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SURVIVAL OF NEAREST-PARTICLE SYSTEMS
WITH LOW BIRTH RATE!

By MAURY BRAMSON

University of Minnesota

Nearest-particle systems form a class of continuous-time interacting parti-
cle systems on Z. The birth rate B(/,r) at a given site depends on the
distances / and r to the nearest occupied sites on the left and right; deaths
occur at rate 1. Assume that b(rn)=%,,,_,B8(},r), 2 <n <, b(x0)=
X2 1B(l,0) + £2_,B(co, 1), is constant. In Liggett [6] the question was
posed whether for b(n) =1+ ¢ 2 < n < o0, with 0 < ¢ < 1, there are such
systems which survive for all ¢. Here, we answer affirmatively for all such ¢
and construct a class of examples.

1. Introduction. Nearest-particle systems form a familiar class of continu-
ous-time interacting particle systems on Z. As time evolves, particles are born
and die. At most one particle is permitted at each site at a given time; states can
therefore be identified with occupied subsets A C Z. The process is Markov with
birth rates B(!, r) and death rate 1:

(1a) A > AU {x} atratepB(l(x), r,(x))foreachx & A
and

(1b) A - A\ {x} atratel foreach x € A.

Here

l,(x) =x —max{y: y<xand y € A},
ry(x) =min{y: y>xand y€ A} — x

and l,(x) or r,(x)is + oo if the maximum or minimum is not defined. It is also
typically assumed that

(2) B(e0,0) =0
(so that @ is a trap), and
B(l,r)=B(r,1) foralll <l,r< oo,

®) S B(1, ) < w.
=1

Here, £, will denote such a process. £,(x) = 0,1 will denote the state at x, and
¢4 the process with initial state A. (The superscript will often be suppressed.)
As is typically the case for interacting particle systems, one is interested in
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434 M. BRAMSON

formulating conditions on B({, r) under which the process survives, that is,
P[¢f + o forall t] > 0.
One is also frequently interested in the stronger statement

liminf P[x € ¢£] > 0.

t— oo

If the process does not survive, we will say that it dies out, or becomes extinct.

Various classes of nearest-particle systems have been studied; see Liggett [7]
for a general survey. Notable examples include reversible nearest-particle sys-
tems, first studied by Spitzer [8], and the contact process. The latter has rates

B(L,r)=A ifl=r=1,
(4) =A/2 ifl=1,r>1lorl>1,r=1,
=0 otherwise.

This process has been the subject of a considerable amount of study. It was
shown in Holley and Liggett [5] that the contact process survives for A > 4; one
can show that for A < 2.36, the process dies out (Harris [4]).

Set
(5a) b(n)= Y B(Lr), 2<n<ow
l+r=n
and
(5b) boo) = ¥ B(L ) + X B(so,7).
=1 r=1

b(n) is the total birth rate on an interval of length n between two occupied sites
and b(co) the birth rate on the union of the two infinite intervals. One can ask
how survival depends on {b(n)}. By using an argument based on that of [5], it
was shown in [6] that for 0 < |A| < o0, ! survives irrespective of the specific
rule B(1, r) as long as b(n) > 4 for 2 < n < . On the other hand, it is easy to
show that if b(n) < 1, then the process dies out. (One can dominate |£;| by the
critical binary branching process.) Reversible nearest-particle systems provide
examples for survival with b(n) =b, b > 2 (Griffeath and Liggett [3] and
Liggett [6]). In [6], the question was asked whether there are examples of
nearest-particle systems with b < 2 and which survive.

Here, we construct such examples. Specifically, let Mg . denote the nearest-par-
ticle system with birth rates given by

(6) M1, r) =1 +¢)/((n—1) A2M) forlAr<M,
=0 forlAnr>M,

for 2 <n < oo where n =1+ r. If n < 2M + 1, then the birth rate is evenly
distributed over the interval between occupied sites, whereas if n > 2M + 2,
then the birth rate is (1 + £)/2M at sites within distance M of an endpoint and
0 otherwise. Clearly, b(n) =1 + ¢ for 2 < n < c0. We will show
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THEOREM 1. For given ¢ > 0 and large enough M (depending on ¢),
(7) limian[x 4] >0
t— o0

ifA+ Pandx € Z.

One may wish to compare Mét with the uniform long-range contact process in
Bramson and Gray [1]. The birth rate there is given by the first line of (6) but
with the denominator not truncated by 2M; the initial state is Z. The analog of
(7) is shown for ¢ > 3.

2. Proof of Theorem 1.

_Basic ideas. We begin by introducing several auxiliary processes of Mit. Let
ME. denote the nearest-particle system on Z with birth rates

®) MB(L,r) =MB(1,r) forl,r< oo,

=0 otherwise.
The process Mg"t has the same birth (and death) rates as Mét, except that births
are now only permitted between particles, that is, b(c0) = 0. The leftmost
occupied site is therefore an increasing function of ¢ and the rightmost site a
decreasing function.

Set
9) Mi(2) = [2Mz,2M(z + 1)),
where z € Z. We define £, so that
(10) Mét = U i”ét’

z=—o0
where Y¢,, t € [Tn, T(n + 1)), is the nearest-particle system with
M, =Y., 0MI(2) forz = n mod?2,
(11) z
=0 for z # n mod 2,

and which has birth rates M,E( I, r). (T > 0is large and fixed, and will be specified
later.) f’f . has the same birth and death rates as Mg »» but is periodically restarted
at times Tn on alternating intervals “I(z) with distributions ¢, N™I(2). It is
easy to see that

szét CMI(z)
and that for Tn < ¢, < t, < T(n + 1),
Y, -2 -2
If
(12) Mo nM1(0) + 2,

then of course ™, N™I(0) # @. Since the transition mechanism for Me, is
translation invariant, we can assume wlog in proving (7) that (12) holds. We also
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point out that ¢ . and Mét are attractive. (See [7] for background.) This becomes
obvious if one notes that “B(Z, r) is increasing in ! and decreasing in r. On
account of (8), (10) and (11), if Mé, Mi, at given ¢, then the birth rate for the
first process at this time is at ‘most that of the second process. Together with the
attractiveness of 5, (or of 5,), this implies one can couple ¢ . and Mg . with

(13) ME, M,
(Refer to [7], page 127, for more detail.)
Define the discrete time process M ,onZ,with M§n(z) = 0,1, so that M§n(z) =1
if
(14) Izng(n+l)—¢ .

That is, ¢ (2) = 1 if descendents under ME, of particles at £, NMI(z) are still
alive by time 7T(n + 1) — . Note that on account of (11), M{,,(z) =0 for z #+
n mod 2.

The basic idea behind the proof of Theorem 1 is to compare M{,, with a
supercritical discrete-time contact process n,, on (n, z) with 2 = n mod 2. y,, is
defined so the probability that ”n,(z) =1is 1 — (1 — p)L, where L = 0,1,2, is
the number of occupied sites of Pn,_; among {z — 1,z + 1}. (*n,, can also be
formulated in terms of oriented percolation.) For p > p,, p, < 1 chosen appro-
priately,

(15) 11m1an[z efnf] >0

n—oo

if 2=nmod2 and A N 2Z # @ (Durrett [2]).

The remainder of this article is devoted to showing that for fixed p <1, M
may be chosen large enough (with appropriate T') so that Py, and M{,, can be
coupled together with

(16) Py M.

Theorem 1 is then an easy consequence of (a) (15) and of (13), (14) and (16),
which compare Y, to Mg . V€, to ¢, and ¢, to Pn,,, and (b) the observation that

ian[x EMgthgT(n+l)—= B] >0,

where inf is taken over all B satisfying B NMI(z) + @, all t € [T(n + 2),
T(n + 4)), x €M(2) UM(z + 1) and all n. Part (b) follows from the attractive-
ness of £, and implies that if z €y, (and hence £T(n+1) NM[(z) + @), then
x EMI(z) UMI(z + 1) is likely to be occupied after allowing time T for the
process g, to spread.

Notation. We justified the couplmg £, c g, in (13) by using the attractive-
ness of ¢, and the lower birth rate of M£.. One may also explicitly construct ME
from §t as follows: At each site (¢, x) € R*X Z where a birth for £t occurs,
introduce an 1ndependent [0,1] uniformly distributed random variable W, , If
the birth rate for ™%, at (¢, x) is greater than W, ., we say that a birth for ME,
occurs at (¢, x); otherwise, no birth occurs there. Deaths occur at rate 1 for each
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process, so we say that deaths occur at occupied sites of Mg . Whenever they occur
for g, This procedure may be carried out 1nduct1vely since |, £,| < 0. In this
settmg, f c 5, clearly holds. We denote by 3" the o-algebra generated by

$ and W, , up to time ¢ and by the mdependent procedure used to construct

LY; in (22) The construction has the advantage of allowing us to construct
s1multaneously other subprocesses of M¢ . [notably ét in (22)] by employing W,
They will all be measurable with respect to M&" and satisfy couplings analogous
to (13). Let L, and R, be the leftmost and rightmost partlcles of the process £t
from (8) constructed in this manner. On account of (8), Mg . evolves independently
of the births and deaths for %, and of values of W, . which occur outside of
[L, R,

We require the use of several o-algebras. (To simplify the notation a little, we

omit here and later on the superscript M, which will be implicit.) Set

(17) 4, =0(8,,0<m<n),

and for ¢t € [Tn, T(n + 1)), set

F=0(t,s<Tn)Vo(f, Th<s<t),
Ft=o0(£,, t<s<T(n+1)).

It is easy to check that

(18)

for t € [Tn, T(n + 1)).

We will also use the following notation. Set v = (%, n, z,i), where k =
0,1,...,K—1, z=n mod2 and i = +1; the symbol v will henceforth be
reserved for this 4-tuple. Introduce the times

S, ,=Tn+ (1+¢)k+1,
(19) ’
Thpn=Tn+ (1+t,)(k+1);

t,, > 0 will be specified in (36), K will be specified after (49) and T will satisfy
T = KQ1 + t,). Note that

Tn<8,<Ty,<8,,< " <Tg_,,=T(n+1).
We define

(200 D= {w:3y,ywith y et NI(z+1i), —»=M/2}.

oD consists of those realizations which at ¢ = S, ,, have a pair of particles at
sites y,, 5, in I(z + i) which are “far apart.” Consider tuples v; = (&}, n, 2}, i;),
where we equate (&), n, 2;,1) and (k;, n, z; + 2, —1). One can for appropriate
g > 0 choose subsets ,E C D so that for distinct v, j =1,..., J,

J
n DjEIgn

Jj=1

(21) P (0) = ¢’

if {,(z2;)=1. That is, ,E,...,, E are independent under {,(z,) = =
$(2;)=1and 9,. For w € E denote by Y}, .Y, occupied positions y,, y, such as
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in (20). ,Y},,Y, may be chosen so that .Y, — Y, is uniformly distributed over
[M/2, M] and is independent of everything else. We will justify this and (21) in
Proposition 1. Let §,, ¢ €[S, ,, T(n + 2)), denote the process defined on E
with

(22) ugs,,‘,, = {oYI’ oyv2}

and birth rate given by (8). Recall that b(o0) = 0 here. Using the construction
given before (17), £, is defined on the same space as £, with

(23) ugT(n+1) c 5T(n+1) N I(Z + i) =2+i£T(n+1)‘

Since the birth rates of both £, and ,, £, are defined by (8), one has

(24) Ec..b forte[T(n+1),T(n+2)).

[Note that £, N I(z + i) = @ for ¢t € [Tn, T(n + 1)).] We will (after Lemma 1)
choose M large enough so that x, y € £, with |x — y| =1 typlcally does not
occur until ¢ > S,  + 2T.

Define
(25) F={o: fp, * 2}
and
K-1
(26) uF= U vF’
k=0

where u = (n, 2, i). (The symbol u will henceforth be reserved for this 3-tuple.)
LF is the subset of ,E over which the process £, started at time S, , is still alive
by % n o may be thought of as the set of those realizations where the process
¢, has managed to “take hold” in I(z + i) over one of its “trial periods”
[Sy, n» T}, ). (Lemma 2 will make this more precise.) It will follow from Proposi-
tion 2 that P[,F|¥9,] ~ 1 for {,(2) = 1 if K is chosen appropriately large.
Finally, let

(27) k(u) = min{k: w € F}

[k(u) = oo if w &, F]and

(28) o, = (k(n, z,i), n, z,1).
Then define

(29) G = {"-’: ofrnin-* 2 } .

[S., »» T, »] is the interval over which £, first “takes hold” and ,G is the subset of
wa over ‘which 5, is still alive by time T(n + 2) — . [Recall that Tn<T,,
T(n +1.] It w111 follow from Proposition 3 that P[,G|9,V o(,F)] ~ 1 for
w € F.
Note that the processes , .ft used in (25) to construct F are defined over
disjoint sets

I(z;+ i) x [skj,,,,Tkj,,,]
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in space-time for distinct v;, j=1,..., J. On account of (21) and the indepen-
dence of onz —onl, this implies that distinct OjF, J=1,...,dJ, are independent
under {,(z;) =1 and ¥,. Similarly, , F and ,G are defined over disjoint sets
I(z; + i;) for distinct u;, u; = (n, z;, i;), and so qu, resp. ujG, Jj=1,...,d, are
also independent under §,(z;) = 1 and 9,.

Demonstration of (16). Our approach will be to show that for fixed p, if M is
large enough (and T is chosen appropriately), then

(30) P[GI%,](«) 21 - (1 - p)*
for z € §,, where u = (n, 2, i). By (24) and (14),
(31) £G C {“’3 eribrnin-* ;a} ={orz+ief, ).

Recall that ¥, gives the entire history of {,, up to time n. Note also that the
process ?n,, defined above (15) is attractive. Using (30)—(31) and the independence
of ujG, J=1,..., J,under {,(2,) = 1 and &,, one can therefore couple *n,, and §,
as in (16) with Py, C ¢,,.

To obtain (30), we compute the probabilities of ,E (Proposition 1), ,F|,E and
Fl|,E (Proposition 2) and ,G|,F (Proposition 3) under appropriate conditioning.
In order to ensure independence where needed, some care must be exercised in
the choice of the o-algebras.

In Proposition 1, we compute a lower bound for the conditional probability of
,E under z € {,. The basic point is that for z € {,, there is a positive probabil-
ity that £, spreads to I(z + i) over the time interval [S, , — 1, S ,] as in the
right-hand side of (20), and that this probability and the manner in which £,
spreads do not depend on .?A'T(nﬂ)_. (Recall that T}, ,_, = S, , — 1.) Since I(2)
has length 2M, which is on the same scale as the birth rates for £, given in (6),
this probability also does not depend on M. Here

A

and
n,zB = {w: zé\T(n+1)—¢ Q} = {w: zE g‘n}‘
ProrosITION 1. Forw €, ,Bandi= —1,1,
(32) P[uDlgn](w) >4 81

for appropriate e, > 0. Subsets ,E C ,D may be chosen so that (a) if w €, , B
for distinct v; = (k;, n, z;, i;), J=1,...,d, then

(33) - P (w) = ¢

J
N, E¢%,
j=1"

and (b) on ,EN, B, {5 N I(z + i) contains occupied positions Yy, .Y, for
which Y, — Y, is uniformly distributed on [M /2, M ] under 9,, and for which
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on NI\, E N, . B), Yo =, Y1, J=1,..., J, are mutually independent under
9.

PROOF. By (6), the rate at which a birth of £, occursin [,R, + M/2, R, + M]
is greater than 1/2. (For bookkeeping purposes, allow births to occur at already
occupied sites.) Such a birth, later births to the right of this point and deaths in
(RTIH (22 + 49M) occur at rates independent of .95}(,, +1y—- Also note that
w €, ,B implies

A, ,,* 9.
It is therefore not difficult to check that if w €, ,B, then for appropriate ¢, > 0,

P[3 yj’ j= 1)0“) J: y]e gsk,n’ yl € [22M,(22 + 3)M)’
(34) A )
Yis1 — X E [M/z’M]l‘g.T(n+l)—] = (¢,/J)".

For J = 5, there are at least two indices j,, js, j, =J; + 1, for which y,, v, €
I(z + 1). Since 9, C Fy,,.,,_, this shows (32) for i = 1 with & = (¢,/5)". The
reasoning for i = —1 is analogous.

Recall that £, is attractive; one can therefore choose y;, v, so that their
difference is uniformly distributed over [M /2, M] under .93'7‘(,, +1— (and hence
9,). A subset (E c D can be chosen with

P[,E|9,](«) = &

on , B, so that this difference remains uniformly distributed on ,E N, ,B. Now
assume that v; are distinct [where we equate (kj,n, z;,1)and (k;, n, z; + 2, —1)].
The births as in (34) needed for , D occur over disjoint intervals of the form

(Rsk,,.’ (22 + 4)M) X [Tk—l,n’ Sk,n,]
and
[(22 - 2)M’ LS;,,,.) X [Tk—l,n’ Sk,n]

in space-time. A little thought therefore shows that the subsets ,E C D can be
chosen so that under w €, sz, J=1,.., J,A(33) holds and the corresponding
differences , Y, —, Y, are independent under %y, ,_, and hence %,. O

Once particles spread from I(z) to neighboring blocks I(z — 1) and I(z + 1),
they start to reproduce; we need to know that their descendents survive with
some probability. To make this more precise, we introduce the continuous-time
birth—death process X, on 0,1,2,..., with transitions

k>k+1 atrate(1+e)(k—1)",
— k—1 atratek,

(35)



NEAREST-PARTICLE SYSTEMS 441

and X, = 2. Comparison with a supercritical binary branching process shows
that:

LEMMA 1. P[X,> 0 forall t] = ¢, > 0.

Choose ¢, so that
(36) P[X,>0V tX, > 0] > h,

where h > 1/2. We will need 2 ~ 1 to obtain (30) with p ~ 1. Also, introduce
the stopping time

(37) 74 = inf{¢: |x — y| = 1 for some x, y eMEp,

where Mff is the process defined by (8). It follows easily from (6) that for
A = {0, m} and fixed ¢,

(38) sup P[t4<t]>0 asM — wo.
m>=M/2

Choose M), so that for 2m > M > M,,

(39) P[4 < 2T] < &5(1 — h).

[T v_yill be specified later on; recall that (1 + ¢,) divides 7]
|€#| can be coupled with X, so that

1€ = X, for ¢ < TA.
One therefore obtains from Lemma 1, (36) and (39) that:
LEMMA 2. For A = {0, m} with 2m > M > M,,
(a) P[f;“ # O fort < t,| = e,/2,
(b) P[£4+ B fort <2T|fA + 2] > 2k — 1.

By utilizing Proposition 1 and Lemma 2, we now compute lower bounds on
the conditional probability of ,F.

ProposITION 2. Forz € §,,
(40) P[uF|gn] = 1- (1 - 8182/2)1(’
where 9, and ,F are as in (17) and (26) and K = T/(1 + t;).

Proor. By Proposition 1,
(41) P[E|Z,](0) > ¢
for w €, ,B. Also, by the Markov property and Lemma 2(a),
P[,Fi%, ] («) = P[,FIo(,Y; - Y))](w)
> ¢&,/2

(42)
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for w € ,E. Because of (8), it is not difficult to see that the random variable on
the left-hand side of (42) is independent of % St.». Therefore,

(43) P[P, v F5n](0) 2 &y/2
for w € E. Since
9, cF, vV F Sk,
it follows from (41) and (43) that
(44) P[,F19,](w) = &2,/2

on {w: z€¢,} =, ,B. But, 4, ,,F are independent for £ =0,1,..., K — 1.
Therefore,

(45) P[F9,)(0) 21— (1 - &g,/2)"
forze§, O

Using Lemma 2, we can also compute lower bounds for G|, F.

ProposITION 3. For w € F,
(46) P[G|9, V o(,F)]|(w) = 2h — 1.

PrRooF. By the Markov property and Lemma 2(b),

(47) P[uG|.97Tk," \% o(x)](w) = P[uG N {k =k}, vV o(n)](w)
>2h-1
for

(48) we, Fn {k=Fk) =F.

The random variable in (47) depends only on events in I(z + i) and is therefore
independent of % Tk~ Since

9, C Fy, N FThn,
this implies that
P[GI%, V o(x)]|(w) = 2R — 1

for w as in (48). Since the inequality does not depend on % (as long as k < o0)
and since ,F = UE_}{(x = k}, (46) follows. O

By combining Propositions 2 and 3, one sees that for z € ¢,
(49) P[GI%.](e) = @h— 1)[1 - (1 - eex/2)"].
Choosing & close enough to 1 and K large enough, one obtains
(50) P[GI19,)(w) 21 - (1 - p)’
for fixed p < 1. One can now specify ¢, [using (36)] and T, with T = K(1 + ¢,).
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(39) tells us how to choose M. (50) therefore gives us the desired inequality (30).
This completes the proof of Theorem 1.

We close with a few observations. First note that the assumption b(n) =1 + ¢
is not essential. One can instead demonstrate Theorem 1 for processes satisfying
liminf, , b(n) > 1+ ¢ and b(w) = &. [Replacing 1 + ¢ by & for b(o0) only
changes the constant ¢, in Proposition 1.] The basic proof goes through, although
one needs to condition more carefully when the process is not attractive. Also,
note that for |A| = oo, the comparison we have made with the contact process
shows that for each ¢,

(51) P[x eMtA for some t > to] =1.

One can instead condition on nonextinction rather than assuming |A| = oo.
If one wishes, one can with somewhat less effort than needed for Theorem 1
exhibit processes £/, with b(n) = 1 + ¢, for which

(52) P[¢f + @ forall t] > 0,

0 < |A| < oo. For these processes, B(l, ) = (o0, 1) has a “very fat tail” (with
not even fractional moments) and B(/, r) = 0 except near [ = r. The basic idea
for demonstrating (52) is to use the tail behavior of B(/, 0) to obtain births at
R, + m far to the right of the rightmost particle R, of £,, with the rate only
decreasing slowly as m — . As in Lemma 2, for large m the number of progeny
between particles at R, and R, + m can be compared with the birth—death
process X, for long times. As m increases and this time increases, one has more
time to look for births much further to the right of R, + m. Iterating in this
manner, one can obtain (52). These processes, while providing examples of
survival, are not as convincing as Mgt since (1) survival is only shown on sets
A, cMg,n, min{x: x € A,} = oo as t, — o0, and (2) these processes, with their
fat tails, are scarcely representative members of the class with b(n) =1 + e.
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