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UNIQUENESS OF THE INFINITE CLUSTER
FOR STATIONARY GIBBS STATES!

BY ALBERTO GANDOLFI

Delft University of Technology

We prove, in all dimensions, that for a stationary Gibbs state with finite
range or rapidly decreasing interaction, there is at most one infinite percola-
tion cluster. This implies that the connectivity function is bounded away
from 0.

1. Introduction. This article deals with global features of percolation in
Gibbs models. We shall consider the d-dimensional lattice Z¢, in each site of
which there is a spin variable which can be up or down. The stochastic
distribution of spins will be described by a Gibbs state, a probability measure on
the set of all possible configurations of spins, the conditional probabilities of
which are given by the Gibbs formula [(2.2) in Section 2]; for a general
introduction see [15], [21] or [23]. The model is built up starting from a given
interaction between the spins which determines the conditional probabilities. For
some interactions there can be more than one state having the same conditional
probabilities. This, then, represents the phenomenon of phase transition ([10]
and [22]) and hence the interest of the Gibbs models in equilibrium statistical
mechanics. Some of these states may not be stationary ([5] and [25]), but in the
present article we will consider only the ones which are. We also assume that the
interaction has finite range or decreases sufficiently rapidly [viz. it satisfies (2.1)].

Percolation is described as follows. In any configuration of spins we consider
two nearest-neighbour sites as connected if both the spins are up. The theory of
percolation, then, deals with the probabilistic description of the maximal con-
nected components of the set of sites in which the spins are up. These compo-
nents are called clusters and percolation arises when there is at least one cluster
containing infinitely many sites (an infinite cluster) with positive proability. (See
[17] for a general reference.) To study the global properties of percolation, we
consider the number N of infinite clusters. We prove that in fact the infinite
cluster is unique when it exists (meaning that the possible values of N are only 0
and 1) for the Gibbs states we are considering (Section 3). This implies that when
percolation arises the probability of any two points being connected by a chain
of spins up is bounded away from 0 (Section 4).

The study of percolation in Gibbs models is interesting not only in itself but
also for the techniques it has contributed. These have been used for example to
prove the absence of a nonstationary two-dimensional Ising measure ([1], [14]
and [23]) and in the study of large deviations ([24]). We hope that the techniques
developed in this article will also prove of use in statistical mechanics.
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Next we review the previous results in the study of the number of infinite
clusters. For the Bernoulli model, where the probability of each spin being up
equals p independent of the other spins, the solution to the uniqueness problem
(i.e., the proof that N can assume only the values 0 or 1 with probability 1) was
given in [8] and [13] for d = 2 and in [3] for any dimension d. This last work
deals with many other quantities related to N as functions of p. But in spite of
the remarkable findings of a relation between the analytical properties of some
thermodynamical quantities and the uniqueness of the cluster (see also [6] and
[16] and especially [26] for a similar point of view) the proof is quite involved. A
simplified proof which does not make use of the variation of the parameter p is
given in [11]. We follow some ideas of these works and in particular we generalize
a sort of large deviation property proved in [3] and adapted in [11] (see Section
3, Lemma 3, below).

Our article generalizes also [4] where the uniqueness problem was solved for
some Gibbs models in dimension 2. A generalization of [4] in a different direction
(and for dimension 2) was given in [12] under the assumption that the measure is
FKG ([9]), ergodic and has some geometrical properties.

A different approach was used in [19] to show that under general conditions
N can assume only one of the values 0, 1 or co. No system satisfying the
conditions in [19] has so far been shown to have N = oo with positive probabil-
ity. The present article shows that this case does not occur for the stationary
Gibbs states with finite range or rapidly decreasing interaction.

The assumption that the Gibbs state is stationary seems essential for unique-
ness. On the other hand we believe that the result holds (in the stationary case)
also when certain local configurations of spins are excluded or for long-range
interactions not satisfying (2.1) (see the discussion in Section 4). Nevertheless we
cannot treat these cases.

2. Preliminaries. We consider the d-dimensional lattice Z = Z¢. A config-
uration is an element w = (w,), < z of the configuration space @ = {—1,1)}% For
every subset S C Z define Qg = {—1,1)5 Qg can be endowed with the product
topology and all the measures p on g will be considered as defined on its Borel
o-algebra; E, will denote the expectation with respect to p. For a subset M O S
we have maps ag p: @y > Qg defined by ag Mw (@), s> transforming the
measure g on £, into the measure ag 41 = p © ag 3 on Qg; we denote ag = ag, z:
We also have the group G = Z of translations of Z which generates maps ¢
Qg — Qg_, defined by (7%), = w,,, forall a€ G, SCZand x€S —a:=
{x €Z: x+ a€S}. Then consider boxes B = B, = {(x,...,x45) € Z:
-m<x,<m, i=1,...,d} of linear size m € N and denote expressions like
limm_,ooa B, as lim Bma g This will replace the usual limit in the sense of van
Hove (see [22], Chapter 3.9).

To introduce the measures which we shall be dealing with, we need an
interaction

o U 2%-R
S finitecZ
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invariant under translations, that is, satisfying ®(7%) = ®(w) for all a € G.
Let B = By be a box, R € N and let

ap = )y sup [®(w)|.
S finite, 0€ 8, SN(Z\B)* @ wEg

We will mainly be concerned with interactions for which
(2.1) R %, >0 asR - .

This represents our (rapidly decreasing) interaction; we say that an interaction
has finite range if there exists an integer R such that ap = 0; the smallest of
these integers will be called the length of interaction.

For any two disjoint sets B, M C Z, B finite, the energy Uy and the
interaction energy Wy ,, for an interaction @ are real functions on Q5 and Q
defined by, respectively,

UB(“’) = Z (I)(aS,Bw)
ScB

and
WB,M(“’) = Z q’(“s‘*’)-

S finitec (BUM): SNM+ @,SNB+ @&

DEFINITION 1. Let ® be a (stationary) interaction. A Gibbs state for ® is a
probability measure p on £ such that

(2.2) agp(w) = fﬂ Mg, (©)az. su(dn)

for all finite S C Z, where for all n € Q5. 5, M, is the probability measure on
Qg defined by

MS,n(w) = (Zs,n)—lexp[—US(w) - W/S,Z\S(w V 1')],
where Zg n is a normalizing factor and w V 1 € Q is defined by
ag(w V) =w and az g(w V1) =n.

We say that a Gibbs state is stationary if 7% = p for all a € G. Note that the
stationarity of a Gibbs state is not implied by that of ® (see [5] and [25]).

If p is stationary we say that it is a finite-range Gibbs state if it has finite
range and we call it a long-range Gibbs state if it satisfies (2.1). Observe that the
measures Mg , are the conditional probabilities p(-[7n) on Qg (see [22], Section
1.7). ‘ :

We will consider percolation of nearest-neighbour. points, which are elements
of Z at distance 1. Let S be a subset of Z. A chain in S is a sequence of elements
of S such that successive terms are nearest neighbours, and two points x, y € S
are connected by a chain in S if the chain contains the two points. S is
connected if every two of its points are connected by a chain in S.

Let M 5 S be a subset of Z and let w € Q,, be any configuration. A cluster of
w in S is a maximal connected subset C € S N w~Y(+1); if S = Z we say that C
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is a cluster of w. Percolation occurs for a measure P on @ when there is a
positive probability to have a cluster containing infinitely many points, an
infinite cluster. The number of distinct infinite clusters in w is denoted by N(w),
where N: € = N U {0}, and we study this quantity fcr the Gibbs states.

THEOREM 1. Let p be a long-range Gibbs state on Q. Then with probability
1, N assumes only the values 0 or 1.

The theorem will be proved in two steps. First we prove the result for
finite-range Gibbs states (Section 3); in this way the main ideas will be more
clearly exposed and the result for the long-range states will follow by imitating
the first step (Section 4).

Note that no ergodicity has been assumed for p and thus N is not forced to
assume one value with probability 1 (see [19]). Of course this is only a matter of
exposition, as our results carry over from the ergodic states to all the stationary
states via the ergodic decomposition (see [22], Appendix 5, or [20]).

Let x be a point in Z. First we reduce the problem to the study of the number
of distinct infinite clusters containing at least one nearest-neighbour of x, which
we denote by N, (w), @ € Q. Note that N, , € {0,1,...,2d}. For a measure p
the quantity we are interested in is E(x, 00) = E, W(Ny, o — DI Ny o> 0))s where I,
denotes the characteristic function of the event Q 'I‘he next lemma applies
obviously to finite and long-range Gibbs states.

LEMMA 1. Let p be a Gibbs state with interaction ® whose interaction
energy Ws 7. s(w) is finite for all finite SC Z, w € Q. Then p(N > 1) =
equivalent to E(0, ) = 0

ProoF. Since E(0, ) > 0 implies immediately that u(N > 1) > 0 we sim-
ply have to prove the reversed implication, for which it is enough to show that
B(Np o > 1) > 0 if p(N > 1) > 0. A proof of this is based on the o-additivity
and the stationarity of p and the fact that changing the configurations from an
event with positive probability in a finite nonrandom collection of sites leaves
the probability of the event positive, which is provided by the finiteness of
Ws z\s-

A detalled proof is given in Proposition 1.1 in [3] and in Proposition 9 and
Theorem 1 in [19]. O

In view of Lemma 1 the proof of Theorem 1 is equivalent to E(0, c0) = 0. To
make the exposition more elegant, we introduce a measure y* on Q defined by
p* = p + po B, where B,: Qg — g is defined by (8(w)), = —w, and (B(w)), =
w,fory+x, x €Z

*Then we have E(0,%) < E%0,0) =E (No,oo — DI, > 0y)- For all Gibbs
states whose interaction energy Wy 5 ¢ is finite for any finite set S there exists a
constant K > 0 such that E®%0, %) < KE(0, ) and thus Theorem 1 holds if
and only if E%0, o) =
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Let R N. We will also consider the sublattice L = Ly € Z of points
(xl,..., x,) such that x; = KR, for i = 1,2,...,d and K € Z. When no confu-
sion arises we will omit the index R.

Let now B = B,, be a given box and consider a second box A(B) of linear size
equal to the 1nteger part of m — Vm; note that limp, [|A(B)|/|B[]] = 1, Where
| B| denotes the cardinality (the volume) of B.

Next we introduce the family Cj of subsets of B which are connected and
contain a nearest neighbour of a point of Z \ B. For C € Cy we denote by C the
set of all the points of B contained in C or nearest nelghbours of a point of C,
and by F, C Qp the set of all the configurations « of which C is a cluster in B;
a fortiori w, = —1forxinC \ C.

For x in a finite set S C Z we shall also consider the number N, ,s(w) of
distinct clusters in S of a configuration w € Qg containing at least one nearest
neighbour of x and one neighbour of some point in Z \ S. Then let

E(x, aS) = EaB,,,"((Nx, s~ I)I(Nx,as>0})°

The next lemma again holds for measures that are more general than long-
range Gibbs state.

LEMMA 2. Let p. be any stationary probability measure on Q. Then
E(0,0) < E°0, )
- JmAB) AL T T T (e)ea(e)

w€Qy CeCp: weF; xeCNLNA(B)

Proor. For any K € {0,1,...,2d)} the sequence of events {N, ;5= K}
converges to {N, ,, = K} as B oo and this yields

E®%0,0) = mE"(o, dB).

Next we make use of the stationarity of p. Let x € Z and let A', A% and B be
boxes such that A'+x C BC A2+ x. Then N, yn4x) 2 Ny op 2 N an2ex)
yields
°d .
-
glgloE (0, 0) ;T’ Z 0‘(3+x)l‘ (N, ap+m) 2 K)

lim E*(x, dB)
B1Too

(2.3)

lim[A(B) L' ¥ E*x,3dB),
Bleo x€A(B)NL

where E*(x, dB) is defined to be 0 if x & B. The last equality can be obtained by
observing that dist(dB, JA(B)) »> + o0 as B 1 co.

For a box B and x € B the cylinder F} C Qp is the set of all the configura-
tions w such that w, =i, i€ {—1, +1}. Furthennore recall that N, ;5(w) > 2
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implies w, = —1. Then it is easy to see that

Y E*x,4B)
x€A(B)NL

= Z Z I(N,,as(w)zz}Nx,aB(“’)"‘Bl‘x("))
x€A(B)NL | oeF !

—agp*(F,10 {N, 52 2})]

> [ Y N, jp(w)apn™(w) — “Bﬂx(F;_l NN, 5= 1})]
x€A(B)NL| yeF !

Since agn(F, ' N {N, 55 2 1}) = app™(F" € {N, ;5 = 1}), the last expression
equals

>

wEQRR

Z N, aB(@)apu*(w)
x€A(B)NLNw™Y(-1)

- X I(N,,,,,,Zu(w)agw(w>]

x€A(B)NLNw™Y(+1)

- X 3 (—wx)]amw).

wEQy CeCp: weF, | xeCN(A(B)NL)

In the last equality note that in the sum over C € Cp the sites x € A(B) N L
such that o, = +1 are counted only once if they belong to a cluster, while if
w, = —1 the site x is counted exactly N, ,p(w) times. This proves the lemma. O

3. Uniqueness of the infinite cluster for finite-range Gibbs states.
Throughout the section we consider only finite-range Gibbs states. Let R be the
length of interaction for such a state. Fix a box B = By, of linear size R: we shall
always consider boxes B such that B + x C B for all x € A(B). We shall also
consider the sublattice L = L.

Define the set Q(x) of the local environments around a point x € L as
Q(B+x)\ (=))- Let o € ©(0); define for a Gibbs state p

T, = M(“’o +1llag\ e = "),

U, = l‘(“’o = —llag = 0);
furthermore for C € Cy and w € Fy, let

mS(w) = number of sites x € C N L such that the local environment around x
is o, ’
I8(w) = number of sites x € (C \ C) N L such that the local environment
around x is o,
M(w) = L, cq0lUs; Ug(w) — T, 'mS(w)].
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In the independent case we can choose L = Z, B = {0} so that

=[5 -5

In this case the property of M¢ stated in the next lemma was already proved in
[3] and adapted in [11]. Note that we will make no use of the stationarity of the
measure.

LEMMA 3. Let p be a Gibbs state with finite-range interaction (with length
R). Then there exists H = H({T,},cqq)) > O such that for all B, n € N and
& > 0 there exists a probability measure p, on Qg satisfying

Qp, A(e) = Z*aBp,({MC >en} N FC) < e ¥nH Z*ﬁe(FC)’
C,n C,n

where L§ ,, means Loy (Gj=n
Proor. First note that for all y > 0,

— €] *
(3.1) Qp, a(e) < e C}: E,.[e™Tg)-

Next rewrite the measure of a configuration w € Q5 using the choice of L and
the Markov property induced by the finiteness of the range of ® to obtain

C.
E,,[e™Ty,]
3.2 c C c
( ) = Z e () H (To)m"(w)(Uo)l"(w)“B\(LnE)lL(“B\(LnE),B‘*’)~
wek, s€0(0)

Define for C € Cyz and for all w € Qp,

— Uw C(w
fc(w) = l_[ K(Y)l’( )"'(Y)m"( )“B\(Lné)ﬂ(aB\(Lné),B"’),

0 0(0)
where
U‘,e"Uv—1
$(y) = 7z |
Tae"m '
(y) = __Z-a—_ ,
Z, = Uae"Uﬂ_1 + Toe‘VTﬂ_l.
Then
(3.3) E,[e™I ]| = ¥ TI (Z,)"@* % 954(0).

we Fy 9€2(0)
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It is easy to see that for any a € [0, 1] there exists H(a) > 0 such that
(ae™ ™ + (1 — a)e 70~ 97") < e?’/H@ forall y € R.

For any o € Q(0) obzserve that T, + U, =1 and let H' = min,cqqH(T,) >0
which yields Z, < e¥ /#, B

Let C € Cp be such that |C|=n and let w € Fi; then ¥, qgq(mq(w) +
I8w)) < 2n/R, where R is the number which occurs in the definition of the
sublattice L. Collecting (3.1), (3.3) and the last remark, we have

ey OF y?2n )\ _
(3.4) Qp, () < e ). exp R Ec(Fe).
C,n
Next put y = v, = H'Re/4 and H = H'R/8.
Then define
pw) = Eﬂmo)s“(ve)’”(”)f(ve)'""(”’ag\Lu(aB\L,Bw),
g
where

m(w) = number of points x of A(B) N L such that w,= +1 and the local
environment is o,
! (w) = number of points x of A(B) N L such that w,= —1 and the local

environment is o.
Using the Markov property of g, it is easy to see that
ic(Fe) = B Fe),
which yields

—én *_
@p,.(e) <e Y B F)
C,n
and proves the lemma. O

By collecting the previous lemmas, the proof of Theorem 1 for finite-range
Gibbs states is now straightforward. :

ProOF OF THEOREM 1 (for finite-range Gibbs states). In view of Lemma 1
we have to prove E(0, o) = 0. First we rewrite the estimation made in Lemma 2
for the Gibbs measure p.

Let B be a box, w € Qp, x € A(B) and ¢ € £(0). If w, = +1 (or 0, = —1)
and the local environment around x is o, then agu™(w) = T, 'apu(w) [resp.
U, 'agp(w)]. Furthermore perform the sum in C € Cp according to the size of C,
noting that from the definition of A(B) it follows that the size of C is at least

sthe integer part of m — ym , where B = B, , which we will call n(B). This yields

|B|
(35) E(0,0) < lm |A(B)N LI ¥ Y Y M%w)app(w).
® n=n(B) C,n weF,
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Now we want to make use of the estimation given in Lemma 3. Let ¢ > 0 be a
positive constant. For C € Cp such that |C|=n denote by @* the event
(M€ > en} N F, and by @~ the event {M€ < en} N Fy. In (3.5) divide the sum
over w € Fi; in Q" and Q. The first term can be estimated from Lemma 3 by
noting that M€ < 2n/T, where T = min, c g(7,, U,) and n = |C|, as

1B|

Y Y Y MYw)agp(e)

n=n(B) C,n weQ*

1Bl 9n
< Z FQB, n(e)
n=n(B)
|B| 2n *
< Z ?e_ean Z ,—"e(FC)
n=n(B) C,n

IA

2
e “"PH2d|B),

where &, and H were defined in Lemma 3; in the last inequality we have used
that for any probability measure p on Qp, 1B, nY% u(Fp) < 2d|B|. Then

2 2
lim [A(B) N L|™! —e~*™®H2q|B| = 0
B1Too T

because n(B) = oo and |B||A(B) N L|~! > R? when Bt o0, where R is the
length of interaction.

The sum over « in @~ can be estimated similarly using that M€ < en and
that @~ C F, to obtain

1B|

. _ *
m [A(B)nLI™" Y Y Y M%Ye)agp(w)
Bleo n=n(B) C,n weQ~

< lim |A(B) N L|"'e2d|B| = €2dR°.
BT
Thus E(0, o) is smaller than any positive value and this proves the theorem. O

4. Uniqueness for long-range Gibbs states and related results. We
show in this section that also for the long-range Gibbs states the infinite cluster
is unique if it exists and this ends the proof of Theorem 1. The proof is
essentially an imitation of the one above for finite-range Gibbs states.

We will therefore sketch a proof which follows step by step the proof of
Sections 2 and 3. The main changes will be in the choice of the constants in
Lemma 3.

ProOF OoF THEOREM 1. Consider a long-range Gibbs state p, Lemma 1
applies and thus we have to prove E(0,0) = 0. Consider again the lattice
L, N Z. Later we will have to let R — oo as the interaction now has infinite
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range. Lemma 2 obviously applies and the next step is to rewrite the estimation
it provides.

Consider o,, € {5 (o, as environment (no longer local) of a point and define
the conditional probabilities T, and U, , the functions m$ and IS for C € Cp
as before, and define

M= L (U - T m ]
0, €0z (0)
(the sum is finite as we only consider points of a box B). We start from the proof

of the first part of Theorem 1. Formula (3.5) holds replacing X, 5, M w)agu(w)
with [ M%(w)p(dw), where Fy, is considered as event of Q. Let ¢ > 0 and define

Q™" and @~ as above. To estimate the expression concerning the integral in @,
we imitate Lemma 3. Equation (3.1) still holds. Let o, be an R-local environ-
ment (in @ = Qg \(0)) and let o, = oy, = 1; define
T - exp(— U(o}(oo) - "V(o}, Bg~\ (o}( UODUR))
® z:«,0—1, -1 exp( - U(o}( W) — VV(O}, Bp\ (o}(“’o""}e))

T,,and U, =1 — T, are formal conditional probabilities given og. To estimate
the expectation which appears in (3.1), we approximate T, and U, by 7, and
U,,- Recall the definition of ap and observe that T, e~ 2ap < T, < T, ez"R and
that a similar inequality holds for U, and U, when ag_\ (o), Z\(o)o = op. Let
Mg = Z [U"RIlUCR - "R ng
orE€Qp
and note that

e2% — 1\ 2n
MC<ME+ | ———|—,
)
where T = infpinf, (T, ,U, ) > 0 and we have used that 2n/R is larger than
|Lp N Cl. Thus in (3 2) we can replace M€ by MS and T, U, by T,,U,, by
adding an extra factor (e2Y(¢***~DT 'g4ar)n/R The followmg steps are made by
substituting oz to 0. Only note that H’ can be taken as the infimum over o, so

it no longer depends on R; again H’ > 0 as T > 0. Equation (3.4) now reads

2 2a
vy22  2y(e?®®r—1) 4dap)\|_
{ (—s‘y + + + —2 | |5 (Fy).

&
QB, n(s) < C;n exp|n RH/ RT

Next choose y = y5 = 2)/agH, independent of ¢, and H = H'/2. Define pp as
B, where yg replaces y, and o replaces 6. Then po(F,) = jg(Fy) still holds.
The main difference is that now we fix ¢ depending on R, viz.

(%ar e — 1
R\ 2/H T |

Then Qp ,(¢) < e”“*"L¢ i (F¢) so that the term concerning @ converges to 0

for every fixed R.
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For the other term the choice of ¢ implies that the limit is
9‘/ a R 2 e 2aR - 1

+
2VH T

This term converges to 0 as R — oo as a result of the assumption on the
interaction ®, viz. (2.1). O

e2dR? = 2dR% !

For measures having longer interaction ® (a natural assumption is that
ap — 0; see [22], page 13) we do not have much information. In the stationary
case we expect the infinite cluster to be always unique, while for the nonstation-
ary Gibbs states we do not have any evidence of whether uniqueness may hold or
not. The only information in the latter case is provided by the following remark.
The stationarity of the measure has been used only to derive (2.2), thus the
second term in this formula is 0 even for the nonstationary Gibbs states
[provided they satisfy (2.1)]. As in Lemma 2 it is easy to see that therefore

0= lm|A(B)NnL™" Y E*x,0dB)
Bteo x€A(B)NL

> im|AB)NLI™ Y  p(N,,>0)=0.
BToo x€A(B)NL

In words, the density of sites from the neighbours of which there is more than
one distinct infinite cluster is 0 (i.e., with respect to any long-range Gibbs state).

The last part of this section is devoted to the study of the connectivity
function 7(x, y) defined as the probability that there is a chain connecting the
two points x, y € Z. The uniqueness of the infinite cluster implies that if
percolation arises, then 7(x, y) is bounded away from 0 uniformly in x and y. In
the Bernoulli model this represents a sharp transition from the nonpercolating
phase, where 7(x, y) decreases exponentially with the distance x — y (see [18]
and [2]; the behaviour for p = p, = inf{ p: percolation arises for the Bernoulli
model with parameter p} is excluded in this scheme).

The uniqueness of the cluster holds also for nonattractive potentials, for
which the FKG inequality ([9]) in general does not hold. For the Gibbs states
satisfying the FKG inequality it is easy to see that 7(0, x) > [u(N, o, = 1]%2>0;
in general we have a less explicit bound as stated in the next proposition.

PROPOSITION 1. Let u be a long-range Gibbs state on Q and let x, y € Z. If
percolation occurs there exists a constant ¢ > 0 such that v(x, y) > ¢ > 0.

ProOF. Given a box B let B® be the event {there is an infinite cluster
intersecting B}. If percolation occurs then there exists a box B such that
£

p((B+2)"|N>0)> 4,
p((B+Y)*IN>0)>}
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and therefore
p((B+x)*n(B+Y)")>0.

We simply have to connect the points x and y to the (unique) infinite cluster
intersecting the two boxes B+ x and B + y. Let ¢: € —» Q be defined by
Y(w),=+1for all ze (B+x)U (B +y) and y(w), = w, elsewhere. As al-
ready remarked in the proof of Lemma 1, the finiteness of the energies Uy and
Wz« p provides p(¢(Q)) > 0 if pu(Q) > 0 for all events @ C Q. (A detailed
proof is in Proposition 9 of [19]). Hence there exists ¢ such that

is in Proposition 9 of [19]). Hence there exists ¢ such that

(%, y) = H(IP((B +x)°Nn(B+ y)°°)) >c>0. O

Acknowledgments. The author wishes to thank F. den Hollander and L.
Russo for several useful discussions and suggestions.

Note added in proof. The results of this paper have been recently extended
by Burton and Keane to finite energy nearest neighbor models and further by
Gandolfi, Keane and Newman to positive finite energy long range models.
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