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AN ASYMPTOTIC EVALUATION OF THE TAIL OF A
MULTIPLE SYMMETRIC o-STABLE INTEGRAL

BY GENNADY SAMORODNITSKY''2 AND JERZY SzZuLGA!*2

Boston University and Auburn University
We expand a multiple symmetric a-stable integral

f ff(tl,...,t,,)dM(tl)...dM(t,,)

into a LePage type multiple series of transformed arrival times of a Poisson
process. An exact evaluation of the limit of appropriately normalized tail
distribution results from this representation.

0. Introduction. Let Z be a symmetric Lévy a-stable process on [0, 1] with
the characteristic function

Eexp{itZ(u)} = exp{ —ult|*}, 0<a<2,

and let f be a real symmetric Borel function on [0,1]” vanishing on diagonals. A
random functional

(0.1) I(f) = f /Olf(xl,...,xn) dZ(x,) ... dZ(x,)

extends the notion of the multiple Wiener integral in a natural way. Existence

and characterization problems, not necessarily restricted to the stable case, have

recently attracted the attention of many authors. For a unified presentation of a

~ classical theory due to Wiener and It6 and for further historical background we
refer to Engel (1982).

Basically, a general definition of a multiple stable integral of type (0.1)
proceeded by a construction of a stable product random measure, is due to
Krakowiak and Szulga (1988).

However, the first characterization of integrands of a double a-stable integral
in case of a € [1,2) was obtained by Rosinski and Woyczynski (1986), and it was
generalized to an arbitrary a € (0,2) by Kwapien and Woyczynski (1987). Their
condition is hardly extendable for general multiple stable integrals due to an
internal complicacy even though a triple stable integration criterion of a similar
nature was found by McConnell (1986).

In the present article we make a step towards a characterization of a
distribution of a multiple stable integral by evaluating its limit behavior under a
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1504 G. SAMORODNITSKY AND J. SZULGA

suitable normalization. We show that
2 lim x*(Inx)*""P(L(f) > x)
X —> 00

(02) = lim x%(nx)""P(|L(f)| > )

= na""l(n!)“—2s‘"f1 cos fll f(ty.... )| dt, ... dt,
0 0

provided
(0.3) [, A+ 1)t 117 < oo,

where s = [Px *sinxdx, §,=1if n # 2 and 8,(f) = In In_|f|.

Observe that the first equality in (0.2) follows trivially only if » is an odd
integer. In general, I(f) is not a symmetric random variable if n is an even
integer even though it behaves like such because, in a sense, it is dominated by a
symmetric term.

We notice that a related result was derived by Surgailis (1985) from an
interpolation theorem in Lorentz spaces. Namely, he proved that for 1 < p <
a <2,

1/p
(0.4) (EIL(AF) ™ < Cll Il otogr2camy»

where the r.h.s. term is a norm in a Lorentz space of random variables generated
by a functional analogous to the one appearing in the r.h.s. of (0.3) (with the
Lebesgue measure dx replaced by certain measure dp). A discrete counterpart of
(0.4) was obtained by Rosinski and Woyczynski (1987).

The article is organized as follows. Section 1 introduces the notation and
provides a collection of basic facts concerning multilinear random forms and
multiple stochastic integrals. In Section 2 we prove the LePage type representa-
tion of I (f). The distribution of products of arrival times, essential for our
purpose, is studied in Section 3. Section 4 contains technical results on compari-
son of multiple series and multiple integrals. The asymptotic evaluation of the
tail of the distribution of I,( f) is obtained in Section 5.

Although we use elementary methods a combinatoric complexity of multiple
sums and integrals might suggest that some techniques seem more intrinsic than,
in fact, they are. A suitable notation is introduced to avoid unnecessary misun-
derstandings.

1. Preliminaries. In this article {Z(¢), ¢ € [0,1]} denotes a symmetric
a-stable motion, that is, a process with independent stationary increments such
that E exp{itZ(u)} = exp{—ul|t|"}, 0 < a < 2. For each n > 1, Z(t) generates a
random measure M™ on Borel sets in [0,1]" defined as a vector measure
satisfying the identity

MO(A, X -+ X 4,) = Z(4) -+ - Z(A,)
[Krakowiak and Szulga (1988)]. Observe that only M®, denoted for the sake of
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simplicity by M, is independently scattered, that is, its values on disjoint sets are
independent random variables.
The following notation is used throughout the article:

(U,) is a sequence of i.i.d. uniformly distributed random variables on [0, 1];

(X,) is a sequence of i.i.d. exponentially distributed random variables with
unit intensity; ’

(T,) is a sequence of arrival times of a Poisson process, that is, T, =
X+ +X,;

(e,) is a sequence of i.i.d. Bernoulli random variables, that is, P(e, = 1) =
P(e, = —1)=1/2. 1{...} will denote the indicator function of a set (or a
property) {...}.

For the convenience of the typographer and the reader we introduce an
abbreviated notation for expressions involving multiple indices. Any boldface
character denotes a finite or infinite sequence, for example, a = (a;), j =
(Jis-+-» J,)- A boldface subscript is related to a restriction of a sequence to
suitable coordinates, for example, a; = (a,..., @; ). By definition,

[a;]=a;...q;.
We shall also write subscripts with the mathematical expectation symbol “E ”,
for example, E,, Er, and so forth, a convenience of which will be especially
appreciated whenever Fubini’s theorem is in use. We shall skip the index of
stability « in all quantities used in this article.

LP denotes the space of p-integrable random variables with usual norm
(quasinorm, if p < 1) || ||, = (E| - |°)"/?. For k > 1 we introduce a set A, of all
random variables for which the limit

AW(X) = lim x%(In x) *P(X > x)

exists. We shall be using frequently an observation based on the following
elementary fact.

LEMMA 1.1. Let X and Y be positive random variables. Suppose that X has
a regularly varying tail, that is, there is a number 0 > 0 such that for every
number a > 1,
. P(X > ax) L
Jm pxsa) @
Suppose that the tail of X dominates the tail of a random variable Y in the sense
that

P(Y > x)
| x50 P(X > x)
Tl;en
P(X+Y>zx) . P(X-Y>x)
ioe P(X>x)  asw P(X>zx)
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ProoF. Clearly, for any 0, 0 < 6 < 1, we have
P(X+Y>x) P(Y>ox)+P(X>(1-0)x)
—————— < limsup
P(X > x) x> 00 P(X > x)
P(Y > ox) P(X > ox)
P(X >o0x) P(X>x)
P(X>(1-o0)x)

lim sup

X— 00

< lim'sup

X — 0

Hims X > x)
=(1-0)""%
Since, obviously,
.. P(X+Y>x)
liminf ————— > 1,

x— 00 P(X>x)

the first part of the lemma follows. The second part can be proved in a similar
way. O

COROLLARY 1.2. Let X € A,. Then, under assumptions of Lemma 1.1,
X+YeA,and A(X +Y) = Ay (X).

The remainder of the section contains a collection of basic properties of
multilinear random forms which are defined as formal sums

<g,X> = Z g(j)[xj]a
jenN®
where g is a real function on N” and X = (X;) is a sequence of real random
variables. Let D, = {i = (i,...,%,) € N* i, < .-+ <i,}, and observe that if a
function g is symmetric, that is, g(j) = g( - #) for every j € N and for every
permutation 7 of the sequence (1,..., n), and g vanishes on diagonals of N”,
that is, g(j) = 0 whenever at least two entries of j are equal, then

(&%) =n! T g0)[X,].

For this reason we consider tetrahedral multilinear forms only, that is, related to
functions g with a domain in D,. We say that a multilinear random form (g, X)
converges if

Y g6)[X;]1{/, < u)

j€D,

converges in an appropriate sense as u — co. In general, most of the properties
of multilinear random forms for independent symmetric random variables follow
from their counterparts for Bernoulli random variables by virtue of Fubini’s
theorem. We quote below several results useful for our purposes.
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THEOREM 1.3. Let X = (X;) be a sequence of independent symmetric ran-
dom variables and g be a real function on D,. The following statements hold.

(1) [Krakowiak and Szulga (1986b)] A random multilinear form (g,X)
converges a.s. if and only if it converges in probability if and only if

Y g(j)z[Xj]2 <® a.s.
jeD,
(ii) [Krakowiak and Szulga (1986b)] Let X = ¢ be a Bernoulli sequence.
Then for any p > 0 there is a finite constant C, such that

p/2 /2
) G e <Eeorsgl T g6
jeD, jeD,
(generalized Khinchine inequality).

(iii) Contraction principle [Krakowiak and Szulga (1986b)]. If h is a real
function on D, such that |h| < 1, then a.s. convergence of {(g,X) implies a.s.
convergence of (g - h,X). Moreover, if {X;} C LP, then there is a constant
C > 0 depending only on n and p such that

EKg- h,X)[" < CE|(g,X)[".

(iv) [Krakowiak and Szulga (1986a)] Let {X;} C L”. Suppose that (g,,) is a
sequence of real finite valued functions on D, such that the sequence ({&,,, X))
converges in L? for some p € [0, co]. Then there is a real function g on D, such
that the multilinear random form (g,X) converges in L? and it forms an
L?-limit of the sequence ({&,,, X)).

For a real positive function ® on R, we define, for r > 0,
®(x)=®(x"), x=0.

Following Kallenberg (1975), we consider a class ¥, of real positive functions ®
on R, satisfying the following properties:

(K.1) ®(0) = 0;

(K.2) @ is a concave and increasing function;

(K.3) @, belongs to Kallenberg’s class F; U F,, that is, either it is concave or
it is absolutely continuous with the concave derivative ®/ vanishing at the
origin.

It is easy to see that (K.1) and (K.2) above imply that any ® in £, satisfies A,
condition, that is, for any ¢ > 0 there is 0 < d(c) < oo such that for any x > 0,

(1.2) ®(cex) < d(c)®(x).

LEMMA 14. Let ® be a function from X,, r > 0, and ¢ be a Bernoulli
sequence. Then there is a constant C > 0 such that for every n-dimensional
tétrahedral random array [ X(i), i € D,] independent of e the following inequal-
ity holds:

E®(|(X,e)|) < C*"LE®,(|X(i)|)-
i
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Proor. The statement follows from Lemma 2.1 in Kallenberg (1975) as
multilinear tetrahedral Bernoulli forms are martingales. O

ExAMPLEs. In the article we shall make use of the following functions:

1) Yx)=x, DX, r>a
(i) ®(x) = x/In’%@a + x), ® € X, for a large enough.

REMARK 1.5. Once a random multilinear form (g, X) in symmetric random
variables X = (X;) converges a.s., it converges unconditionally, that is, regard-
less of any deterministic permutation of its entries. This follows immediately
from Fubini’s theorem and the generalized Khinchine inequality.

2. LePage’s representation of a multiple stable integral. In 1984
Marcus and Pisier elaborated upon the results of LePage (1980) and LePage,
Woodroofe and Zinn (1981) on series representation of stable processes, and it
follows from Lemma 1.4 of Marcus and Pisier (1984), that for any function

f € L¥[0,1]),
(2.1) [1(2) dz(t) = s~/ T f(U,) T2,
0

where s = [°x7*sin xdx, and U, T, ¢ are independent of each other, and the
series in the r.h.s. of (2.1) converges a.s. and in L?, p < a.
In particular, one obtains a series representation of a stable motion

(2.2) (2(¢),0<t<1) =D(s‘1/°‘ YU < )T V%, 0< t< 1),

and therefore a counterpart of (2.1) for a multiple stable integral is expected to
hold. A possibility of such a representation, at least for n = 2 and n = 3, was
mentioned in the paper of McConnell (1986).

The aim of this section is to extend LePage’s representation to the multiple
stable integral.

Recall that a symmetric vanishing on diagonals Borel function on [0,1]" is
said to be integrable with respect to M(™ if there is a sequence ( f,,) of simple
functions converging in Lebesgue measure to f such that multiple stochastic
integrals L( f,) = fio,1fn dM ™ (defined in a usual way) converge in probabil-
ity (or equivalently, in L?, 0 < p < a). The limit is denoted by I (f) or by
either of the integrals

fdM® = fl . flf(tl,..., t,)M(dt,)... M(dt,)
[o,1]* 0 0 .

[see Krakowiak and Szulga (1988) for details].

THEOREM 2.1. For any symmetric vanishing on diagonals Borel function f
on [0,1]",

(2.3) fdM™ =, s~/ 3 f(U)[5;] 7 [g],
[0,1]" jEN™
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where the integral exists and the series converges unconditionally a.s., or
equivalently, in L?,0 < p < a, at the same time. The sequences U, T and ¢ are
independent of each other.

Proor. By virtue of LePage’s representation we may choose an a-stable
random measure, and a fortiori, a product random measure M generated by
the a-stable process Z(t) = s /°L1{U; < ¢}I; /%,. Denoting the multiple se-
ries appearing in (2.3) by S,(f) whenever it makes sense, we infer immediately
that formula (2.3) holds a.s. for simple functions.

Suppose that I (f) exists. By definition, there is a sequence of simple
functions ( f,,) converging in Lebesgue measure to f, and such that I (f,,)
converges in L?, 0 <p <a, to a random variable Y in L?. Hence S, f,)
converges in L? to Y. By Theorem 1.3(iv), Y = S(g) a.s. for some function
& € L?, and the multiple series S,(g) converges a.s. by part (i) of that theorem.
For U and T being fixed, S,(g) is a Bernoulli multilinear form. Therefore we
infer from Fubini’s theorem, Theorem 1.3(i) and the generalized Khinchine
inequality (1.1) that S,(g) converges in L' and thus

g(U)[5;] " = ES,(&)[e;]
= ImES,(f,)[¢;]

= lim £(O) [T

= 1(U)[n] "

(U, T') as. Therefore f = g almost everywhere on [0,1]” and I(f) = S,(f) as.
< Suppose now that the series S,(f) converges in probability [or equivalently,
by Theorem 1.3(i), almost surely]. For £ = 1,2,..., and x > 0 define

27k ifxe[27%,27%i+1)),i=0,1,...,2%%"7},
0 if x > 2%,

We observe that 0 < |x| — |[Hy(x)| < 27* and thus applying the contraction
principle [Theorem 1.3(iii)], we infer that the series S,(H,(f)) converges in
probability. Further, (I(H,(f)); n € N) is a Cauchy sequence in L° because by
virtue of Fubini’s theorem and Lebesgue’s dominated convergence theorem we
have that

lim B min(L, |L(Hy(f) ~ Hu())[)

k,m— oo

= lim Emin(L[S,(Hy(f) ~ H(1)[)

k,m— o

< lim Eypmin(1, E|S,(H(1) - Hu(1))[)

k,m— o

lim Eyr min(l, LB £(0) ~ Ho £(U))[ 1] /) -o.

k,m— o

Hy(x) = —Hy(-x) = {
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Since (Hy( f )) is a sequence of simple functions converging almost everywhere
to f then the latter identity implies the existence of I( f). Moreover, it follows
from the first part of the proof that I(f) = S(f) as.

Unconditional convergence is a general feature of random multilinear forms in
symmetric random variables (cf. Remark 1.5). O

3. Products of Poisson arrivals. Most of the properties of products of
arrival times of a Poisson process presented in this section are part of a
mathematical folklore. For the sake of convenience we collect them in one place.

LEMMA 3.1. For n > 1 we have

. P(Ty-----T,<t) 1
lim — = .
t-0  ¢(—Int)" (n—1)!n!

PrOOF. The identity is trivial for n = 1. Let n > 2. Using the well-known
formula for converting arrival times of a Poisson process into ii.d. uniformly
distributed r.v. [cf., e.g., Karlin (1969), page 183], we check that

&,(t) £ foot‘lP(Fl/x s T /x < t/x", =x)e "x" '/(n— 1) dx
0

= foot‘lP(Ul cee Uy < t/x™)e ™ /(n — 1)) dx.
0

Applying the well-known formula for the Erlang distribution [cf. Feller (1971),
page 11], we obtain for any s > 0,

P(U,-----U,<s)=P(X;+ - +X,> —Ins)
1 n n
n—1
_JsX (-lms)*/r! its<1,
k=0

1 otherwise.

Therefore, by elementary calculations

n—2

(3.1) 8.(8) = (n— 1171 kZ_)On’“/(k + D! frea(877) + 0(1),

where
fu(s) = sfoo(ln yiedy, s>0,k20.
1

Elementary calculus (’'Hospital formula, change of variables of integration,
induction, etc.) shows that ’

lim f,(s)/(~Ins)" = 1.

Together with (3.1) this completes the proof. O
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COROLLARY 3.2. Let X € L* be a nonnegative random variable independent
of T. Then for j =1,2,...,n) anda > 1,

an—lEXa

}\n—l(X[rj]_l/a) - (n=1D!n!"

We conclude this section with an observation that for any number 8 > 1 there
is a constant K > 0 such that for every sequence j = (Ji,..., j,) € D, such that
J1 > nfB we have

(3.2) E[n] " <K[]1"
Indeed, this follows by the Hélder inequality from the well-known estimate

E(T,) " =T(-B)/(j- 1)< K™

4. Some estimates of multiple sums. For an i > 1 let d,(i) be the number
of i’s € N” such that [i] = i, and let 2,(k) = X*_, d,(i). It is well-known [cf.,
e.g., Titchmarsh (1951), page 263] that for some C > 0, any k& > 2,

(4.1) 2,(k) < Ck(In k)",

Let ¥: R,— R, be a nonincreasing function, and let 1 < a < b < « be inte-
gers. Applying the formula of summation by parts, we obtain

L %)= T D0

ieN", a<[i]l<bd

b-1
T ¥(D)(@,(0) - 9,(i - 1)

[¥(b - 1)2,(b - 1) - ¥(a)D,(a - 1)]

b—2
= X 2,(i)(¥(i + 1) - ¥(i))

(4’2) i=a
b—-2
<¥(b-1)92,(b-1) + § (\p(i) —¥(i +1))2,(i)
<C|¥(b-1)bnb)" " + If(i +1)(In(i + 1))

x (¥(i) - ¥(i + 1)) |.
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Applying once more the formula of summation by parts, we obtain

X ¥([HD

ieN”, a<[i]<bd
< c{q,(b = Db(in )" = [(¥(b - 1)b(ln )"
—¥(a)(a+ 2)(In(a + 2))n—1)]

b—3
— ¥ ¥( + 1)[(i + 3)(In(i + 3))" " - (i + 2)(In(i + 2))"-1]}

i=a

= C{\I’(a)(a + 2)(In(a + 2))""

b-3
+ ¥ (i + 1)[(i + 3)(In(i + 3))"" — (i + 2)(In(i + 2)),,_1]}.

It is easy to check that for every x > 1,
(x + 1)(In(x +1))*"' = x(Inx)""" < C,(In(x + 1))"*

for some finite positive constant C,. We conclude finally that

LI (i) = 6 H@)e + Dlna v 1)
(4.3) ieN”, a<[i]<b -

+ Y ¥(i+ 1)(In(i + 1))**

i=a

for some 0 < C, < co. The following estimates are now easy to obtain.

LEmMA 4.1. (i) For every u > 2,
(4.4) Y 1< Cu(lnu)”'.
[il<u
(ii) For every u > 2,
(4.5) Y [i]'<C(nu)".
[il<u
(iii) Let F(x) = x~(In(0 + x~'))~%, § > 1. For any 0 > e big enough to make
F nonincreasing and any u, > e, for every u > u,,

Cu(lnu)” 'Inlnu if 6=1,

4.6 F(li <

( ,;) mzsu ([i]/u) < | Cutn ) oot
(iv) Let B > 1. For any u > e,

(4.7) Y [i]7% < Cu'A(lnu)"".

[il>«
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Throughout, C is a finite positive constant independent of u.
Proor. (i) Follows trivially from (4.1).
1

(ii) An immediate consequence of (4.3) with ¥(x) = x™".
(iii) Putting ¥(x) = F(x/u), we use (4.3) and monotonicity of ¥ to get

Y F(lil/w) = X ¥([i])

[il<u [il<u

< Cz{u(]n(o +u)) % 2(In2)""

+ Y (n(i + 1))" "u(i + 1) (8 + u(i + 1)‘1)]‘8}

< 02{2(]n2)"_1u +(in(u+1)"" Tu(i+1)7
X [In(6 + u(i + 1)‘1)]'8}
< 02{2(1n2)"_1u + (In(u + 1))"

" u u -8
x [ ik (111(0+ )) dx}
1 x+1 x+1

= 02{2(]n2)"_1u + u(ln(u + 1))""

(u+2)/u _, _1\\ -8
< [y (0 + 7)),

and (4.6) easily follows.
(iv) Follows immediately from (4.3). O

5. Asymptotic evaluation of the tail. The main result of the article
(Theorem 5.3) is stated and proved in this section, but first we study certain
properties of tetrahedral multilinear forms of the type’

s7="% [4][n] "X,

jeD,

where X is an array of identically distributed random variables which is indepen-
dent of € and I sequences. We introduce some useful decompositions of the series
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S, . Put

Tom= ) [ej][rj]_l/an-

j € Dn ’ jl =m
We decompose T, ,, into two summands as follows:

—_ ’ 144
Tn,m - Tn,m + Tn,m

= X [l xa{x" < [1)

jeDn) jlzm

+ X [gl[n] 7 xa{(1xy > [}

jeD,, ji=m

ProposiTION 51. (a) Let r > a, m = my > nr/a, n > 1. Then there is a
finite constant C’ > 0 depending only on a, r, m, and n and independent of m
and the law of {X;, j € D,} such that

E|T; I < C{E[IX)(1 + (1n+IX,-I)"_1)]}a/r-

(b) Consider ®(x) = x/(In(a + x))"~! with a chosen large enough to have ®
in X, Let n>1 and m > my> n. Then there is a finite constant C” > 0
depending only on a, m and n, and independent of m and the law of {X;,

€ D,} such that

CE[1X4(1 + (in,1X%,)" )] ifn>2,

EQ( T, ) < .
C"E[|X;|*(1 + In, | X;|In, In|X;| )] if n=2.

(¢c) Let n > 1, m > my > n. Then there is a finite constant C"” > 0 depend-
ing only on a, m, and n, and independent of m and the law of {X;,j € D,} such
that

E|T/,|* < C”E[1X)(1 + (n,1X,))")].

Proor. (a) By Holder’s inequality, Fubini’s theorem and Lemma 1.4 we
conclude that

o : a/r
EIT, o < (BITL ) <C| T E[r,-]"/“EhX,-rl{nxjws[j]}]] .

jeb,, j=m

Using the estimate (3.2) for moments of I'; and Lemma 4.1(iv) (with 8 = nr/a),
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we bound the latter expression from above by the quantities

G a/r
¢l X G177 X E(xi{e-1< X< k})]
k=1

JED,, izm

0 a/r
< cg[ Y E(X1{k—1< X" <k}) Y [j]"/“]
k=1 Gl=k

<C§ [E(|Xj|'1{0 < |X;|* < 2})

0 a/r
+ Y k(nk)" 'P(k—1< |Xj|* < k)]
k=3

<c{E [1x1o(x + (1n+|X,.|)”‘1)]}“/ "
(b) Applying Lemma 1.4, we get
EQ (T ) <Cy ¥ E[e(x[n] (x> [i]}]

jeD,, jj=m
¢y X E[®(|X,.|“[rj]‘l)1{|xj|a > [j]}].
JE€D,, jizm

By the concavity of ®, independence of I' and X, moment inequality (3.2) and
A, property (1.2) we conclude that

E(@(1x°[Ty] 7)ix;) < o(1X;1E([ 1] 7))
< ¢;o([51711%,1%),
so that

Eo (T, ) <Cy X E[(p([j]‘ﬁxjw) kgﬂl{k <|XjI"<k+ 1}].

J€D,, ji=m

Changing the order of summation and making use of Lemma 4.1(iii), we obtain in
the case n > 2,

Eo (T .)<C/Y. X o+ )P(E<|X*<k+1)
k=1 jeD,, [jl1<k

<C/Y (k+1)(In(k+ 1) 'P(k< X< k+1)
E=1 ]
<C'E [|Xj|°‘(1 + (1n+|Xj|))"‘1].

The case n = 2 is similar.
(c) The proof of this part is completely similar to the proof of (b). O
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ProrosITION 5.2. Let {X;} be a sequence of identically disturbed random
variables, independent of T and & sequences, such that E[|X;|*1 + In | X ))] <
0. Define

(o 2]
Z~ -=F1_1/“°"°'rn__1{a28jrj—l/an, n22,i2n+1.

n,1,i
Jj=i

Then
}‘n—l(lzntl, ll) =0.

Proor. The proof is by induction in n. For n = 2 we apply the contraction
principle for probabilities

and Proposition 5.2 follows from the independence of I, and {I;—I';} and
Proposition 5.1(a) and (c) with n =1, my = 2.
Assuming that Proposition 5.2 is valid for n — 1, we employ once more the
contraction principle for probabilities to get for x > 0,
> x]

0
Z EJ(I‘] - rl)_l/an

J=i

P(|sz1, 1>x) <2P|TV*

P(IZn.:l, il > x)

ZEJ(PJ - rl)-l/an

J=i

< 4P[I‘1_1/"‘(I‘2 - I‘1)_1/a v (Do — I‘l)_l/a

- 4f()we_yp(lzn:l,l,i—1| > xyl/a) dy

—a (n—1)/2 00
=4/x (In x) ...+4/
0 x7%(In x)(»~ /2

Applying the assumption of the induction to the second integral in the expres-
sion above completes the proof. O

We introduce the following modulars defined on the class of Borel functions
on [0,1]™

L(f)= [ [ i@ dx
LalogaL(,)iff.../[o 1]”| @)1+ (ln+A|f(x)|)8] dx, 8320,

Lelog Lloglog L(f) = [+ [ |f(®)[[1 + In| f(x)In, || {(x)][] dx.
f0,11"

Now we formulate the main result of the article.
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THEOREM 5.3. Let 0 <a <2, n>2 and f be a symmetric vanishing on
diagonals Borel function on [0,1]" such that

L*log" 'L(f) < o0 ifn>2,
L*log Lloglog L(f) < oo ifn=2.

Let M™ be the random measure generated on Borel sets in [0, 1]"' by a
symmetric a-stable process with independent stationary increments on [0,1].
Then f is M™-integrable and its integral I( ) has the property

(51) A (ILH]) =20, _y(L(F)) = na*(n)**s"L( ),

where s = [°x % sin x dx.

ProoF. Fubini’s theorem and Theorem 1.3(i) imply that a necessary and
sufficient condition for the convergence of S,( f) [equivalently, the existence of

L(f)]is

_9/a 2
(5.2) Y (0] U)] <o as.
jeb,
We introduce the following partition of the set D,:
(5.3) Dn = U Dn,k’
k=0

where D, , = {(1,2,...,n)}, and for k =1,2,...,n,
Dn,k= {(1,2,.-.,n_k, jl’ jz,.-., jk):(jl""’ jk) E‘Dk’ jl Zn_k+ 2}.
Let us denote for 2 = 0,1,..., n,

Z,v= L [g][5] 77 1(U)),
jeD,

A= T [B]71H0)]
j€D,

We will prove that A, , < oo as. for any £ =0,1,..., n. This would imply (5.2)
and, simultaneously, the convergence of Z, ,’s, k= 0,1,..., n.

Note that A, o < oo trivially since D, , consists of only one element. Recall
also that by Corollary 3.2

(5.4) Mas(Zy ol) = 27, _i(Z, ) = na”"Y(n!) L(f)

since Z, , is a symmetric random variable. Note that in general I(f)[orS,(f)]
is not a symmetric random variable, except the case of the odd integer n, even
though it behaves like such due to its dominance by the symmetric random
variable. .

To complete the proof of the theorem, we have, therefore, to show that
A, < oas fork=1,...,n, and that

(5.5) N iZ, 4) =0 fork=1,2,...,n.
Corollary 1.2, (5.4) and (5.5) would imply then (5.1).
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The proof will use an inductive argument and, as frequently happens with
inductive arguments, it is more convenient to prove somewhat more general
claim. For any £ =1,2,...,nand i > n — k + 2 define

D, ,.={(1,2,...,0n =k, Ji,ooes Ju): (Jise-v» Ji) € Dy, h=i},
Dn*:k,i= {(1,2,.--,n_k_ l,i_ 1, jl""’ jk): (jl""’ jk) E‘Dk’ jIZi}.

Let {X;, j € D,} be an array of identically distributed random variables, which
is independent of T and e sequences such that

E[1x)1o(1 + (n,1X)" )] <0 ifn>2
or
E[1X,11 + In,, (1X;)In,, (in, |X,|))] < 00 ifn = 2.
Finally, let
Vo= L [gl[n] 77X,

j € Dn, ki
-2/
B,.i= X [L] 7°x7,
JED, 4,
and Y.*, ; and B, ; are defined correspondingly. We will prove that B, , ; < o

as. for any k=1,...,n and i > n — k + 2 (this would imply that A, , < o
as. for any 2 = 1,..., n) and that

(5.6) N-i(IY, ) =0 foranyk=1,...,nandi>n—k+ 2.

This would imply (5.5), since D, , = D, , ,_4.o- The proof is by induction in .
It is clear by Proposition 5.1(a) with » =1 and a < r < 2 and by Proposition
5.1(c) with n =1 that B, ; < o0 as. for any i > n + 1. It also follows from
Proposition 5.2 that (5.6) holds for £ = 1 and any i > n + 1. This constitutes the
basis of the induction. Assume now that for some 1 <% <n—1 and any
izn—k+2, B, , ;< oo as. and (5.6) holds. Clearly, forany i > n — k& + 1,

n

2n
e *
‘Dn,k+1,i - ( U Dn,k,m+1) v Dn,k+1,2n+l'

m=i .

Therefore,

2n
= *
(5'7) Bn,k+1,i - Z Bn, k,m+1 + Bn,k+1,2n+1'
m=i .

The assumption of the induction implies that for any m >n — k& + 1,

*
& Bn,k,m+l =< Bn,k,m+l < oo as.

Moreover, Proposition 5.1(a) with n = k2 + 1, a < r < 2 and Proposition 5.1(c)
with n =k + 1 imply that B, ,,;5,,; < 00 as. By (5.7) we conclude that

B, pi1,i < 0 as.
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We have
2n
= *
(5’8) Yn,k+1,i - Z Yn,k,m+1 + y;t,k+1,2n+1'
m=i

Clearly, for any m > n — k + 1, |Y,*s 11| < |¥, ¢ m+1l- Therefore, the assump-
tion of the induction implies that A,_,(|Y,*; 1) =0forany m <n —k + 1.
Corollary 1.2 shows then that the claim A,_,(|Y,, z.; /) = 0 would follow if we
prove that A, (]Y, ;. 9,+1]) = 0. We have, for x > 0,

P(IYn,k+1,2n+1| > x)
= P( Y [yl _l/“le > x)

JED, k+1,2n41
OOP Z r —1/aX
(5 9) '/; <D [Ej][ j] 1,..., Rek—1, jiyee, Jenr
) JEDp

Ah=2n+1 \

>yl s oo Ty =5 | dgn_n_i(¥)

= [PC ) dgnsn(9) + [P ) dgnie(9),

where g, is the distribution function of T, - --- - I',. We apply now the contrac-
tion principle [Theorem 1.3(iii)] and Fubini’s theorem to conclude that for any
y>0,

a

-1
E E [ej][rj] /aX1 ..... n—k=1, ji,err Jor1 Ty - Lk =Y
JEDy 4,
Sh=2n+1
a
E+1 i/

<CE > [Gj] 1—[ (I‘ji - rn—k—l) D SR S

J€Dpsy i=1

h=2n+1

for some 0 < C < oo independent of y > 0. We apply now Proposition 5.1(c)
with n = 2 + 1 to conclude that the ath moment above is finite. The claim
A 1(1Y, hi12n41]) = 0 now follows from (5.9) and Markov inequality. This
completes the inductive argument, and we know by now, therefore, that B, , ; <
oo as. forany k=1,...,n—1and any i > n — k + 2, and that (5.6) holds for
k=1,...,n—1and any i > n — k + 2. It remains to consider the case & = n.
We apply (5.7) with e = n — 1. Then B¥*, | ;.11 < B, pn_1,m+1 <  as. as have
been proven above. Moreover, B, , ,,.; < o as. by (the proof of) Proposition
5.1(b). This shows that B, , ; < o as. for any i > 2. Further, we apply (5.8)
with 2 = n — 1 and, as above, the claim A, _(]Y, , ;|) = 0 would follow once we
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show that A, _,(|Y,, , 2.,+1]) = 0. But the latter statement follows immediately
from Proposition 5.1(a). This completes the proof of the theorem. O
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