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FISHER INFORMATION AND DICHOTOMIES IN
EQUIVALENCE / CONTIGUITY!

By BriaN J. THELEN
University of Michigan

A contiguity dichotomy for two sequences of product measures is proved
under the assumption of component measures belonging to a dominated
experiment which is differentiable. This generalizes Eagleson’s (1981) result
for Gaussian measures. The dichotomy result is then used to generalize and
clarify the results of Shepp (1965) and Steele (1986) with regards to finite
Fisher information and equivalence dichotomies between two product mea-
sures, one with a fixed component measure and the second with rigidly
perturbed component measures.

1. Introduction. There has been much interest from both probability and
statistics in equivalence/singularity dichotomies within a family of probability
measures on a measurable space. Speciﬁcally, if (2, #, #) is an experiment [i.e.,
(2, &) is a measurable space and £ is a set of probability measures on (2, % )],
we say that an equivalence/singularity dichotomy holds if P, P e # implies
P=PorP1 b

One of the first interesting dichotomies is due to Kakutani (1948), and is as
follows. Let (2, #) = (I1?°Q;, s(I13°%;)), where {(2;, %;)} is a sequence of mea-
surable spaces satisfying conditions needed for the Kolmogorov consistency
theorem. Let {Q;)T be a sequence of measures, where @; is on (Q;, %) for all i.
Then letting # = (TI{°P: P, = Q, V i}, Kakutani showed that if P =TI{P,
b= H°°P are members of .@ then P = Por P L P, with the former being true
if and only if

o0

(1) Y HY(P, B) < o

1

In 1), H(P, f’i) is the Hellinger distance between P, and f’l and is defined by

(2) 2H*(P, B) = [(JF - T, ) dv,,

where », = P, + P, f, € dP,/dv, and f. € dP./dy,.

Another mterestmg dichotomy holds in the case where @ = R*, %= #(R%)
(i.e., the Borel o-field), and 2 is the set of all Gaussian probability measures.
This was proved by Feldman (1958) and Hajek (1958). In the special case where

=[1247(0,1) and P = I1°4 (p,, 6?), they showed that P = P [it is an easy
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exercise to verify this directly from (1)] if and only if

00
(3) (w3 + (1 -0)%) < oo.

1

On investigating (3) in the special case of o, = 1 for all i, we see that P = P if
and only if {u,} € % Note that #"(u;,1) is just a translate of .#7(0,1) by p, and
an interesting question is: What other probability measures on (R, Z(R)),
besides A47(0, 1), satisfy this property? This was answered by Shepp (1965) who
showed that if P is a probability measure on (R, Z(R)) and P, denotes the
translate of P by ¢, then [1P°P = TP, for all {¢;} € I* if and only if P = A (A is
Lebesgue measure) and P has finite Fisher information, that is, there exists a
density f such that f is locally absolutely continuous and
(1)
4 d\ < 0.

(4) /5

He also showed [1PP L [1PP, for all {t;} & I Thus a necessary and sufficient
condition for an l2-type of dichotomy to hold in a translation experiment is that
of finite Fisher information as defined in (4).

The above was extended to the case of (R*, #(R*)) in Le Cam (1970),
Proposition 2. Specifically, if P is a probability measure on (R*, Z(R*)), then it
was shown that [1°P = [P, for all {¢;} € {” if and only if P = A and the map

(5) t € R* - [f(- + t) € L*(\) is differentiable,

where f € dP/d\. Differentiability here means Frechet differentiability as a
function from the Hilbert space R* to the Hilbert space L%(A). It is interesting
to note that in the case of £ =1 and P = A, this implies that (4) and (5) are
equivalent by comparing this with Shepp’s result.

Shepp’s result also was extended to (R*, Z(R*)) by Steele (1986). The general-
ization included not only translations but rigid motions as well, that is, transla-
tions composed with rotations. However Steele’s definition of finite Fisher
information is quite nonstandard and is not directly comparable with the
conditions given in (4) and (5). We will show that it is actually equivalent to a
differentiability condition similar to that given in (5).

All of the above results are related to equivalence/singularity dichotomies
between two measures. However in the asymptotic theory of statistics there are
useful generalizations of equivalence and singularity which are applicable to two
sequences of measures. These are contiguity and asymptotic separation. Eagleson
(1981) proved that a contiguity /asymptotic separation dichotomy holds between
any two sequences of finite-dimensional Gaussian probability measures. He also
gave necessary and sufficient conditions for the sequences to be contiguous.

The main two results of this paper are generalizations and clarifications of the
previous results of Eagleson (1981) and Steele (1986). The first results (Theorems
3.2 and 3.3) give sufficient conditions for a contiguity /asymptotic separation
dichotomy in the case of two sequences of product measures, where we assume
that the component probability measures are from a dominated experiment
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E = (2, #,{F;: 6 € ©}) with O in some finite-dimensional Euclidean space. The
sufficient conditions are essentially L2-differentiability of the map which takes
0 € O to the square root of the density of P, with respect to the dominating
measure. This generalizes Eagleson in that the Gaussian probability measures
are a dominated experiment which satisfy this differentiability condition. We
also show that in the case of a differentiable experiment under natural assump-
tions the two sequences of product measures are contiguous if and only if the 12
distance between the component parameters remains asymptotically bounded.

The second result (Theorem 5.2) is a generalization and clarification of Steele’s
(1986) result and is a sort of converse to the previous result. Here we are
concerned with a special experiment which is generated by a probability measure
P and all rigid motion perturbations of P. We parameterize this experiment by
(t, R), where t is the translation vector and R is the rotation matrix. By the
previous result, L2 differentiability implies a contiguity /asymptotic separation
dichotomy, with necessary and sufficient conditions for contiguity being asymp-
totic boundedness of the [? distance between the sequences of component
parameters. The second result of this paper is a converse to the above result. In
particular, we show that if one has a contiguity /asymptotic separation di-
chotomy with contiguity holding if and only if the /2 distance is bounded, then
the experiment generated by rigid motion perturbations of P is L2-differentiable.
This clarifies Steele’s result for it shows that his definition of finite Fisher
information is equivalent to L2-differentiability. It also extends the dichotomy to
the more general contiguity /asymptotic separation framework and does not
require (as Steele’s dichotomy result did) that the component rigid motions
converge to the identity.

2. Notation and preliminaries. We first give the basic definitions of some
concepts discussed in the Introduction. An experiment E is a measurable space
(2, %) along with a class of probability measures & and we write E = (2, %, ).

Let (2, #,v) be a o-finite measure space and {f,: y € I'} € L'(»). Then
{f,: v € T'} is uniformly integrable (u.i.) if for all & > 0 there exist an 4 € L(»)
such that

(6) f(|f7| ~h),dv<e forallyeT,

where (x),= max{0,x} for all x € R. For more details regarding uniform
integrability in this general framework, see Fabian and Hannan (1985), Section
4.8, or Bauer (1981), Section 2.12. A well-known result is that since » is o-finite,
{f,, y €T} is ui. if and only if for every sequence {vy,} C I' there exists a
subsequence {yn } such that {f, } is ui.

Let (2,, #,,{P", P"}) be a sequence of experiments. The sequence {P"} is
contiguous to the sequence {P"} (P™ < P™) if for each sequence {B } such that
B, € %, for each n and P*(B,) > 0 as n — co implies that P"(B)—->0 as
n — oo. The sequences {P"} and {P"} are mutually contiguous (P” < > P") if
{P™} is contiguous to {P"} and vice versa. The sequence {P"} is asymptotically
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separated from {P"} (B" a P) if there exists a subsequence {n’ } and a corre-
sponding subsequence of subsets {B,,} such that B, €.%,, P*(B,) — 1 and
P"(B,) - 0. Note that it is poss1ble for {P"} and {P"} to be asymptotlcally
separated and there exist a subsequence {n’} of {n} such that P* < P”. It is
easy to see in the special case of (2,, #,) = (@, #), P" = P and B = P for all
n that P* <> P” if and only if P= P, and P" a P" if and only if P L P. It is
in this sense that contiguity and asymptotic separation are generalizations of
equivalence and singularity.

Let (2, #,{P,: 6 € ©}) be an experiment with ® C R? The experiment is
dominated if there exists a o-finite measure » on (2, %) such that P, < » for all
0 € O. In the case of a dominated experiment there is a notion of differentiabil-
ity which is defined as follows. Let f, € dP,/dv and h, = ‘/ﬁ € L%») for all
0 € ©. The experiment is differentiable at 8 = 6, if the mapping § € ® — h, is
differentiable as a mapping from @O to the Hilbert space L%(») at 8 = §,, that is,
there exists Vi, € [T{L*(») such that

||h0 — hgy— (0 6,)" - Vhy )

li =0
@) ] -6, ’
where the limit is through 6 € 0, (6 — 6,)" is the transpose of (6 — 6,), and the
norm on R¢, | - |, is the usual one. Note that we do not assume that © is open.

The experiment E is differentiable if it is differentiable at all points in ® and E
is regular if it is continuously differentiable. It is easy to see that differentiability
is not dependent on the dominating measure. Throughout this paper all parame-
ter spaces are assumed to be in finite-dimensional Euclidean space, and in any
Euclidean space we use the usual norm which we always denote by | - |.

Suppose (2, Z, {P, 13}) is an experiment. The Hellinger distance, H(P, 13),
between P and P is defined by

(8) 2H%(P, P) = f(h — k)’ dv,

where v =P+ B, h e VdP/dv and he |dP/dv.1tis easy to see that » could
be replaced by any o-finite measure which dominates P and p (when of course h
and A are replaced by the obvious functions), and that 0 < H(P, P2 < 1. Also it
is obvious that H(P, P) = 0 if and only if P = P, and that H(P, P) = 1 if and
only if P L P.

For the rest of this paper we use the notation f and A for densities and square
roots of densities, respectively, along with subscripts or superscripts ( f, corre-
sponds to P,, etc.) to indicate their associated probability measures without
further comment.

There are important relationships between the Hellinger metric and contigu-
ity /asymptotic separation. The following equation is well known [cf. Strasser

+(1985), Lemma 2.15] and quite useful:

9) 2H?*(P, P) <|P - P| < 2H(P, P)J/2 - H*(P, P),

where || - || is the total variation norm. It is easy to see that P”a P if and



1668 B. J. THELEN

only if
(10) limsup||P" — P = 2.
n—oo
Thus
(11) P™a P if and only if limsup H(P", P") =1

n—oo
by (9). For the infinite product situation, we can easily monitor the Hellinger
distance by monitoring the Hellinger distances between the components. If
P*=TI% P, and P*=[I2,P,,;, then

o0
HY(P", P) =1 =[] [hyhidv,
i=1
(12) ”

=1- H(l - H*(P,, B,)).

i=1

By (11) and (12), P” a P" if and only if either

0
limsup Y, H¥(P,;, B,;) = o
n—oo =1
(13) or
lim sup sup{H(P,,i, B,):ie N} =1.
n—> o
For further details regarding contiguity, differentiability and the Hellinger
metric and their connection to asymptotic statistics see Strasser (1985).
Let (Q, #,{P;: 0 € ©}) be an experiment. We now list some assumptions
which will be invoked later on.

(A.1) Py = P, for all 4,6’ € O (homogeneity).

(A.2) limy, , H(P,), P;) =0 for all § € ©® (continuity). When there is no
possible confusion we write H(8, 8’) in place of H( P, P,.).

(A.3) lim, , (H(8,6,) =1 for each § € ® and sequence {#,} € © such that
either |6, = oo or 8, » t € ©®\ O, where ©® denotes the closure of ® (asymp-
totic separation at the boundary).

(A.4) P, # P, for all 8 # 0’ (identifiability).

Since ® c R?, (A.1), (A.2) and (A.3) imply © \ O is closed. This is stated and
proved in the following proposition.

ProrosITION 2.1. Let E = (2, #,{F): 6 € ©}) be an experiment which
satisfies (A.1), (A.2) and (A.3). Then © \ O is closed.

Proor. If ®\ ® = @, we are done. So suppose that it is not null and let
{¢,).C 0\ O be such that t,>te R Let 6, € ©. By (A.3) there exists {606
such that |¢; — 6| — 0 and H(6,,6,) — 1. Also if ¢t € ©, H(f;,t) - 0 by (A.2).
This would then imply H(6,, t) = 1, a contradiction to (A.1), since H(6,, t) >
H(6,,6,) — H(0;,t) for all j. Hence ¢ & O and this implies that £ € ©\ 6. O
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Finally, whenever there is an infinite product measure it is implicitly assumed
that the component measures are compact, that is, there exists a compact
subclass [cf. Neveu (1965), page 26] in the component o-field such that the
measure of any set is the supremum of the sets in the subclass (this is needed to
ensure the existence of the infinite product measures).

3. Sufficient conditions for contiguity / asymptotic separation di-
chotomy. A corollary of a more general result in Liptser, Pukelsheim and
Shiryaev (1982) which gives necessary and sufficient conditions for contiguity in
the infinite product situation is stated below [this is actually a generalization of
a result in Oosteroff and van Zwet (1979)].

PrOPOSITION 3.1. Let E,; = (Q,;, Z,;, {Pn;, B.)) be an experiment for all
n,i € N, P* =[1*P,, and P" = [1°P,,. Then P" <> P" if and only if

(14) lim sup ZHz( o m) < 00,
n—oo 1
(15) hm lim sup Z (F:> Kf,;)) =0
Koo pse 1
and
(16) lim limsup Z (fm- > Kf:,i) =0

Koo poo 1

Before stating and proving the main results in this section, we need to state a
technical lemma which states that contiguity and asymptotic separation are not
affected by measurable transformations which are one-to-one, onto and have
measurable inverses. The proof is easy and is omitted.

LEmMMmA 3.1. Let E, = (9,, %, {P", 13"}) be a sequence of experiments and
let I, be a measurable transformatzon from (Q,, #,) onto itself which is
one-to-one, onto and has a measurable inverse. Let Q" = P"< I, and Q" =
P"oI. Then P" < P" if and only if Q" <« Q" and P"a P" if and only if
GnaQn

REMARK Let E,,=(Q, #,{P,, P.}) be an experiment for all n,i € N,
= [IP,; and P= I—I°°P Let @ and @” be obtained by a common rear-
rangement of the component probability measures of P” and P”, respectively
(rearrangement can be different for each n). By Lemma 3.1, mutual contlguxty
between P™ and P is equivalent to mutual contiguity between @” and @”. A
similar statement holds for asymptotic separation. This fact will prove useful for
simplifying some arguments and calculations.

Based on the previous results we now state and prove a technical theorem
from which the main results of this section follow.
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THEOREM 3.1. Let E = (Q, #,{F: 0 € O}) be an experiment salisfying
(A.1) through (A4), P" =TIP°F, , and P" =TI¢ ¥Py , where {0,: n,i € N} C O,
with ©, being a compact subset of ©. Also assume that if v is a dominating
measure and ©/ is any compact subset of ©, then

hy — hy)?
(17) u:0&@,0'e@' is u.i.
160 -6 ° °
and
H(0,6
(18) ’}i_rn)inf{ |9(— 0,|) :0€0,10-0')< p} > 0.

Then P" <> P™ or P a P* with the former occurring if and only if

(19) hmmf 1nf{d1st(9m, O\0):ieN} >0
and
(20) lim sup ZI — 0, =M<,

where © is the closure of © and dist(6, ).i» @) = 1 by convention (2 denotes the
null set).

Proor. First suppose

(21) limsup sup{|6,;|: i € N} = oo.

| By a previous remark, without loss of generality there exist subsequence {n'}
such that |d,,| = c and 6,,, = 6, € ©. Then H(6,,§,,) > 1 by (A.3) and
H(6,,6,,,) — 0 by (A.2). But by the trlangle inequality and algebra,

H(6,.,6,,) = H(6,,8,,) — H(6,,6,,)

for all n’ and on taking the limit infimum of both sides, H(6,,, 6,,)) - 1. Thus
by (13), P" a P,

Now suppose that (19) is false. By the above argument if (21) is true, then
P™ a P, 50 assume that (21) is also false. By the previous remark, without loss of
generahty there exist a subsequence {n’} and {¢,} C ®\ O, such that 6., ~
teRY 6, - 6,0 and |, — t,| — 0. By the triangle inequality, ¢, — ¢,
and hence ¢t & O by Proposition 2.1. Thus P" a P" by (A.2), (A.3), (13) and an
argument similar to the one used in the previous paragraph.

Now suppose (20) is false, and wé now want to show P™ a P", By the previous
arguments it suffices to prove P" 2 P" under the additional assumptions that
(21) is false and (19) is true. By these additional assumptions, there exist an
N €N and a compact set © C ® such that {6, n> N, i € N} C ©/. Let
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po > 0 and a, > 0 be such that
H(9,0)
6= 0]

for0 € 0O, 0’ € O and |0 — 0’| < p,.

Also the LHS of (22) is bounded away from 0 when considering 6 € 0,
0 € © and |0 — 6’| > p,. To show this, assume that it is not bounded away from
0. Then we can choose sequences {6,} € ©, and {§/} C ©/ such that §, —» §, € 0,
0! > 6;<0, 10,—0/| >p, and H(8;,6/)— 0. By (A.2), H(8,,0;) =0, which
contradicts the identifiability assumption of (A.4). Thus the LHS of (22) is
bounded away from 0 when |0 — 6’| > p,.

By combining the above with (17) and (22), there exist a, 8 € (0, c0) such that

(23 alf — 0’2 < H¥(8,6") < B|6 — 6'|> for6c @, 8’ € @
I I e e

Since (20) is false, (23) and (13) imply P a B",

For the final case suppose (19) and (20) are true with M as the constant given
in (20). By the remark preceding this theorem, without loss of generality we can
assume

(24) 160 = G, = 10,501 = G,,41] foralli,n €N,

As in the previous paragraph, since (20) implies (21) is false, there exists a
compact set ®, C © and N, € N such that {§,;: n > N,, i € N} c . Since (23)
is only dependent on the hypothesis given in the statement of the theorem, it
holds in this case as well. This combined with (20) implies (14) is true.

We now want to verify that (15) and (16) hold. Let ¢, &, > 0. Then let
{6;} € ©,and {#/} € O, be sequences such that 6, + §/ for all j and |6, — 6/| —»
0. Then there exist subsequences {6}, {6/} such 6;, — 6, and 6/ — §, and by
assumption (A.1) we can also assume that hg, = hy, and h,,j,, - hg, a.e.-v. This
implies

(22)

>

 B{(hg, — hy,) > 60k}
o H(6,,,06])
2
oo N H*(6,, 9;"'2)
0, — 6,
-0

by (23) and (17) which implies u.i. of the integrands. By an exactly analogous
argument

 Byf(hy, — k)" = eohiy)
(26) J,h_]?:o Hz(o_/’ 01]) =
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Since the original sequences were arbitrary we have actually shown

Py{(hg — hy)" = eoh3}
H?(0,0)

p—0

limsup{ :|0—0'|Sp}=0

and
. .Po;{(ho - h01)2 2 th2/} ,
iﬁl})sup{ 70, 9) 10—-0<p) =0,

where both limits are over § € 0, and 6’ € O/ with § # 6’. Thus there exists a
p > 0 such that

Po{(ho —hy)’ 2 thg}

(27) H(0,) <e
and

Pl h _h ’ 2_ h21
(28) o{(a ) =& }<£

H%(0,06)

for § € ©,, 8’ € O, such that |§ — 8’| < p. To show that P" <> P~ it suffices
to prove that any subsequence {n’} has a subsubsequence {n”} such that
P™ <> P". Hence it suffices to prove P™ <> P" for a subsequence {n'} such
that 6,, > 0,€0, §,, > 6,0, fo,, = fs, a-e-v and f; — f; a.e-v for all
i € N, since (A.2) is true and since ®, and ©; are both compact. Let C =
max{M/p? 1}. By (A.l) there exist K > (1 + ¢,)? such that

&

(29) limsup P, (fs,. > Kfz,) < P (fs, = Kfg) < vl
and

' &

(30) limsup Py, ( fy,, > K,,) < Pyl f5,2 Kh) < &

for i < C. There exist N € N such that n > N and i > C implies |6,;, — §,,| < p
by (20) and (24). By combining (29) and (30) with (23), (27) and (28),

(31) lim sup ZPM( fa, > Kf(;",i) <e(1 + MB)
n—o0 1

and

(32) limsup Y. P; (fs,, > Kfs, ) < e(1 + MB).
n—o0 1 .

Since ¢ was arbitrary, this implies P* <> P* by Proposition 3.1. O

REMARK. Let E = (Q, #,{P,: 0 € B}) be a dominated experiment and let
vy, ¥, be two dominating o-finite measures. Suppose E is differentiable at § = 6,
with differential vhj for measure »;, j=1,2. Then it is an easy exercise to
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show that
(33) fvhl (vhy,) dv, = _[vh2 (vh3)" dv,.

In partlcular [V hy, - (Vhy) dv, is nonsingular if and only if [Vhj -
(Vh? )‘ dv, is nonsmgula.r that i is, nonsingularity is independent of the dominat-
ing measure. We say that the differential is nonsingular at § = 6, if the matrix as
given in (33) is nonsingular.

THEOREM 3.2. Let E = (2, #,{P,: 0 € ©}) be an experiment differentiable
at 0 = 6, and assume E satisfies (A.1) through (A.4). Let v be a dominating
measure and assume that the differential Vhy, is nonsingular. If P" = I1°Py
and P" = I1°F; , the P" <> P" or P" a P with the former being true if and
only if

(34) liminf inf{dist(4,;,0\ ©): i e N} >0
and
(35) lim sup zlﬂ -6, < oo.

Proor. Let O, = {6,} and note that

H?(6,,0’
lim inf{(—O)-: 16, — 6’| < p}

p—0 |00 - 0’]2
lim inf "(90 - 6)" Vhq, 2 6, — 6
(36) —p_x}})m TSI 110, — 0| <p

> inf{t‘- (thao‘ (vhoo)‘du) ctteRY | = 1}

> 0.

Thus (18) holds.
Let O/ be a compact subset of ©. In order to verify (17) it suffices to prove
that if {0} is a convergent sequence in @, \ {f,} with

69.— 0
A 2 - te RY,
Ioj_00|

then
{(hg,- ho,)’ 16, = 6% J N} is i

To show this, we consider two cases. First suppose 6; — 6,. Then (hy — hoo)/

|6; — 85| = t*- Vhe, in L%(v) and hence (hy, — hy) 2/10; - 00|2 - (t- Vh ,)7 in
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L'(») which implies u.i. For the second case suppose 0; — 6 # 6,. Then by (A.2),

h0~ - h0 h0 - ho
2 = > 2 in L3(»
|9j - 0o| |9 - 00| ( )

and hence

(g, = ha,)"  (ho = ho,)’
|0j - 00|2 |9 - 00|2

in L(»),

which again implies u.i. Hence we have verified (17) and so by Theorem 3.1, the
‘result follows. O

THEOREM 3.3. Let E = (Q, #,{P,: 6 € O}) be a regular experiment which
satisfies (A.1) through (A.4). Let v be a dominating o-finite measure and assume
that the differential v hy is nonsingular for all 8 € ©. Furthermore, assume
that © is locally convex and {6,;: i,n € N} C O, C ©, where 0O, is compact. If

=TI{°P,, and pr = I1°F;, then P* < P or Pha P with the former
being true if and only if (19) and (20) are true.

ProOF. Let ©/ be a compact subset of ®. To show (17) and (18) are true,
and hence by Theorem 3.1 obtain the desired result, it suffices to prove that if
{6;} € ©, and {6/} c @, there exist subsequences {0} and {6/} such that
{||h,, - ho, /16, — 6, |} is bounded away from 0 and {(h,, - he))’/
6, — | } is ui ’I‘hus dropping the subsequence notation for convenience, it
sufﬁces to prove that {llq, — hgll/16; — 6/]} is bounded away from 0 and
{(hg, — hg)?/16; — 6/} is ui. under the additional assumptions that 6, 6, €
o, 0’—>0’66and(0 —-67)/16; - 6/| > t € R%

If 0, = 64, then by the local convex1ty of O, the continuity of the differential
and a standard differential calculus result for normed linear spaces [cf. Loomis
and Sternberg (1968), page 149],

h 6~ hy 7
W—Wl
which implies {(hy, — hg)?/16, — 6/|* j € N} is u.i. Also (37) implies

(j’j)

(37) > ¢t vh, in L¥(»),

38 liminf ——= > 0,
( ) j—boo |0 - 0'|
since Vh,_ is nonsingular at § = 6,
In the case 6§, + 6,
h ); - h 1 h - h ,
(39) b 20T 20 i 12()

6,- 6/ ~ 10—

by (A.2). Hence we again have {(h,, - h0()2/|0 — 0/|* j € N} is ui. Also in this
case (38) holds by (39) and (A.4). The result follows. O
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4. Applications of sufficiency results. In this section we use the previous
results to prove a contiguity /asymptotic separation dichotomy for sequences of
Gaussian processes with arbitrary index sets, for sequences from infinite triangu-
lar arrays of a multinomial experiment, and for sequences from infinite triangu-
lar arrays of an exponential family. The first result is a generalization of
Corollary 4 in Eagleson (1981), which dealt only with finite triangular arrays of a
Gaussian experiment. To prove the general Gaussian dichotomy, we first prove
the dichotomy for the case of countable product measures in Corollary 4.1. We
then use this result to obtain the general Gaussian contiguity/asymptotic
separation dichotomy.

COROLLARY 4.1. Let E = (R*, B(R*), {P,5: p € R*, = € PDY}), where PD is
the set of all positive definite k by k matrices and P, is multivariate normal with
mean p and covariance matrix 2. Let P" = [1°P, 5 and P = ITPP; s . Then
P" <> P" or P* a P" with the former occurring zf and only if

(40) lim inf 1nf{det(2m-): i€ N} >0
and
(41) limsup ), {Iﬁni - pol? + £, - 20|2} < 00,

n—o0 =1

where the norm on matrices is as elements of R¥’.

Proor. For the sake of brevity and clarity we only prove this for the case
k = 1, since conceptually the proof in the multivariate case is the same. Let A,
Lebesgue measure, be the dominating measure. By Examples 3.1 and 3.2 on
pages 47 to 49 in Roussas (1972), the mapping p € R — h 5 is differentiable for
all £ > 0 and the mapping = € R, — h 5 is differentiable for all p € R with the
L2 derivatives coinciding with the Lz-equlvalence classes containing the point-
wise partial derivatives

p( —(x - M)2)
9 1 (x-p)?\ & 43
Ehuz(x) = (E + 4352 ) (2772)1/4
and
exp(:_(i“_“)z)
d x—p 43
a_p,h"z(x) =( 93 ) (27z)""

It is easy to verify that above are continuous as mappings from ® = R X R, to
L%(N). Thus by a standard result in differential calculus for normed linear spaces
[e.g., Loomis and Sternberg (1968), Theorem 3.9.3], the experiment is differen-
tiable. The remaining assumptions in the hypothesis of Theorem 3.2 are easily
verified and are left to the reader. O
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REMARK. Corollary 4.1 is subsumed by an upcoming example in this section.
Specifically, we show in the example that under fairly general conditions,
exponential families generate regular experiments and hence Theorem 3.3 is
applicable. However in the Gaussian example, since one can always translate and
rescale, we only need Theorem 3.2 to prove the dichotomy.

We now state Eagleson’s result on Gaussian triangular arrays as a corollary to
the previous corollary. The proof is easy and is omitted.

_ CoROLLARY 4.2. Let E be_as in Corollary 4.1 and let P" =TI'P, s and
=II7F; s . Then P" <> B or P a P" with the former occurring if and
only if

(42) liminf inf{det(Z,,):1<i<n} >0
and
(43) lim sup Z {10 = ol® + 12 = 2o’} < o0.

We now want to state and prove the general Gaussian dichotomy. First
however we must state a lemma which is needed in the proof.

LeEmMMA 4.1. Let (2,, Z#,{P", P”}) be a sequence of experiments and for
each n let Z° be a field generatzng &Z.,. Then P" < P* (P" & P") if and only if
P" is contiguous (asymptotically separated ) to P" on % (take the natural
extensions of the definitions of contiguity and asymptotic separation for fields).

Proor. By a straightforward corollary to the proof of the approximation
property of #° to &, it is possible to approximate simultaneously any set in
%, by asetin £° w1th respect to P” and P” [cf. Billingsley (1979), Theorem
11 4]. The result follows easily. O

COROLLARY 4.3. Let E = (RS, Z(RS), {P", P™}) be an experiment, where S
is an arbitrary index set and P" and P" are Gaussian probability measures.
Then P™ <> P" or P" s P™,

ProoF. By Lemma 4.1 it suffices to prove the dichotomy for the sequence of
experiments E, = (R”, #(R"), {P", P"}), where P" and P" are Gaussian proba-
bility measures. If the cardinality of the set {n € N: P* 1 P"} is infinite, then
clearly P" a P 1f it is finite we can assume, without loss of generality, that P”
and P”" are nondegenerate. By translating the components and invoking Lemma
3.1 we can assume without loss of generality that P” has mean 0. Next by
diagonalizing the covariance matrix of P", and then rescaling the components of
P" and again invoking Lemma 3.1, we can assume that P" has an identity
covariance matrix. Finally, we diagonalize the covariance matrix of P" (this does
not affect the covariance matrix of P” since it is the identity) and again invoking
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Lemma 3.1, we can assume without loss of generality that P" is a product
ofone-dimensional Gaussian measures. Thus without loss of generality we can
assume that P” is an n-fold product of #°(0,1) and P" is an n-fold product of
(AN (ppi»0%): 1 < i < n}. By Corollary 4.2 the result now follows. O

Examples. We now give two more examples where the dichotomy results in
Theorems 3.2 and 3.3 apply. The second subsumes the first, but the first example
is presented because of its simplicity and transparency relative to the theory in
Section 3.

ExaMPLE 1 (Multinomial). Let = (1,...,d} and E = (2,2% {P;: 0 € ©)),
where © = {6 € R%: 6(j) >0V j, £¢0(j) = 1}, f = Z{0(/)1;;), and where »,
the dominating measure, is assumed to be the counting measure on (£2,2%). For
J € Q,let e; € R? be defined by

() = 1 ifj=j
KAV NS Y

Then for § € R?,

€

JO +ee; — VB (¢0(1)+e - 6(J) )1
B = )

(44) )
- —=1,, ase—> 0,
2/6(;)

where the last convergence is in L2(»). Thus the mapping § € R? - V@ is
partially differentiable and it is easy to see that the partial derivatives are
continuous as functions from R% to L2(»). Thus by a standard differential
calculus result for normed linear spaces [e.g.,, Loomis and Sternberg (1968),
Theorem 3.9.3] and since § € ® — h, is just a restriction of the above mapping,
the experiment is regular with

t

1
—1,..., =1 .
0(1) {1} o(d) {d)

Let P" =TI P, and pr = I1°P; , and assume there exist a p > 0 such that
p<0,(j)<l1-p foralln,icNand je< Q.

2Vh0=

Then by Theorem 3.3, P* <> P” or P* a P" with the former being true if and
only if

lim inf inf{|d,,(j)|,|1 - 6,.(j)|:ieN, je @} >0
and '

o d
. . ~ = |12
thUPzzlom(l) - 0m(])| < oo.
1

n— oo 1
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ExaMpLE 2 (Exponential family). Let E = (@, #,{F,: § € O}) be an experi-
ment where O is an open subset of R%. Assume there exist a o-finite measure »
which dominates E and there exists random variables {T: 1 <j < m} such that

m dPo
c(8)exp| Y 0,T;| € = for all § € ©.
N v

This is the exponential family with the natural parameterization, and we further
assume that the random variables {7} are linearly independent, that is,
I"t;T; = 0 a.e.-v implies ¢; = 0 for all j.

Then (A.1) holds since P, = v for all § € 0. Also if P, = P, then 6 = 8’ by
the linear independence of {7;} and hence (A.4) holds. By Theorem 78.2 in
Strasser (1985), E is differentiable with

Vhy = 3[(Ty = BT)hq, ... (Ty~ BTk,

where PByT; = [T; dF, for all j. By well-known properties of exponential families
[cf. Lemma 2.1 and Theorem 2.2 in Brown (1986)] the mapping 8 — VA, is
continuous and hence E is regular.

Let P" =1I°F;, and pr = IT°F; . with {6,;: n,i € N} restricted to some
compact subset of ©. If we assume (A. 3) is true, then we have a
contiguity /asymptotic separation dichotomy by Theorem 3.3. If we do not
assume (A.3) is true but instead only assume that {f,: n,i € N} is also
contained in some compact subset of ©, we again get a contiguity /asymptotic
separation dichotomy by Theorem 3.3. This last statement follows by the fact
that we could without loss of generality assume O is compact by taking it to be
the closure of {0,,,0,;: n,i € N}, and hence (A.3) is satisfied trivially.

5. Necessary and sufficient conditions for an /2 dichotomy. In this
section we prove a converse of the sufficiency result in Section 3 for a specific
experiment E = (R*, Z(R*),{P,p: t € R*, R € #)}), k > 2. This experiment E
is based on an underlying probability measure P on (R*, Z(R*)) and rigid
motion perturbations of P. Thus P, = Po RT, where T, is the translation
operator by the vector ¢ and R is in £, the set of all orthogonal transformations
on R*. Note that all rigid motions can uniquely be expressed as RT, for some
t € R* and R € 2. Considering # as a subset of all %2 X k& matrices, the
parameter space for this experiment E is ® = R* x # c R**+D,

For this experiment, Steele (1986) proved that [1°P L TI°P,, for all sequences
{6,} & 1? and which converge to the identity. Secondly and more importantly he
showed that TP =TI¢°F), for all {6;} €I if and only if P=A and for all
one-parameter subgroups { p(s) s € R} in the space of rigid motions, there exist
a number K such that

(45) |/ [a/ds(6(p())],-0dN) | < Kilil

for all ¢ € C*(R*). Here h € \/dP/d\ and C>(R*) is the set of all infinitely
differentiable functions with compact support. Steele defines finite Fisher infor-
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mation by this last condition. It is easy to show that if E is dominated by A and
is differentiable at (0, I') (I is the & X k identity matrix), then (45) is satisfied.

Hence (45) appears to be a weaker condition than differentiability. However
we will prove that the hypothesis of P =\ and E being differentiable are
necessary for an /2 dichotomy. In proving the main theorem we will need two
results due to Le Cam (1970) (Theorem 1 and Proposition 2) which we state as
propositions for ease of reference and a technical lemma, which is stated and
proved. In the rest of this section A will always denote Lebesgue measure on R*
(or sometimes R?), where we have suppressed the index % (or sometimes d) for
notational convenience.

PROPOSITION 5.1. Let ¢: U C R? - 5, where 5 is a Hilbert space and U
is a Borel subset. Suppose

) N OO0

u-u Iul - u'

for A-a.e. u € U. Then v is strongly differentiable at A-a.e. u € U.

PROPOSITION 5.2. Let E = (Q, #,{P,: 0 € ©)}) be an experiment satisfying
(A1) and let 6, € O. If TI¥P, =TIYP, for all {6} such that {(6, — 6,)} € 17,
then

H(6,,9)

47 limsup ———— < 0.
“7) 99, 10o— 0|

LEMMA 5.1. Let h € L3R*). If o/ is the set of all invertible linear transfor-
mations from R* to R%, then

48 li ho AT, - hjj, =0,
(48) o m ke AT, = Al

where the limit is over t € R* and A € «.

PROOF. Let ¢ >0 and g be a continuous function from R* to R with
compact support such that ||g — A||, < &. Then

(49) llhe AT, — il < ||k AT, — g AT, + lig° AT, — gllo + llg — Rll;.

But ||[ho AT, — g° AT}, > |lg — hll, as (¢, A) = (0, I), by a change of vari-
ables. Also since g has compact support, ||g° AT, — g||, = 0 as (¢, A) = (0, I)
by the Lebesgue dominated convergence theorem. Thus by taking the limit
supremum in (49),

(50) limsup [|ho AT, — Al|, < 2e.
(t, A)—(0, 1)

Since ¢ was arbitrary, the result follows. O
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We now set out some notation before going to the main results of this section.
For P, a probability measure on (R*, Z(R*)), let

EFf = (R*, B(R*), (P00 = Rk})
and
E2P= (Rk, ‘@(Rk), {1)0 €0 = Rk % ,@})’

where EF corresponds to the translation experiment and E; corresponds to the
rigid motion experiment. We sometimes suppress the superscript P for nota-
tional convenience when the underlying probability measure is clear.

Let 0 € ©. As given in the previous paragraph, # represents an element in
some Euclidean space. However we will sometimes find it convenient to let 8 also
represent the transformation, that is, in E,, 8 = T, etc. It will always be clear
from the context whether 6 represents a transformation or an element of the
parameter space, and hence we will not overly distinguish between the two
interpretations of 6.

Main results. The main result of this section is necessary and sufficient
conditions for the contiguity/asymptotic separation dichotomy in the rigid
motion experiment. We also give an analogous result for necessary and sufficient
conditions for a contiguity /asymptotic separation dichotomy in the translation
experiment since this result (to the best of our knowledge) has never appeared in
the literature and because the proofs for the translation experiment dichotomy
help to illuminate the much more difficult proofs used in the rigid motion
dichotomy result. First we need some preliminary results related to E{f and Ef
which are interesting in their own right. In Lemma 5.2, we show in both
experiments that if (47) is satisfied at one point, then (47) is satisfied at all
points. This is equivalent to saying that if P = A and the mapping § € ® — h,
is Lipschitz at one point, then it is Lipschitz at all points in ©. The usefulness of
this result is derived from Proposition 5.2, and is given in Theorem 5.1. Specifi-
cally, we show that if P = A and the mapping, as given above, is Lipschitz at one
point, then the experiment generated by P is differentiable. For the translation
experiment this was stated in Le Cam (1970).

DEFINITION. Let E = (2, #,{P;: 6 € ©}) be an experiment. Then I(E)
denotes all the points § € © for which (47) is true, that is, all the points where
the Hellinger distance is Lipschitz.

LEMMA 52. Let P= ), E € (EF, EJ} and suppose that l(E) # &. Then
IE) = 8.

ProOF. Let E =E,, 6,€ I(E,) and 6, € © = R* X 2. Now temporarily
substitute (¢,, R,), (t,, R,) and (¢, R) for 8,, 6, and 8, respectively. Then

6076, = RT,T_, R;'R,T,

—_ -1
= RRy RoTiry Ry t-t)+to)-
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Thus
2
166716, — 6,12 =|(Ro'R,(t — t,),(RRT* — I)R,) |
(51) = |t~ t,* +|(R - R)R'R,|"
=16 - 01'2-
By (51),
(52) lho = holl _ llhgoste, = Boy
|0 — 6, 1060, — 6,

for all § € ©. Here we have also used the invariance of Lebesgue measure under
rigid motions. This implies that 8, € I(E).

The proof in the case of E = E, is exactly analogous to the above and is even
easier. O

In Theorem 5.1, by using Lemma 5.2 and Proposition 5.1, we prove that a
sufficient condition for differentiability of E in either the translation or the rigid
motion case is that [(E) # &. Again the result for the translation experiment
was previously known [cf. the remark following Proposition 2 in Le Cam (1970)].
For the sake of completeness and for purposes of helping to clarify the proof in
the rigid motion case we give a proof for the translation case.

Before stating and proving the theorem, we outline some of the key ideas of
the proof. The proof of differentiability for the translation experiment (where it
is assumed that A is the dominating measure) basically consists of noting that
being Lipschitz at one point implies it is true for all points in the parameter
space. By Proposition 5.1, the experiment is differentiable everywhere except for
a A-null subset of ©. By the translation invariance of A, this easily implies that
the experiment is differentiable everywhere. For the rigid motion experiment
there are two main difficulties to this approach. First © is already a null set, so
Proposition 5.2 does not even imply differentiability at any points. To overcome
this difficulty, we locally transform E, into a new experiment Ej* with a new
parameter space ©* which is not null, and then we invoke Proposition 5.2 for
this new experiment. We then transform back to the original experiment E, and
thus show that E, is differentiable on a dense set in ©. The second difficulty is
that, unlike the translation case, differentiability at a point 6, is not directly
transferable to other points in ®. However locally and asymptotically it is
transferable.

THEOREM 5.1. Let (R, %, P) be an experiment dominated by A, E €
(EFY2_,, and suppose [(E) # @. Then:

i=1

(a) E is regular in the case i = 1.
(b) E is differentiable in the case i = 2 and in this case the family of
differentials {Vhg: 0 € ©} is uniformly bounded in the L*-norm.
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Proor. The proof of differentiability for the translation experiment was
essentially given in the remarks prior to this theorem. Regularity follows by
Lemma 5.1.

Let E =E,. Then by Lemma 52, I(E)=0 =R*xX%. Now let L=
k(k — 1)/2. By the general implicit function theorem [e.g., Auslander and
MacKenzie (1963)] for each R € # there exist neighborhoods V of R and U of
0 € R, and ¢ € CYU, V) such that ¢(0) = R and ¢ is homeomorphism with
the differential of ¢ at u € U, dy,, having rank L for all u € U. Also there
exists a neighborhood W of R € R* and n € CY(W, U) such that 7 is onto, and
70y is the 1dent1ty mapping on U. Without loss of generality we can assume U
is convex, U is compact and the above is true on a neighborhood of U with the
same 7 and .

Now fix an Ry € # and let 1, ¢, W, U and V be as above for this particular
R . By the compactness of U and the continuity of the differential,

sup{|ldy, — dy,|: u,u’ € U} = B < 0.

Thus using a standard differential calculus result [e. 8. Loomis and Sternberg
(1968), Theorem 3.7.4],

(53) e(w) = y(u)| < Blw —u] forallu,u’ € U.
Thus {|Y(u’) — ¢(w)|/|u’ — u|: u,u’ € U} is bounded above. We now want to
show it is bounded away from 0. It suffices to prove that

(54) lim inf [#(2) - ¥(w)] >0

Jj— oo lu; — uy

for arbitrary sequences {u;}, {u/} in U such that u; # u} for all j. Since this is
true if and only if every subsequence has a subsubsequence which is bounded
-away from 0, it suffices to prove (54) under the additional assumptions that
u,>u€ U and ui->u' € U.If u # u’, then (54) is true by the continuity and
the injectivity of dz If u = u/, then

i [P0 — 9 () — dv ()~ u))|

Jo oo [w; — uy

=0

(65)

by the continuous differentiability of y, the convexity of U and standard
differential calculus. But dy, has rank L so (55) implies that (54) holds in this
case also.

Thus there exist positive constants a, 8 such that

(56) a’ = ul <|9(w) = $(w)] < B’ — ui

for all u,u’ € U.

Now consider a new experiment Ej = (R*, Z(R*), {P%: 0* € ©*}), where
0* ==R*x U, P}, = P, yuy and hj. € |dP/dA. We define a new map
Yp: REX U - O by yy(t,u) = (t ¥(u)). By (56)

(57) [:(6*) — ¢,(6*) | < (1 + B)16* — 64|
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for all 4, 6* € ©*. If OF is a compact subset of ©*, then there exist K < oo
such that for all 6+ € 0%,

: l7rgs — Pyl

58) v T
by dividing and multiplying by |¢,(8*) — ¢,(6;*)|, and by invoking (57) and
invoking the proof of Lemma 5.2. Thus I(E;*) = ©*. By Proposition 5.1, there
exist Of C O* such that Ej* is differentiable on O and A(0* \ Og) = 0.

Now define a map 71,: R* X W —» R* X U by n,(¢, w) = (¢, n(w)). Note that
7, € CY(R* X W) and 1, ° ¢, is the identity map on R* X V. Thus by the chain
rule, E is differentiable on ©, = {,(0¢) with

(59) Vhy= Vn4Vhye forfe B,

Let t, € R* be fixed. Then there exist a sequence {(t;,u;)} € B¢ such that
(¢, u;) = (85, 0). Letting 0, = ¢ (t,, u;), we see that §; — 00 (o, R,). Now for
a ﬁxed J and letting 8 € R" X V we have

uh,,~h,, —(6-6,) -(vh,,,oo.—loo ”

<K(1+B)

—||h © 0050, — ko6, — (68— 6,)"- vh,,”

€0 716, — ho 0—(00 6,-6,)"- vy

+||(000~10j— 6~ 8+6,)  vh|.

If we let 0, = (¢;, R;) and 0 = (¢, R), and if we view 66, 10j as an operator, we

have
» 00,6, = RT,T_ o R T,
- (61) _
= RR; leTR;IRO(:—tO)Hj-
Corresponding to the first term in (60), note that
(62) |000"10j — 0] =10 — 6
by (51). For the second term in (60), by (61) and the Cauchy-Schwarz inequality,

(C AR |

2
< 10056, — 6, — 0 + 62| (v, - vhy )

2112

(63)

(R 'Ro = I)(t - to), RRG'R, — R, — R+ R,)['|(vhs, - vhy)”

)1/2 2

=|((Ro = B)(t ~ to), (I = RR3*)(Ro — R)))[|(vhs, - why,

1722
SIRj—deﬂU-%,R——Roﬂﬂkvh@-vh%) “,



1684 B. J. THELEN

where in the last inequality, we have used that the norm of R — R as a linear
operator is less than or equal to |R — R|, and we also used that the inverse of
an element of # is equal to its transpose. On dividing the quantity in (60) by
|0 — 6|, and letting 6 — 6,, we see that the first term goes to 0 by the
differentiability of E, at 6, and by (62). Thus by (61) and (63), if g’/ =
Vhoj ° 017 100, .

|70 = ko, — (8- 8,)"- 7]
64) limsu
Since Vh, = Vmojvh;ﬁ(ﬂ )’

(s, - vry)"|.

But Vg, = Vg, by the continuity of the differential and {”(th(o)

m(o))l/ 2y is umformly bounded by (58). Thus the quantity in (65) is uni-
formly bounded in j, and hence by (64),

ho—hy —(0—6,)" - g’
(66) lim limsup " P % 2 ” =
j=w g, |6 — 6,
Let M = R* X (dy(R%)) c R**¥’. Then M is an (L + k)-dimensional sub-
space since dy, has rank L. Now let 65 = (¢,,0). Then by the differentiability
of ¢,

(67) 0}2‘},* ¥,(6%) — ¢,(65%) — dz[/w(;,(ﬂ* - 00*)' =

By dividing and multiplying the expression in (67) by |{(6*) — ¥,(6;*)|, noting
that ¢, is a homeomorphism and invoking (56),
im |0 — 60— Pry (6 — 6’o)l _
08, |6 — 6| ’
where PrM is the projection operator onto the subspace M. By (66) and (68),

{Pr, g’} is a Cauchy sequence in [T}**PL%()). Let g be the limit of {Pr,, g/} in
[T¥*+DL2()). By (68)

1/2 )1/2

“ th(o)Vmo V e, thl(o)

(68)

o |re—ne, - (6-8) g
(69) h;n_)s;:p X <

after triangulating the numerator on (6 — ,)'- g’/ and Pry (8 — 6,) - g’. Thus
E, is differentiable at 6,. Since 6, was arbitrary, E, is differentiable. Also by
projecting the differentials onto the appropriate subspaces (as was done previ-
ously with the subspace M), invoking the proof of Lemma 5.2 and (68), we also
obtain a family of differentials {VA,: § € ®} which are uniformly bounded. O

REMARK. By Theorem 5.1 we now have a useful sufficient condition for
checking when EF is differentiable for i = 1,2. Namely, we only need to check
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whether I(EF) # @. Most often this will be done by checking whether the
identity is contained in I(EF). We apply this in the next result, Proposition 5.3,
a result we will need in proving our main theorem.

PROPOSITION 5.3. Leti € {1,2} and (R*, B[R*), {P,, P,}) be an experiment
such that Py = \ and E}* is differentiable. Then EFo* "1 is differentiable.

ProoF. "Let P = Py* P, and note that by Fubini, P=X. Let ® be the
appropriate parameter space depending on whether i =1,2 and let A, €
(dB,/d\)'/2 for § € O, and f, € dP,/d\. Then

(70) h) = f1stoy -0 ap())

for all y € R*\ B where A(B) = 0.

Let 6 € O be fizxed. For §’ € © \ {0},
(71) (hg — hy)® = B3 — 2hg.hy + K3
by algebra. But by (70)

ho () = | [y ) B ) [0 - ) api) )|

> [0’y = x)ho(by — x) dPy(x)
for A-a.e. y, by Holder’s inequality where A, = ( f,)'/% Combining this with (71),

(12) (ko) = ho()" < [(o(0'y = %) = ho(0y = %))’ dPy(x)

“ for A-a.e. y. Thus letting §’ — 8 we obtain that 6 € I(EF) by (72) and Fubini.
By Theorem 5.1, EF is differentiable. O

We are now ready to state and prove the main theorem of this section, which
gives a partial converse to Theorem 3.2 in the case of translation and rigid
motion experiments. Some of the ideas in the proof are in Steele (1986). Before
we do this we state a simple lemma, without proof, which we will need.

LEMMA 5.3. Let E = (R*, #(R*), {P,,, m,Q n,i € N}) be an experiment.
If TI=P, + @ a TI*B,,+ @, then [1*P,, A TP,

THEOREM 52. Let (R*, #(R*), P) be an experiment and let E € {EF, Ef)
and in the case E = Ef, E satisfies (A.4). Then the following are true:

(a) P =TIPP, <> Pr= T1F;,, for all {6,}, (8.} such that
(73) lim sup Z| — G <

n— oo

if andonly if P= X and E is dzﬂ’erentzable.
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(b) P" =TIP, & Pr=TI¥P;  for all {6,),{0,;) such that

(74) : limsup }'|6,; — 6,% = oo.

n—oo 1

Proor. By Lemma 3.1, we can without loss of generality assume {6,;} C
{0} X Z in the case E = E,.

(a) TI®P = P; X TIP for all § € © and hence (A.1) is true. This implies that
P = X\ [cf. Steele (1986), Lemma 4.1] and henceforth let A be the dominating
measure. By Proposition 5.2, [((E) + @ and thus by Theorem 5.1, E is differen-
tiable.

For the converse clearly (A.1) and (A.3) are true, and by Lemma 5.1, (A.2)
holds. Also (A.4) holds in the case of E = E, by a straightforward argument and
for E = E, the assumption holds by the hypothesis. Thus by Theorem 3.1, it
suffices to prove

. [ llhg — Rl
(75) lim 1nf{ T

p—0

106@c,|0'—0|<p}>0,

where ©, = {0} for E = E, and O, = {0} X £ in the case E = E,.
We first prove (75) for the case of E = E,. Note that ||hy — hy|| = ||hg_g —
hy|| by the translation invariance of Lebesgue measure. Thus it suffices to show

. Nho = Aol
76 liminf ————— >0
79 T

Suppose (76) is false. Then by the regularity of E and standard differential
- calculus, there exist 6, # 0 such that

1ag, = ol _

50,

(77)

’

s—-0 ISI

where the limit is through s € R. Thus

m
lhg, — holl < )y " hiogyym — Bi=105)/m ”
1

(78) = XT:" Pou/my = bl
_ ”h(0o/m) B hO”
1/m ’

where the first equality is by the translation invariance of Lebesgue measure. On
letting m — oo in (78) and invoking (77), ||hg — kol = 0. This implies that
F,;, = B,, a contradiction to (A.4).
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To prove (75) in the case E = E,, we first embed R* into R**! by the
mapping (x,...,%;) € R¥ > (x,..., x,,1) € R**1, On this embedded space in
R**! all rigid motions can be represented by a set of linear transformations
forming a matrix Lie group [cf. Auslander (1967), Theorem 1.6.6]. In matrix form
the element in the matrix Lie group representing RT, is denoted by G(R, t) and
is given by

_(R Rt
(79) G(R, t) = [0 ¢ ]
Also letting I, be the identity on R**!, note that
(80) IG(R7t)—IO| =I(t, R) - (0’ I)I‘

This matrix Lie group has for each G(R, t), a tangent space T(¢, R) c R*+V*
which is a (2 + L)-dimensional subspace with L = k(k — 1)/2.

By the theory of matrix Lie groups there exist a ball of positive radius r about
0, B,(0), in the tangent space and a neighborhood of (0, I) in ® such that the
map S € B,(0) — exp(S) is a continuously differentiable homeomorphism [cf.
Warner (1983), Theorem 3.3.1 and Definition 3.8]. The exponential function,
exp(S), is defined as

00 k

exp(S) = %ﬁ’

where S is in the tangent space T(0, I). By (52), in order to prove (75), it suffices
to prove

ke~ ko
& o 10-0,0] 7"

So suppose that (81) is false and there exist a sequence {f,} such that 6, — (0, I)
and

|76, = 2o,
(82) oo |60, 1)

For large j, 0, = exp(a;S;), where S;€ T(0,I), |S| =1 and a; € (0,r). By
choosing a convergent subsequence, we can assume without loss of generality
that S; —» S, € T(0, I). Then

0,7) - exp(a,8))|

(83) ™ < exp(|a]),
J
since |S;| = 1 for all j. Thus
0,I)-29,;
(84) lim sup u <1

J— o0 Iajl
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by (83), since |a;/ — 0. Also
(85) lim ”hoexp(aij) - hoexp(ajSO) ”

J— 00 |(Xj

=0

by continuous differentiability of the map S € B,(0) — A cexp(S) (which we get
by the chain rule) and standard differential calculus. Thus since

| 7o exp(a,S,) — A 3 |7 oexp(a;S,) — hoexp(a,S;)| +| A cexp(a;S;) — A

|0‘j|

|aj

we have

(86) i 12oe(eS) — A _

J— 0 |aj

by (82), (83) and (84). But the map a € (—r, r) = hoexp(aS,) is differentiable
by the chain rule. Hence by (86)

- o Iheenn(as) < Al _

a—0 |a|

0.

Let a4 € (0, ). Then

” h oexp( apS)) — h "

IA

2 || 7 oexp(iagS,/m) — hoexp((i — 1)agSy/m) ||
1

88
(88) |1 exp(agSe/m) — ]

1/m

“for all n, where the inequality is by Minkowski’s inequality, and the equality is
from the invariance of A under rigid motions. Thus

|2 oexp(aeS;) — 2| =0

by (87), and letting m — oo in (88). Hence if 6, = exp(«a,S,), P = F;, a contra-
diction to the identifiability assumption in (A.4). Thus (75) is true in the case of
E = E, and we have proven the converse portion of part (a).

(b) First we convolute P with (0, I). Then note by characteristic functions
and invariance of A7(0, I') under rotations, (A.4) is satisfied for the experiment
EP+*#0.D_ Also by Proposition 5.3, this experiment is differentiable. By Lemma
5.3, it suffices to prove the result under the additional assumptions that P = A
and E is differentiable. By the proof of (a), (75) holds. Hence by (13) the result
follows. O

REMARK. It is natural to consider generalizations of the above to the case of
invertible affine transformations. In this framework we again start with a
probability measure P on R* % > 1. Let ./ be the set of all invertible linear
transformations from R* to R*. The experiment of all invertible affine perturba-
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tions of P is E = (R, #,{P,,: t € R*, A € «}), where
P, =P AT,

The result in Lemma 5.2 holds exactly as stated for this experiment also. A result
similar to Theorem 5.1(b) holds for E if the statement is modified to state that
for all 6, € © the family of differentials {Vh,: § € 0} is uniformly bounded in
some open neighborhood of 6,. This result can be used to prove a result exactly
analogous to Theorem 5.2(a) for this invertible affine transformation experiment.
In fact the proof is easier in that we do not need to transform the experiment
since R* X o is not a null set in R***¥*. We have been unable to prove an
analogous result to Theorem 5.2(b), mainly because it is not clear whether the
trick of convolving P with 470, I) preserves identifiability as was the case in
the rigid motion experiment.
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