, which begin at the origin and end after T
steps at x € Z% By convention, N,(x,0) = 8,0 Then (2d YN.(x,T) is the
number of distinct T-step walks from the origin to x which are self-avoiding on
time intervals of length less than or equal to the memory 7. 7 = 0 corresponds to
simple random walk while 7 > T corresponds to self-avoiding random walk. The
following Fourier and Laplace transforms of N (x, T') will be distinguished from
one another by their arguments. Define

(1.4) N(k,T)= Y N(x,T)e** ke[-mn]°

xez?
and
(1.5) N(k,z)= Y N/(k,T)zT, =zeC.

T=0
Then ¢, = (2d)'Ny(k =0, T).
Let
d .
(1.6) D(k)=d 'Y cosk?,
j=1

the £’ being the components of k. For simple random walk it is well known
that

(1.7) Nk, T)=D(k)".
Substituting (1.7) into (1.5) gives
Ny(k,z) = (1 — zD(k)) .
We define II (%, z) and F,(k, z) implicitly by
(1.8) N(k,z) = (1—-2D(k) — 1 (k,2)) " = F(k,2)""

The quantity II (%, z) is a measure of the difference between the self-avoiding
walk and the simple walk. The lace expansion is an expansion of II (%, z) in a
power series in z, which can be used to estimate IT (%, z) and its derivatives. In
Section 2 we give a self-contained derivation of the lace expansion. Related ideas
are used in the work of Alkhimov (1984).
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In Slade (1987) it was shown that for large d, II (%, z) is analytic in z for z in
a disc centred at the origin with radius larger than r,(0), where r, (%) is the radius
of convergence of (1.5). Using the Cauchy integral formula and the behaviour of
IT,(%, 2) for z near the pole of N,(%, z) at r,(k), it will be shown in Section 3 by
the method of Brydges and Spencer (1985) that for large d,

. y X y
nh_,n;o <ezk (t w)>[nt]

(19) Noi(n ™2, [n£])

- 1 n i - 2

= nllbn:o N.Onel) exp| — Dk*t/2d].
By a standard result [Billingsley (1968), Theorem 7.6], weak convergence of
probability measures on R* is equivalent to pointwise convergence of character-
istic functions, so (1.9) implies Theorem 1.1 in the case N = 1.

The general case of Theorem 1.1 is obtained in Section 4, by induction on N.

Since weak convergence of probability measures is preserved by continuous
functions, the conclusion of Theorem 1.1 can be replaced by

nlgI:o<f(Xn(t1’ w)’ Xn(t2’ 0.)) - Xn(tl’ O)), ]
(1.10) X (tn; ©) = Xo(ty-1,©)))pney)

- [#(B,,B, - B,,..., B, - B, ) dW.

Again using the fact that weak convergence of probability measures on R* is
equivalent to pointwise convergence of characteristic functions, it suffices to
obtain (1.10) for the special case

N
(1.11) F(Yreeer D) = exp[i )y k,--y,],

j=1

where each y; and each k; is an element of R“.

Let k = (k,,..., ky), and fix real numbers a,, a,,..., ay with0 = a, < a, <

- <ay. Letkey=%Fk -y + - +ky-yy and let
Aw(a) = (o([a;]), ©([a,]) = w([a,]),. .., @([ay]) - w([ay_.])).
Define
(1.12) M(k,a) = (2d)" ¥ e2e@K [0,[ay]].
©, lo|=[an]
Then the expectation whose limit is being taken in (1.10), with f given by (1.11),
is equal to
M,, (n"'?k, nt)

N, (0,[nty]) °
where t = (¢,,..., ty). Therefore it suffices to show that for large d,

M, (nk, nt) DN
e A AL I W 7P 2 U

where £, = 0.
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We obtain (1.13) in Section 4 by induction on N, with the case N = 1 being
given by (1.9). Suppose that (1.13) holds when N is replaced by N — 1. To
handle the induction step, we use an expansion for M,(k, nt) which attempts to
decouple the walk on the time intervals [0, [nt,_,]] and [[nty_,], [nty]]. In fact,
in the first term in the expansion these two portions of the walk are independent
of each other. Subsequent terms in the expansion involve three independent
subwalks: a self-avoiding walk on an initial time interval [0, I,], a self-intersect-
ing walk on an interval I = [I,, I,] containing [nt,_,] and a self-avoiding walk
on [I,,[nty]]. It will be shown that the significant terms in the expansion are
those for which |I| = I, — I, < b,, where b, is any sequence satisfying b, = oo
and b,n"Y2 -0, eg., b, =n'% For these relatively short intervals I, the
induction step can be taken.

The remainder of this paper is organized as follows. In Section 2 the lace
expansion for II (%, z) is derived, and results from Slade (1987) concerning
convergence of the expansion are recalled. A related expansion for M, (k, a) is also
derived. In Section 3 the induction proof is begun by proving (1.9). In Section 4
the expansion for M (k,a) is used to advance the induction and obtain (1.13),
completing the proof of Theorem 1.1. Finally, in Section 5 it is shown that the
critical exponent y is equal to 1, if d is sufficiently large.

2. The lace expansion. In this section we derive the expansions for IT (%, 2)
and M (k,a) referred to in Section 1, beginning with II (%, z). Substitution of
(1.3) into (1.4), and the result into (1.5), yields

] 2 \T .
(2.1) N(k,2)=1+ ), (—) Y e MK [0,T].
T=1 2d w, |w|=T

< Expanding the product (1.2) yields
(2:2) k[o,7]= Y [lU.

Bc4,[0,T] st€B

We want to perform a partial resummation of (2.2) to insert into (2.1), and to
this end introduce several definitions.

A pair st € £.[0,T] is called a bond. A set B of bonds is a graph. A
connected graph G on [a, b] is a graph consisting of bonds st with s and ¢ in
[a,b], such that a and b are in bonds in G and for every m € (a, b) there is a
bond st € G with s <m < t. A lace on [a, b] is a connected graph on [a, b]
~ such that the removal of any one bond from the graph results in a graph on
[a, b] which is not connected. (Laces are called vines in the graph theory
literature [Bondy and Locke (1981)].) The set of laces on [a, b] having all bonds
of length 7 or less is denoted by %,[a, b].

We now define a procedure which associates to every connected graph G
on [a, b] a corresponding lace £(G) c G. £(G) has bonds st syt,,...,
where s, =a, t, =max{t: at€ G}, t;,,=max{t: st€G, s<{}, s =
min{s: - st; € G}. An example is illustrated in Figure 1. Given a lace
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Fic. 1.

Le%[a,b], a bond st %,[a,b] \ L is said to be compatible with L if
&L (L U {st}) = L. The set of bonds compatible with L is denoted %,(L).

Returning to (2.2), we partition the set of graphs being summed over into two
parts: those for which 0 is not in a bond in B and those for which it is. The sum
over the former graphs is K, [1, T']. If B does have a bond containing 0, let a(B)
be the largest value of a such that the set of bonds in B lying in the interval
[0, a] forms a connected graph. Then the sum over graphs having a bond
containing 0 is

S Y IUK[aT]

a=2 G on [0, a] St€EG

where the second sum is over connected graphs G. The sum over a begins at
a = 2 rather than a = 1 since U, = 0. The sum over connected graphs can be
further resummed as

Z l_[ U, = Z Z 1—[ U, I—[ Uy

G on [0, a] St€G Le%,[0,a] G: £(G)=L steL  s'te€G\L

= X I1U, Il (1+U,)=4J[0a]

Le£,[0,a] StEL s'te¥,(L)

(2.3)

Thus we have

(2.4) K.[0,T]=K_[1,T] + i J.[0,a]K,[a,T].

a=2
Substitution of (2.4) into (2.1) leads to
Nk, z)=1+ Y (—) Y et oMK [1,T]
T=1 2d lw|=T
(2.5) o o
+L % (2d) L o=y [0,a]K,[a,T].

|wl=T

In the second term on the right side of (2.5) the sum over w can be factored
intg independent sums over walks on the intervals [0,1] and [1, T']. Performing
the sum over walks on [0,1] leads to the value zD(k)N,(k, z) for the second
term. Similarly the sum over w in the third term on the right side of (2.5) can be
factored into independent sums over walks on the intervals [0, a] and [a, T]. A
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©

0 T 0,T
sp.T
////f_——j;7‘::::::—_—-N\\\\\\* 62
0 Sy tg T 0,t;
32’t2
0,t S2.T
0 s, t; Szt T 1 3
Szltz Sll T

0 tl 83,t3
F1a. 2.
little algebra then leads to
N.(k,z) =1+ zD(k)N,(k, 2)
[oe] 2 a .
(26) + T (55) T e*eoufo,alN(k,2).
a=2 2d |w|=a

Comparing (2.6) with (1.8) yields the lace expansion for II (%, z) [Brydges and
Spencer (1985)]:

o / 2\T )
(2.7) 11(k, z) = 2(—) T om0, T].
. T=2 2d w, lw|=T

By symmetry the e “ in this formula could be replaced by cos(k - w(T')).
Inserting the expression (2.3) for J,[0, T'] into (2.7) gives

Mk2)= 5 (5) T e

T=2 w, lw|=T

x Y U, TT (1+Up).

Le%,[0,T] steL s't’e¥%,(L)

(2.8)

The factor I, ;U,, is 0 unless w has self-intersections as indicated in Figure 2.
The generic walk whose topology is consistent with I'1,, . ;U,, # 0 for an N-bond
lace L is denoted G,. The walk G, will be considered to consist of 2N — 1
subwalks on the intervals [0, s,],[s,, t;1,[ 4, S5, . - . . Subwalks which may have
length 0 are slashed in Figure 2. All unslashed subwalks consist of at least one
step,, ’

An upper bound for |II.(%, z)| can be obtained as follows. In (2.8) take
absolute values inside all sums. In the product over €, (L), omit all bonds s’¢’ for
which s’ and ¢’ are not in the same subwalk. This has the effect of removing the
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interaction between distinct subwalks. Derivatives of II (%, z) with respect to z
or k can be bounded similarly. It is shown in Brydges and Spencer (1985) and
Slade (1987) how to obtain in this way the estimate:

1020 £TL,(k, 2)| < 8, 0ll02(2NO(x, |21))

0 1
+ ¥ X T ITixa7N(x, |21) s

N=2  a=0Gf

(2.9)

Here

Nz, [2) = L No(x, T)l=I",
T=a

G and G§ are, respectively, the subwalks in G which can and cannot have
length 0, and IT,_oI1g is the product over all subwalks in Gy. The product
consists of 2N — 1 factors, any one of which may be taken to be the x-space L®
norm. The other factors are x-space L? norms. The unlabelled sum is over ways
of choosing nonnegative multiindices u; such that Yu; = u and nonnegative v;
such that Yv; = v.

Let r,(k) denote the radius of convergence of (1.5) and let r, = ,(0). Then
r(k)>r,>ry=1.Let

D(a)={z€C:|z| <r(l +ar'InT)}.
Then by Theorem 4.3 of Slade (1987) we have the following result.

THEOREM 2.1. There are a d, > 5 and a constant K such that for d > d,,,
lu| <2 and all v, AFTL(k, 2) is analytic in D(1), with |9 11 (k, 2)| < Kd™%,
0 =0,1, and |0}TL(k, 2)| < Kd~%?, |u| = 1,2.

The proof of this theorem involves estimating the norms of N® in (2.9). The
convergence of (2.9) is due to the inverse powers of d occurring in each term in
N®(x, |2]). Theorem 2.1 is stated in Slade (1987) only for D,(3) but the proof
gives analyticity in D,(1) without change.

The proof of (1.13) is based on an expansion for M, (k, a) which we now derive.
Any graph B c £,[0,[a]] breaks up into connected components in a natural
way. Given a graph B C %£,[0,[ay]] and an integer m in the open interval
0,[ay]), let m(B) be the interval supporting the connected component of B
which passes over m. If B has no bond st with s <m <t we set m(B) =
[m, m]. An example is illustrated in Figure 3. Then by (2.2) and (2.3),

Kfolay]l =X Y TlU

Iosm B: m(B)=ISt€B

Y k.[0,0] ¥ Tl UKL, [ay]]

Ism Gon I St€EG

Z KT[O’ Il]Jf[Iv I2]K‘T[IZ’ [aN]]‘

I=m

(2.10)
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B < T~ TN L
0 1 2 m fal
E——mc(n)—q N
Fic. 3.

The sum over I in (2.10) is a sum over intervals I =[I,, I,] with integer
endpoints and 0 < I, <m < I, <[ay] or I, =1,=m. (By convention,
J.[m, m] = 1.) Substituting (2.10) into (1.12) gives

M(k,a) = (2d) L L et
(2.11) Ism w: |w|=[ay]

XK.,[O, Il]Jf[Il, I2]K'r [12’ [aN]] .
The expansion (2.11) will be used in Section 4 to prove (1.13).

3. The distribution of the endpoint. In this section we begin the induction
proof of Theorem 1.1 by obtaining (1.9). We suppose throughout this section that
d > d, for some sufficiently large d,. Also, to simplify the notation the brackets
denoting the integer part of a real number will be dropped. Thus we write nt in
place of [nt], for example; it should be clear from the context what is intended.
We also use the notation «, = n~/%k. »

To advance the induction, a slight generalization of (1.9) will be needed. Let
g, be any sequence such that lim,_, g, =0, and let =1 + g,). We will
prove that

. Nnt(“n’ nf) 2
(3.1) lim o) " exp| — Dk%/2d].
The proof uses the Cauchy integral formula to evaluate the numerator and
denominator of the left side separately and follows the method of Brydges and
Spencer (1985).
We begin by recalling from Corollary 4.2 of Slade (1987) that |99 11, (k, 2)|
is bounded by a positive inverse power of d for |u| <2, v < 2, |u| + 20 < 4,
uniformly in 7, k2 and z € D,(0). It is straightforward to extend these bounds to
2z € D(b/In 1) for any fixed constant b, possibly at the expense of increasing d,.
This follows from the fact that the bounds on II, were obtained from bounds on
norms of N ®(x,|z|) = Z5_,N(x, T)|z|T, and the fact that for z € D (b/InT)
and T <, |2|T < r¥1 + b~ YT < rle®. :

In Lemma 5.1 of Slade (1987) it is shown that there is a constant ¢ such that
r(k) < r(1 + cd~'k2), for k%< const.dr"'In7. Since «2=n""k?<n"'r%d,
r.dx,) < r, (1 + cr?n"") and hence r,,(x,) € D,(b/In(nt)), for b = cr’t.

Differentiating the equation F,,(«,,, r,(x,)) = 0 twice with respect to 2 yields

92F., + 02F, 91, + 02F,, 0,1,

ijtnt izt nt “j'nt Jjz* nt

+3,F,, 027, + 02Fy, 9,7, 8,7, = 0.

ij'nt

(32)
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This equation can be used to obtain a formula for d2r, iTut(K ). Since 1,,(k) is an
even function of %, and since by the previous remarks all of the derivatives of F,,
appeanng in (3.2) are bounded, it follows that the second, third and fifth terms
in (3.2) all vanish in the limit n - oo.

The proof of (3.1) uses the following lemma.

LEMMA 3.1. lim,_ [1,(k,)/7.(0)]" = exp[ Dk%t/2d], if d is sufficiently
large.

Proor. By Taylor’s theorem,
1 2 o
rnt(xn) = rnt + = Z aizjrnt('c)k(l)k(l),
2n i i=1
for some « on the line segment joining the origin to «,. It suffices to show that
(3.3) hm Tt 3%1,,(k) = 8,,Dd™*.

In view of the remark following (3.2),

2' Fi(, 1,(x))
n—»oo 3 F (K T, t(lc)) )
A straightforward argument using Taylor’s theorem shows that 92 (K 1K)

and d_F, (k, r,(k)) have the same limits as 43F, 0, r,,,) and 9,F, 0, r, t), and
hence

hmar(x)

ij'nt

nl-i-{I:o ai?jrnt(") = hm 8121 nt(O)’

~ By (1.3)—(1.5) and (1.8) F,(k, z) is invariant under replacement of 2’ by — &/,
~ and hence 82 1,4{0) = 0 if i # j. By symmetry and the fact [proved in Section 5
of Slade (1987)] that D = lim,_, 7! v2r,(0), the lemma follows. O

The following theorem yields (1.9) and is general enough to allow the induc-
tion step to be taken.

THEOREM 3.2. Let h, be any nonnegative sequencé such that lim, , _h, =0
and g = (&,) be any sequence with |g,| < h,, for all n. Let { = t(1 + g,). Then
for d = d,,

lim Naalten, 78) _ exp[ —Dk%/2d| uniformly in g
no N 0,m) P oY me:

PrOOF. By Lemma 5.1 of Slade (1987), for k22 < const. dr~'Int, Nk, z) is
analytic in z € D(1) except at the simple pole r,(k) € D,(%). [In Lemma 5.1 the
result is stated only for z € D,(3) but the same proof in fact gives the result for
z € D(1).] Choose n so large that k2 < const. d(nt)~'In(nt). Let C be the circle
of radius ; centred at the origin of the complex plane, with counterclockwise
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orientation. Then by the Cauchy integral formula and the residue theorem,

N,,(x nf)=—1— N,.(x z)z " de
nt n? 27” C nt\"“n»
9 )™
( * ) —aant(Kn, rnt(Kn)) ‘
d,E, (k,, r,.(x, TaelKp ni+1
% 1 _ t( i t( )) Nnt(Kn, Z)[ t( )] dz X
27 aD,(1) z

To estimate the second term in the square brackets on the right side of (3.4),
we first note that 9,F,(k,, 1,,(x,)) is bounded by Theorem 2.1. Taking absolute
values inside the integral, the factor |r,(k,)/z|™*" is equal to

Te(6) /Tad L + (n2) ()] =",
By Lemma 3.1 and the fact that |g,| < k,, given & > 0 this can be bounded
above by O(n~!"*) uniformly in g. Since N,(k,, ) has a simple pole at r,,(«,),
the integral of |N,(k,, 2)| around 4D, (1) diverges like In|distance from r,,(k,)
to dD,,(1)| ~ In n. Therefore

rnt(Kn) it
- aant(Kn’ rnt(xn))

It can be shown that d,F,(«,, r,(k,)) and 9,F, 0, r,,) have the same limit as
n — oo, and hence the theorem follows from (3.5) and Lemma 3.1. O

[1+ O(n—1+)).

(3.5) N,,(k,, nf) =

4. The finite-dimensional distributions. In this section we complete the
proof of Theorem 1.1 by obtaining (1.13). The proof is by induction on N, with
~ the case N =1 having been obtained in Theorem 3.2. Throughout this section
" the assumption d > d, is implicit, for some sufficiently large d,. We use the
notation «, = n~'/2k, and omit brackets denoting the integer part of a real
number.

As for the case N = 1, some flexibility in the number of steps in the walk is
needed to perform the induction step. Let B be any fixed positive constant, let
g = (g,) be any sequences such that —Bn~/? < g, <0, let £, =0, and let
T =(t,ty..., ty_1 Ey), Where £y = ty(1 + g&,). We prove the following slight
generalization of (1.13): ,

(4 1) lim MntN(Kny n%)

) n— oo NntN(O’ an)
Our induction hypothesis is that (4.1) holds when N > 2 is replaced by N — 1.
We shall prove that this implies (4.1).

By (2.11) with m = n¢,,_,,

’ MntN(“n’ n%) = (Zd)—nZN Z E ei"n'A"’(ni)
(42) Toniy- o, ol

XKMN o, Il] JntN[Iv I2]KntN [Iz, an] .

D N
= exp|— 5d Z kf(tj - tj_l) uniformly in g.
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In (4.2) we factor the walk w into three independent subwalks on the time
intervals [0, I,], I = [, I,] and [I,, nfy]. The first and third of these are forced
to be self-avoiding by the factors of K, while the factor < forces the second to
intersect itself. Denoting the components of k, by k@, ..., k™), the exponential
in (4.2) can be factored as

exp iNi2x(f) . (w(ntj) - w(ntj_l)) + ik (o(L) — w(ntN_z))‘

43 -7

Xexp[ix(N‘l) (@(nty_y) — w(L)) + ix™ - (w(L) - “’(ntN—l))]

Xexp[ik™ - (w(nfy) — w(L))].
It will be shown that the dominant contribution to (4.2) comes from intervals I
with |I| < b,, where b, is any fixed sequence satisfying lim,_, b, = co and
lim,_,  b,n""2 =0, e.g.,, b, = n'/% For such I and for sufficiently large n,

0<nt, < -+ <nty_y<I <nty_, <I,<niy.
Substituting (4.3) into (4.2) and summing over only those I with |I| < b, gives
sg= ¥ MntN(x(l), e kKNTD g L nty_,, Il)(2d)_|lI

Ianty_,
(4.4) =5,
X Z E(w, I)JntN [0, |I|]NntN(K(N), an - I2)
w, |w|=|I|
In (4.4) the first and third subwalks referred to in the last paragraph have been
summed over, the time scale for the second subwalk has been shifted to begin at
0 and

E(w,I) =exp[ix™ V. w(nty_, — I) + ixk™ - (o(I]) — w(nty_, — L))].
Now k) = n~'/2k, and for |I| < b,, |w(nty_; — I,)| < b, and |o(|I)| < b,. It
follows that
(4.5) E(w,I)=1+ f(w,I),
where |f(w, I)| < O(b,n""/?) uniformly in » and |I| < b,. Also, for |I| < b,
I, = nty_,(1 — O(n~'b,)) < nty_,, and so by the induction hypothesis

MntN(K(l)’ ey KNVt Lty g, I)
= MntN_,("(l)» vy kN n o nty_, Il)
D N-1

(4.6) = Nugy (0, I,) |exp| — o~ El R}t —t;_) | + F(I)

j-

, I pN-1
= NntN(O’ I)|exp| — 2d Z kf(tj - tj—l) + F(I)|,

J=1

where |F(I)| < o(1) uniformly in |I| < b,. Similarly, for |I| < b,, nfy — I, =
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n(ty — ty_1)A — |10(g,)| — O(n™'b,)) < n(ty — ty_,), and so by Theorem 3.2
it follows that

NntN(K(N)’ niy — Iz) = Nn(tN—tN_l)(K(N), niy — Iz)
= Nn(tN—tN_l)(()’ niy — Iz)

(4.7) X exp[— zﬂdk}@(tn - tN—l)] + h(I))

. D
= NntN(O’ nty — I2)(exp[— ’é‘gkz%/(tN - tN—l)] + h(I))’

where |A(I)| < o(1) uniformly in |I| < b,.
Substituting (4.5)—(4.7) into (4.4) leads to

(4.8) 5= exp[— — Z kXt - tj_l)]Eos +A,

where

Al <0(1) ¥ N, (0,I)(2d)™"
I=anty_,

H<b,

(4.9) X Y |, [0, 1IN, (0, néy — L)
|w|=|1|

= O(l)zas.v. *

The subscnpt av. in (4.9) stands for absolute value. Using the notation
M, (x, nt) = 25 +3; (the first term involves the sum over |I| < b, and the
second mvolves |I | > b,), it follows from (4.8) that

M,, (x,n%) SE+3
N,, (0, an) N, (0, ntN)
exp[—(D/2d)EN k% (t; — t,_,)] 3¢
ntN(O ntN)
A s>
Nopn 0, 1)+ Nyoo(0, nty)

(4.10)

exp ——Ek(t -t DT+ T, + T,
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To complete the proof of (4.1), it suffices to show that as n - oo, T} = 1,
T, — 0 and T; — 0, uniformly in g. Since

T, =1 2y
' NntN(O’ an) ’
o(1)==,
7 < OV

NntN(07 an)

and
>

a.v.
1Tl < 70 7y

NntN(O’ an) ’

where 2, is defined as in (4.9) with the sum over |I| < b, replaced by the sum
over |I| > b,, it suffices to prove the following lemma.

LEMMA 4.1. (a) lim,_, N, (0, nfy)™'27, = 0 uniformly in g.
() N,, (0, niy) 'S5, is bounded uniformly in n and g.

Proor. (a) By (3.5), r,{;fy * lN,,tN(O, nty) is bounded above and bounded below
away from 0, so it suffices to show that

(4.11) lim r2v+13> =0,
n— oo

nty

It is shown in Slade (1987) that r,, = lim, _, 7, exists and that r,, — r, < O(7™1).
This means that

Z‘ﬂ niy _(y_ r, — rntN niy

rOO roo

remains bounded above and bounded below away from 0 as n — oo, and hence
(4.11) follows from

(412) ¢ lim pPHIS> =0,
n— oo
To prove (4.12), we first note that by definition of = ,
rahisr,
=gt Y N0, I)(2d)
(4.13) I|31|n>tli;l
X E |JntN [0’ |Il]an§N—I2(O7 nEN - 12)'
w, lw]=|1|

By (3.5), for some constant C,

A
— I -1 —nf - — |
(414)  <rpwtic Y rphoygrivihoiea)™M o ¥ g, [0,10]).
Ionty_, @, w]=|1|
11> b,
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Arguing as before to replace r; and r,; _; by r,, gives
ezl <0 X @A) Y g, 0010

IBInt,i_l w, |w|=|l|
>
(4.15) 5
<¢ ¥ @d)'mIt ¥ d,[0,T].
T=b,+1 w,|w|=T

From (2.7) it can be seen that the sum on the right side of (4.15) is the tail of the
lace expansion for 4,11, (%, r,,), with absolute values taken inside the sums. The
lace expansion for d,I1,, (&, 1,,), with absolute values taken inside the sums,
converges uniformly in n by Theorem 2.1 since r, =r,, + O(n Y e D,, (1).
(In the proof of Theorem 2.1 the lace expansion was shown to be absolutely
convergent.) We now show that the right side of (4.15) goes to 0 as n — co.
The lace expansion is estimated by first writing the sum over laces in (2.8) as a
sum over the number N of bonds in a lace, followed by a sum over all laces which
consist of exactly N bonds. Denoting by .ZN[a, b] the set of N-bond laces on
[a,b] whose bonds are of length 7 or less, for any positive integer M we have

Y @d) I Y (g [o,T])
T=b,+1 jw|=T
M
< X
N=1T

(4.16) x Y X

lw|=T Le£N[0, T)]
+ Y ¥ (2d) I

N=M+1T=1
x Y XL |Ilu,

|w|=T LE.Z.N[O, T] steL

(2d) TrIT

i
=18

+1

l_.[ Ust

steL

IT (1+Uy)

st €€ (L)

1 (+U).

st €F(L)

Given an & > 0, the second term on the right side of (4.16) can be made less than
¢/2 by choosing M sufficiently large, independent of 7, since it is bounded above
[as in (2.9)] by

. .
10N, )l 2 (2N = DIND(x, ro I IN (2,10 )15 2,
N=M+1
which goes to 0 as M — oo uniformly in 7, by Corollary 4.2 of Slade (1987)
(extended as remarked in the third paragraph of Section 3).

It remains to show that the first term on the right side of (4 16) can be made
less than ¢/2 by choosing n large, independent of 7. This term is given by a sum
of M diagrams, consisting of 2N — 1 subwalks, 1 < N < M. Each subwalk is
bounded by a norm of d°N{¥(x, r,.), v = 0,1, as in (2.9). At least one subwalk in
each diagram consists of at least 5,(2M — 1)~! steps. At the expense of an
additional z-derivative, a factor of b, (2M — 1) can be extracted from the norm
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bounding such a long subwalk, yielding an overall factor of b, ' [cf. the proof
that r,, — rp < O(T~?) in Section 5]. The quantity multiplying b, involves
norms of d°N((x,r,), «a =0, 1; v=0,1,2, and is bounded uniformly in 7,
again by Corollary 4.2 of Slade (1987). Thus the first term on the right side of
(4.16) can be made less than ¢/2 by taking n large, independently of .

It follows that the right side of (4.15) goes to 0 at n — oo.

(b) The proof of part (b) is essentially the same as the beginning of the proof
of part (a). The only difference is that in (4.13)-(4.15) the sums over |I| > b, and
T > b, are replaced by sums over |I| < b, and T' < b,. The sum over T < b, can
then be replaced by the sum over T < o0, and the result follows from conver-
gence of the sum uniformly in n. O

5. The critical exponent y. In this section we show that y =1 if d is
sufficiently large. By (3.5), for large d,
cr=(2d) ' Ny(k=0,T)
= (2d/rp)"[~rp 3, Fp(0, rp)] '[1 + O(T1 )]
Now r, = limy_, rp exists. Similarly it can be shown that
Th;{rzo [-8,Fp(0,rp)] =1+ Th'_r)lzo 3,I14(0, rp)

(5.1)

exists. In fact, for two distinct memories ¢ < 7,
9.11,(0, ) — 4,11,(0, r,)
(5.2) = 9,110, r,) — 9,11,(0, r,) + 9,11,(0, 1) — 3,I1,(0, r,)
= 0;1L,(0, r*)(r, — 1,) + 9.811(0, 7,),

where r* € (r,,r,) and 8II =1II_—1II,. By Corollary 4.2 of Slade (1987),
|0 211 (0, r*)| is bounded uniformly in o and 7, and hence the first term on the
right side of (5.2) is O(o~!) uniformly in 7. The second term is also O(¢!)
uniformly in 7, by an argument virtually identical to that used in Section 5 of
Slade (1987) to show that |8I1(0, r,)| < O(o~!). Therefore

(5.3) er ~ [7 3,F,(0, 1,)] "' (2d/rp)".

In (5.3) we would like to replace ry by r,. This replacement is justified if
limy_, (r,/rp)" = 1. Since ry increases as T increases and since ry > 1,

T T
T, r,—n
1s(—°3) =(1+ = T) <(+r,-r)".

Hence the r; in (5.3) can be replaced by r,, if limp_, (1 + 1, — rp)T = 1. It is
not enough here that r, — rp, < O(T'), but this bound can be improved to
r, — rp < O(T~2) as follows. The O(T~') decay was obtained in Slade (1987)
from the fact that for 0 < 7, r, — r, is bounded above by a constant multiplied
by [XF_,/6N,(x, T)rl|| .- By inserting a factor of T(T — 1)366~% in the sum
over T, this x-space L*® norm can be bounded above by a constant times
07 2|0iN(x, 1,)|l,.- For d sufficiently large ||d2N,(x, ,)||,, is bounded uniformly
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in ¢ by Corollary 4.2 of Slade (1987) and hence r,, — rp < O(T~2). It follows that
limg_, (1 + r, — rp)T = 1 and therefore

(5.4) or ~ [-7, 9,F,(0,7,,)] "'(2d/m,)".

Comparing (5.4) with the definition of y given in the Introduction leads to
vy =1, for d sufficiently large. The connective constant B, = 2dr;! can be
computed using rp = 1 — I1,(0, ;) and (2.8) to write 2dr_" as a series involving
inverse powers of d. In this way it is possible to recover the result of Kesten
(1964) mentioned in the Introduction.

Acknowledgment. It is a pleasure to thank David Brydges for several
useful conversations concerning the subject of this paper.

Note added in proof. Since this work was completed, it has been shown in
Slade (1988) that for d sufficiently large {X,} is tight, and hence the scaled
self-avoiding random walk converges in distribution to Brownian motion. In
addition, Lawler (1987) has used the convergent lace expansion to construct the
infinite self-avoiding walk in high dimensions.
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