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UNIFORM LARGE DEVIATION PROPERTY OF THE
EMPIRICAL PROCESS OF A MARKOV CHAIN

By RICHARD S. ELLIS! AND AARON D. WYNER
University of Massachusetts and AT & T Bell Laboratories

This note proves a uniform large deviation property for the empirical
process of certain Markov chains that take values in a Polish space. The
proof is based on recent results for the empirical measure.

Suppose that one has proved a level-3 large deviation theorem for the
empirical process of random vectors { X;, j > 0} taking values in a Polish space.
Then according to the contraction principle, the level-3 theorem yields a level-2
large deviation theorem for the empirical measure of {X;, j > 0}. This note
considers the reverse implication. We show that a uniform level-3 large deviation
theorem for the empirical process of certain Markov chains follows automati-
cally from the uniform level-2 large deviation theorem for the empirical measure
of the Markov chain derived in the paper by Ellis (1988).

Let X,, X,, X,,... be a Markov chain on a space @ with stationary transition
probabilities 7(x, dy). We assume that the Markov chain takes values in a Polish
space &. For integers j > 0 and a > 2, define the random vector

Yj,a("") = (Xj(w)1 Xj+1(“’)"-" Xj+a—1("-’));

ie., Y; (w) is that element of 2 with coordinates (Y; (w)), = X, _y(w) for
1 < k < a. The process {Y; (w), j = 0} is a Markov chain that takes values in
Z* and has stationary transition probabilities 7 (%, dy) given by

ﬂa(xl"’ b xa’ dyl X oo X dya) = 8x2(dy1)8x3(dy2) e 8xa(dya—1)'”(xa’ dya)'

The methods of this paper lead to the following interesting conclusion.
Suppose that one has proved a uniform large deviation property for the empiri-
cal measure of the Markov chain {X;, j > 0} under some hypothesis H on
7(x, dy). Suppose further that for each a > 2 the transition probability function
71X, dy) of the Markov chain {Y; ,, j > 0} satisfies the same hypothesis H.
Then one automatically obtains a uniform large deviation property for the
empirical measure of {Y; ,, j > 0} and a uniform large deviation property for the
empirical process of {X;, j > 0}. Here is an example of such a hypothesis H.

HypPoTHESIS 1.1. For some B8 € N, some M € [1,), all x,x’ € & and all
Borel sets A in &,

7f(x, A) < Maf(x', A),
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where 78(x, dy) denotes the B-step transition probability of the Markov chain
[nP(x, A) = [gnP~ Ny, A)m(x, dy)].

If #(x, dy) satisfies Hypothesis 1.1 on £ with 8 = B,, then for each a > 2,
(X, dy) satisfies Hypothesis 1.1 on Z* with 8 = a + 8, — 1. Indeed

W:+Bo_l(xl’ cec xa’ dyl Xdya) = ﬂﬂo(xa’ dyl)ﬂ(yl’ dy2 77.(-‘ym 1 dya)
< Mqrﬂo(xa! dyl)'”(yh dy2 o '”(ya 1 dya)
= Ma2 B~ Yx!,...,x,,dy X --+ X dy,).

Another example of such a hypothesis H is given in Hypothesis 1.1(b’) in Ellis
(1988).

We next define the notion of uniform large deviation property. Theorem 1.3
states the uniform large deviation property for the empirical process under
Hypothesis 1.1. The theorem will be proved later.

DEFINITION 1.2. Let 2 and & be Polish spaces, {@, ., n € N} a sequence of
Borel probability measures on % indexed by x € & and I a function that maps
X into [0, o0]. {®, .} is said to have a uniform large deviation property with rate
function I if the following hold:

(a) For any L > 0, the set {y € #: I(y) < L} is compact.
(b) For each closed set F in %,

lim sup — log(suan Jc{F}) < - 1nf I(y)

n— oo x€X

(c) For each open set G in ¥,

hmmf—log( 1nf Q, {G}) > — 1nf I(y).

n— oo

In order to state our main theorem, Theorem 1.3, we need some notation. For
each starting point X, = x, (x, dy) induces a probability measure P, on . For
each integer j, let (f&” B;) = (%, B), where & denotes the Borel o-field of %,
and define (2%, 2) to be the product space I1;c z(%;, %,), endowed with the
product topology We define (% %) to be the space of probablllty measures on
(Z'%, ) with the topology of weak convergence and .# (X ?) to be the subset of
Al ﬁt’ Z) consisting of all measures P that satisfy PoT~! = P. T denotes the
shift operator on Z'Z.

For each n € N and each point w € £, repeat the sequence
(X(w), Xy(w),..., X,_,(w)) periodically into a doubly infinite sequence, obtain-
ing a point X(n,w) € Z. For each n € N, point w € Q and set A € =, we
define the empirical process

n—1

R (w, A) = - > 8rix(n, A}

Jj=0
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For each w € @, R, (w,-) is an element of A, (Z%). A similar result as in
Theorem 1.3 holds for a nonperiodized empirical process.

Forx = (..., x_ 2) %1, X, X3,...) @ point in TLlet xZP =(...,x_y,x_,).
We denote by X, j € Z, the mapping takmg x to x; and by X ¥ the mapping
taking x to x‘°° [X-r=(..,X_ _1 X,)]. For P a measure in .///T(ﬂ”l), we
deﬁne P*(xZp, dxo) to be a regular conditional distribution of XO given X Z

7 and we write P(dx_{°) for the P-distribution of X . In the next theorem
I( , -) denotes relative entropy.

THEOREM 1.3. We assume that n(x, dy) satisfies Hypothesis 1.1. For n € N,
x € & and A a Borel set in M (X71), we define

Qn,x{A} = 'Px{w: Rn("‘)’ ') € A}'

Then the sequence {@, ., n € N} has a uniform large deviation property with
rate function

Lo(P) = [ I(P*(x=p, dxo), m(x_y, deo) P(de=F),  Pe.#r(27),
where ¥_° =11;2,%,.

The basic idea of this paper may also be applied in a related situation. For
any Borel probability measure p on %, we consider the Markov family on {,

B} = [P Ju(an),

corresponding to the transition probability function 7(x, dy) and the initial
distribution p. Suppose that one has proved a large deviation property for the
P, -distributions of the empirical measure of the Markov chain {X;, j > 0}, valid
for all initial distributions p, under some hypothesis H, on =(x, dy). Suppose
further that for each a > 2 the transition probability function = (x, dy) of the
Markov chain {Y} ,, j > 0} satisfies the same hypothesis H,,. Then one automat-
ically obtains a large deviation property for the P,-distributions of the empirical
measure of {Y; ,, j > 0} and a large deviation property for the P,-distributions
of the empirical process of {X;, j > 0}. The paper by de Acosta (1988) considers
examples of such hypotheses H,,.

The pioneering work on large deviations for the empirical process is the paper
by Donsker and Varadhan (1983). Other large deviations results for the empirical
process have been obtained by Donsker and Varadhan (1985), Ellis (1985),
Orey (1985), de Acosta (1988), Orey and Pelikan (1988) and Stroock and Deuschel
(1989). .

PrROOF OF THEOREM 1.3. We define (2% 2% to be the product space
I_I?g —a+1(Z, #;), endowed with the product topology and #(Z ) to be the
space of probability measures on (Z'% Z%) with the topology of weak conver-
gence. For P a measure in A (%%), m P denotes the measure in .#(Z *) which
is the restriction of P to the o-field 2% For each w € {, positive integers n and
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a and set A € 2% we define the process
1 71
Mn,a(w’ A) = Z 8}j-,a(w){A}’

which is the empirical measure of {Y, o J=0}. M, (w,-)is an element of
M(X*). M, ((w, -) equals the empirical measure n‘lz'};(}le(w){ -}

The paper by Ellis (1988) proves that under Hypothesis 1.1 the P,-distribu-
tions of {M,, (w, +)} on #(Z) have a uniform large deviation property with an
explicitly given rate function I, ; (see Theorem 1.2 and Remarks 1.3 and 2.1 in
that paper). We have seen that for each a > 2 the transition probability function
7(X, dy) of the Markov chain {Y; ,, j > 0} on ¢ also satisfies Hypothesis 1.1.
It follows that the P-distributions of {M, (w,-)} on #(%Z*) have a uniform
large deviation property with an explicitly given rate function I, , [see Theorem
1.4 and Remarks 1.5 and 3.5 in Ellis (1988)].

We now show that the P.-distributions of {R(w,-)} on A (Z%) have a
uniform large deviation property with some rate function oJ, ., defined in-terms
of the rate functions {1, ,, « € N}. We compare the process M, ,(w, ) with the
process m R (w, -). For each w € , m R, (w, -) is an element of the space

M (X)) =m M (X?) = {p€M(Z*): p=m,P forsome P e M (%7?)}.

Let T, denote the Lévy—Prohorov metric on (% *). Since

sup I’a(maRn(w, ')1 Mn,a(w’ )) =< 2(“ - 1)/"1

we
it follows that for each a € N the P,-distributions of {m R, (w, -)} on A (%)
have a uniform large deviation property with the same rate function I, , as
{M,, (w,-)}. Using the Kolmogorov extension theorem and the Tychonoff prod-
uct theorem, one easily shows that the projective limit of the spaces { A (% %),
a € N} with the topology of weak convergence equals the space .# (% %) with
the topology of weak convergence. An obvious uniformization of Theorem 3.3 in
the paper by Dawson and Gértner (1987) implies that the P -distributions of
(R (w,-)} on M (Z7*) have a uniform large deviation property with the rate
function

Iy, (P) = sup I, (m,P).
acN

We now identify J, . (P) with the function I, ,(P) defined in Theorem 1.3.
For x=(...,x_g,x_ 1,xo,xl, .) a point in Q’z and « €N, let x_7=
(X gy x_2, _1)- We denote by X ¢ the mapping taking x to x_{ [X =
(X_a, X_))]. Fora €N and P e.///T(Q’Z), we deﬁne P*(xZ§, dx,) to be a
regular condltlonal distribution of X0 given X-%=x-% We wnte P(dx_Y),
P(dx ) P(dx °°) and P(dx, °°) for the P- dlstmbutlons of X-¢ oh Xy =
(X—w X -1 XO)’ X_ ( X -2 X 1) and X_ ( X -2 X 1’ XO):
respectlvely According to Theorem 1.4 in Ellis (1988),

Iﬂ,a+1(ma+1P) = -[y (P*(x , dxg), m(x_y, dxo))P(dx'l)

= I(P(dx;®), P(dx=%) ® n(x_,, dx,)),

W
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where %~ =T1;2_,%;. The contraction principle implies that the sequence
{I, m,P), a €N} is nondecreasing. Hence in order to identify J, (P) =

Sup, e I, o(m,P) with I (P), it suffices to prove that
lim Iﬂ,a+1(ma+1P) = I(P(dx(;w)’ P(dx:f) ® W(x—l’ dxo))

=1, (P).

This limit, which is well known, follows straightforwardly from any of the
following: Lemma 2.1 in Donsker and Varadhan (1975), Exercise IV-5-4 in Neveu
(1964), Barron (1985) or Pinsker (1964). The proof of Theorem 1.3 is complete. O
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