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WINDINGS OF RANDOM WALKS!

BY CLAUDE BELISLE
University of Michigan

Let X,, X;, X;,...be a sequence of iid R2-valued bounded random vari-
ables with mean vector zero and covariance matrix identity. Let S = (S,;
n > 0) be the random walk defined by S, = L., X;. Let ¢(n) be the winding
of S at time n, that is, the total angle wound by S around the origin up to
time n. Under a mild regularity condition on the distribution of X,, we show
that 2¢(n)/log n -, W where —, denotes convergence in distribution and
where W has density (1/2)sech(7w/2).

1. Introduction and statement of the main result. Let Z = (Z(¢); t = 0)
be a standard two-dimensional Brownian motion starting at a point z, other
than the origin and let 6(¢) be the winding of Z at time ¢, that is, the total
continuous angle wound by Z around the origin up to time ¢. Spitzer’s law says
that

20(t)/logt >, C ast— oo,

where C is a standard Cauchy random variable and where —; denotes conver-
gence in distribution [Spitzer (1958), Williams (1974) and Durrett (1982)]. The
purpose of this paper is to present an analogue of Spitzer’s law for windings of
planar random walks. Let X;, X,,...be a sequence of iid R?valued random
variables and assume that their distribution satisfies the following conditions:

CoNDITION A (Normalization). X, has mean vector zero and covariance
- matrix identity.

CoNDITION B (Boundedness). There exists a finite constant b such that
Pl X< b] =1

CoNDITION C (Regularity). One of the following holds:

(C.1) (The absolutely continuous case). The distribution of X is absolutely
continuous with respect to Lebesgue measure in the plane.

(C.2) (The lattice case). The additive subgroup of R? generated by the
support of the distribution of X, is the lattice £, = {dz; z € Z?} for some
d>0.

Now fix x, [with x, € R? if (C.1) holds, x, € %, if (C.2) holds] and consider
the random walk S = (S,; n > 0) defined by S, = x, + X7, X;. Let ¢(n) be the
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1378 C. BELISLE

winding of S at time n, that is, the total angle wound be S around the origin up
to time n. More precisely, ¢(n) =X"_;A(j) where the A(j)’s are defined as
follows: If S;_,, S: and the origin are colinear then A(j) = 0; otherwise A(J) is

B J-D %)
the unique number between —« and # such that
_Sﬂ_eix(j) = _S]_
IS; -l IS;ll

(In the last equation we have identified the real plane and the complex plane and
we are using complex variable notation and operations for convenience.) The
main result of this paper is

THEOREM 1.1. If conditions A, B and C are satisfied, then
2¢(n)/logn -, W asn — o,
where W has density (1/2)sech(7w/2).

[The distribution with density (1/2)sech(ww/2) will be referred to as the
standard hyperbolic secant distribution. It has mean 0 and variance 1.] To
understand the difference between Spitzer’s law and Theorem 1.1, consider the
following Brownian winding analysis, as in Messulam and Yor (1982) and Pitman

and Yor (1984, 1986). Without any loss of generality assume that z, = (1,0).
Define

¢
0small(t) = /(;1(||Z(s)||s1) dﬂ(s),

¢
ebig(t) = [)1{||Z(s)||>1} dé(s),
§, = inf{s > 0: |Z(s)|| = r}
and write
20,man(2)  20,;,(2) _ 20,,1(8 ) 20,(8 )
logt ’ logt logt ~ logt

+ ( 2(0small(t) - asmall({‘/t_)) 2(0big(t) - ablg(gﬂ)) )
log ¢ ’ log t )

A tightness argument yields

2(Opmen(2) — 0sma11(§,/t')) N 2(0big(t) - 0big(§\/t-))

—-p0 ast— oo.

p0 and

logt log t
Conformal invariance and scaling yield ‘
20smau(§,/i) 20big(§ﬁ) o i
=1 d 1 .
( logt ’ logt d(j(‘) {a, <1} ﬁs’_/(; (aa>l}dﬁs)

Here =, denotes equality in distribution, ((e,, 8;); s = 0) is a standard two-
dimensional Brownian motion starting at the origin, and ¢ = inf{s > 0: a, = 1}.
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Thus
20small(t) 20big(t)
logt ’ logt

) —)d(‘/(; l{a,sl)dﬁ.w‘/(; 1{a8>1}dﬁs) ast— oo.

[Spitzer’s law follows at once since 6(t) = O(t) + Oy;(f) and since B(o) is
standard Cauchy.] Theorem 4.2 of Pitman and Yor (1986) gives the joint Fourier
transform of the limiting distribution. In particular [§1, .., dB; is standard
hyperbolic secant.

Our approach to Theorem 1.1 is an adaptation of the above Brownian winding
analysis. It goes essentially along the following lines. Define

Dp-sman() = i (o(2) —¢(i - 1))1(||S(i—1)||5m)1

brvig(n) = ~§1(4’(i) - ¢(i - 1))1{||S(i—1)||>m)9
T(r) = min{i > 0: ||S(i)|| = r}
and write
2¢(n) _ 26 aman(T(V)) 4 2¢m-big(T(‘/’_l)) 4 2(‘15(") - ¢(T(\/’7)))
log n log n log n log n )

A tightness argument will yield

2(o(n) - ¢(T(Vn)))

-p0 asn - .

logn
For a sequence m,, increasing to oo, strong Brownian approximation will yield
2¢m,,-big(T(‘/;)) 01 d
logn —)dj(; {ay>1} Bs asn— o

and ergodic theory will yield

2¢m,,-small(T(‘/;))
logn

-p0 asn— 0.
Hence Theorem 1.1.

REMARK 1. Theorem 1.1 gives, in particular, the limit distribution for the
winding of a simple symmetric random walk on the integer lattice. This special
case has been investigated by Fisher, Privman and Redner (1984) and by
Rudnick and Hu (1987) using completely different methods.

"REMARK 2. The method developed in this paper, and used to prove Theorem
1.1, is more important than the result itself. It can be used to obtain limit
theorems for various functionals of two-dimensional random walks, analogous to
the Brownian motion log-scaling laws of Pitman and Yor (1986).
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2. Proof of the main result. The above decomposition of the winding ¢(n)
into m-small and m-big windings will now be replaced by a decomposition that is
easier to analyze. Fix m, a positive integer large enough so that ||x,|| < m. Let
o(m,0) = min{j > 0: ||S(j)|| = m}, n(m,0) = 0, £,(m,0) = ¢(s(m,0)), and for
every positive integer i, define (recursively)
min{;j > o(m, i —1): IS(j)|l = me}

if n(m,i—1) =0,
min{;j > o(m, i — 1): |S(j)|| < me"™ D~ or > men™i~D*1}

if n(m,i—1) >0,

o(m,i) =

o'(m, i) = min{j > o(m, i — 1): |S(j)Il < me"™ "Dt or > ment™ D1},

p(m,i—1) =1 if |S(a(m,i))|| < men™ iDL
n(m, i— 1) +1 if ||S(o(m’ l))" > me"™ i—1)+1’

n(m, i) = {
‘fo(m’ i) = ¢'(0(m: l)) - ¢(°/(m! i))a
§(m,1) = 4’(0'(’"” l)) - ¢(°(m! i— 1))

The random variables £i(m, i) and &(m, i) represent increments of m-small
winding and m-big winding, respectively. Fix &, a positive integer. Let

N(m, k)

N(m,k) =min{i > 0: 9(m,i) =k} and I(m,k)= Y Ll i-1-0)
i=1
Observe that
1 N(m, k) N(m, k)
21)  Zo(T(me*)) =— ¥ &(m,i)+ - X &(m,i),
k E 0 k2o

where T(r) = min{j > 0: ||S(j)|| = r}, as in Section 1. Now consider the m-big
winding at time T(me*), that is, the first term on the right-hand side of (2.1).
Let Z = (Z(t); t > 0) be a standard two-dimensional Brownian motion starting
at the origin. Let o(0) = inf{¢ > 0: ||Z(¢)|| = 1}, 7(0) = 0, and for every positive
integer i, define (recursively)
, inf{t > o(i — 1): ||IZ(t)|| = e} ifn(i—1) =0,
o= inf(¢ > o(i — 1): |Z(¢)]| = e D~ ore"¢"D*1} if q(i —1) >0,

o'(i) = inf{t >a(i—1): |IZ(¢)|| = ei—D-1 op e"(i"l)‘“},

(i =1) =1 if |Z(o(i))] = e™~ P77,
n(i—1)+1 if ||Z(o(z))|| = eMi—D+1,

nj(i) = {

¢(i) = total windings of Z from time o(i — 1) to time o’(i).
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Finally, let

N(k)
N(k) =min{i > 0: n(i) =k} and I(k) = ) 1,i-1-0)
i=1

Donsker’s invariance principle implies that

((n(m,i):i>20),(&(m,i):i>1)) >4((n(i): i = 0),(£(i): i = 1))
asm — oo.
In particular, for each £ we have I(m, k) -, I(k), N(m, k) -, N(k) and
LNBE(m, i) -4 TN®E(i) as m > 0. In Sectlon 6 we will prove the following
stronger result.

THEOREM 2.1. If conditions A and B hold, then

1 1
(a) ;I(m, k) -, —-I(k) as m — oo, uniformly in k;

(b) —sN(m, k) - N(k) as m — oo, uniformly in k;

N(m, k) 1 N(k)

(c) 7 Zl ¢(m,i) > ey L Zg() asm — oo, uniformlyin k.

Now the strong Markov property and the conformal invariance of Z imply
that:

1. (&4(i); i = 1) is a sequence of independent standard hyperbolic secant random
variables.

2. (n(i); i > 0) is a simple symmetric random walk on the nonnegative integers,
starting at 0 and positively reflected at 0.

3. (£(3); i = 1) and (n(2); i > 0) are independent.

Thus, straightforward computations yield the following result.

PROPOSITION 2.2.

(a) %I(k) -, E ask- oo;
1

(b) —EN(k) -, T ask— ;
1 Ny ’

(C) —Z’E(l) s W ask - oo,
i=1-

where E is standard exponential, where T is the hitting time of 1 by a standard
one-dimensional reflected Brownian motion starting at 0 and where W is
standard hyperbolic secant.
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As a corollary to Theorem 2.1 and Proposition 2.2 we have

PROPOSITION 2.3. Assume that conditions A and B are satisfied. If m,,
increases to oo, then

1 N(mk’ k)

% Y &(my,i) >4 W ask - .
i=1

Now consider the m-small winding at time T(me*), that is, the second term
on the right-hand side of (2.1). Define
U(m,0) = min{j > 0: ||IS(/)Il = m},
V(m,1) = min{j > U(m,0): |IS(J)|| < me'},
U(m,1) = min{j > V(m,1): IS(j)|l = me},
V(m, i) = min{j > U(m,i— 1): |S(j)|| < me™'},
U(m, i) =min{j = V(m,i): |IS(j)Il = me}
and
B(m, i) = ¢(U(m,i)) — $(V(m,1)).

In the next section we will prove the following ergodic theorem for B(m, 7).

THEOREM 2.4. Assume that conditions A, B and C hold. Then for each m
there exists a constant c,, such that

1 n
- Y B(m,i) > ¢, a.s.asn— oco.
L

Furthermore,
¢, 0 asm - oo.

Now observe that

N(m, k) I'(m, k)
Z go(m, l) = Z B(m, l):
i=1 i=1

where I'(m, k) = NP1, 0 i 1)=0, o'(m, iy < o(m, iyy- Thus for each m we have, by
Theorem 2.4,
1 N(m, k)
—_— m,i) »pc, ask— oo.
I’(m, k) i§1 £0( ) P*m
Furthermore, if m, increases to oo slowly enough, then
1 N(mks k)
—_— m,,i) >0 ask — oo.
I’(mk,k) Z gO( k ) P

i=1
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Since 0 < I'(m, k) < I(m, k), part (a) of Theorem 2.1 combined with part (a) of
Proposition 2.2 imply that the family ((1/k)I'(m,, k); k = 1) is tight. Thus we
get

PROPOSITION 2.5. Assume that conditions A, B and C hold. If m,, increases
to oo slowly enough, then
1 N(mhrk)
Z Y &o(my,i) >p0 ask - oo.
i=0
Now choose integers 0 = my < m; < my < my < ---such that

1
(2.2) qu(T(mkek)) —>,W ask—> o and logm,=o0(k) ask— oo.

This is possible in view of (2.1) and Propositions 2.3 and 2.5. For n = 1,2,3,...let
k(n) be the integer defined by

mk(n)ek(n) < ‘/’,; < mk(n)+lek(n)+1
and write -
2¢(n) ¢(T(mk(n)ek(n))) 2k(n) o(n) — ¢(T(mk(n)ek(n)))
(2.3) = +2 .
log n k(n) logn logn
From (2.2) we have
1
m¢(T(mk(n)ek(”))) -, W asn—- .
From the definition of k(n) we have
2k(n)
-1 asn — oo.
logn

probability as n — . Fix &€ > 0. For every positive integer i we can write
(2.4)

T.isi<T,;
Jprinciple implies that

We now show that the last term on the right-hand side of (2.3) converges to 0 in

o(n) — ¢(T(m,,e*™

P[ (n) — oT( b ))>6
logn
<P| max Icp(j) - ( (mk(n)ek(")))l > ¢log n]
+P[T; ;> n] +P[T;}; < n],
where T, ; = T(my,e*™%) and T}, = T(my,e®™**). Donsker’s invariance
A k(n)
- IilazT’:J‘P(J) ¢(T(mk(n)e ))l

converges in distribution as n — co. Thus the first term on the right-hand side of
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(2.4) converges to 0 as n — oo, even with i replaced by a sequence i(n) increasing
to o0 as n — oo, provided it increases slowly enough. Donsker’s invariance
principle also implies that

k(n)—i(n) k(n)+i(n)
T( M p(n)€ ) and T( Mp(n)€ )
mi(n)e%k(n) —i(n)) m?e(n)e 2(k(n)+i(n))

both converge in distribution, for every sequence i(n) increasing to co slowly
enough. This implies that the second and third terms on the right-hand side of
(2.4), with i replaced by i(n), both converge to 0 as n — oo, provided i(n)
increases to oo slowly enough. Thus the left-hand side of (2.4) goes to 0 as
n — oo.

In order to complete the proof of Theorem 1.1, it remains only to prove
Theorems 2.1 and 2.4. Theorem 2.4 will be proved in the next section. Theorem
2.1 will be proved in Section 6, after we approximate the sequences (n(m, i);
i >0)and ({(m,i); i > 1) in Sections 4 and 5.

3. Proof of Theorem 24. For every m, the sequence (B(m, i), S(V(m, i));
i=1,23,...) is an L-bounded Harris recurrent Markov chain. [Markovness
follows from the strong Markov property of S. Harris recurrence is easily proved
using condition C. The L'-boundedness follows easily from the fact that
SUP | < m /e Bx[T(me)] < co; here E,[-] denotes conditional expectation given
S(0) = x.] The ergodic theorem implies that

1 n
— Y B(m,i) >c, as.asn-— o
n;_,

for some finite constant c,,. Furthermore, c,, does not depend on the starting
point x,. [In the lattice case an elementary proof follows easily from the strong
law of large numbers and Theorem 78 of Chapter 2 of Freedman (1983); in the
continuous case one can use Theorem 3.6 of Chapter 4 of Revuz (1975).] This
completes the proof of the first part of Theorem 2.4.

Now suppose that for some integers 0 < /(1) < I(2) < --- and for some con-
stant ¢ (possibly infinite)
3.1 li N = C.
(8.1) j_fT:o Cyp=2¢

Let G be a bounded Borel subset of R? with pu(G) > 0. If condition
(C.1) holds, u(G) denotes the Lebesgue measure of G. If condition (C.2) holds,
u(G) is d? times the cardinality of G N %,. Let Ng(n) be the time of the nth
return to G, .

.. Ng(n) = min{j >1: é 14(S) = n}

Let J(m,0) = 0 and, for every positive integer %, let
J(m, k) = min{j > J(m, k — 1): n(m, j) = 0}.
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Finally, let K;(m, n) be the integer defined by
o(m, J(m, Kg(m, n))) < Ng(n) < o(m, J(m, Kg(m, n) + 1)).

Thus K;(m, n) is the number of excursions from outside the disk of radius me
to the disk of radius m completed at the time of the nth return to G. Then

W(G)o(No(n)) _ (@) Homr i

an an Z §(m, 1)
o (@) o (@)
p(G) e ., MG
+ an igo go(m: l) + an Am,;n
where

Bon= ¢(Ng(n)) - ¢(o(m, J(m, Kg(m, n)))).

We will show that there exists a sequence of integers m,, increasing to oo as
n — oo, such that if we replace m by m,, on the right-hand side of (3.2), then the
first term converges in distribution to a standard Cauchy random variable, the
second term converges in probability to c¢/2, with ¢ as in (3.1), and the third
term converges in probability to 0; thus the left-hand side of (3.2) converges in
distribution to a Cauchy distribution centered at ¢/2 (with the obvious interpre-
tation if c is infinite). Then we will show that for a suitable G and a suitable
initial distribution of S, the left-hand side of (3.2) has, for every n, a symmetric
distribution. This will imply that ¢ = 0, thus proving part (b).

Let J(0) = 0 and, for £ =1,2,3,...,

J(k) = min{j > J(k - 1): n(j) = 0}.

Then, as in Section 2, Donsker’s invariance principle implies that for each & we
have L7 B¢(m, i) —, T{P¢(i) and
J(m, Jj) J(J))
max | Y ¢&(m,i)| >, max| Y £(i)], asm - oo.
1<j<k ;4 1<j<k ;-1

In fact, the following stronger result holds. Its proof is omitted. It is essentially
identical to the proof of Theorem 2.1 of Section 2.

THEOREM 3.1. If conditions A and B hold, then

1 J(m, k) 1 J(k)
(2) — X &(m,i) >y 7 X EG)
ko2 k23
as m — oo, uniformly in k;
1 J(m, 1+j) - J(U+))
) pmax| ¥ gmi)| gy max| T £G)
1<j<k|i=gm,1)+1 1<j<k|i=guy+1

as m = oo, uniformly in k and l.
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Straightforward computations analogous to those leadmg to Proposition 2.2
yield

ProposITION 3.2.

1 Jk)
(a) —25()—’ c(1) ask - oo;
1 J(U+))
(b) 7 max Y., &(i)| >4 sup |C(t)| ask — oo, uniformlyinl,
1<j<k|;—gi)+1 0<t<1

where (C(t): t > 0) is a standard Cauchy process starting at 0.
The next result is an ergodic theorem for K;(m, n).

PROPOSITION 3.3. For each m there is a positive constant a,, such that
(a) (1/7n)p(G)Kg(m,n) > a,, a.s.asn - oo;
(b) a,—>1 asm- oo.
ProoF. Let D,, denote the open disk of radius m centered at the origin and
write
ku(G) p(G)ZILG I Py, () ku(D,,)
nEZy T PLG(S) T w(D)Ey T LG(S,) wTily TP, (8

Using the a.s. ergodic theorem for Markov chains [Revuz (1975), Chapter 4,
Theorem 3.6] we get

ku(G) e
Ly I g(S)

where a,, is defined by

as.as k — o0,

(3.3)

. #(D,,)
" wE [ET"'"‘)I (S; )]
Here », denotes the limit distribution of S(o(m, J(m, k))), as k& — o0, and
T(me) denotes the first exit time of the open disk of radius me centered at the

origin. The functional central limit theorem yields (after verifying uniform
integrability)

i=0
Combined with the fact that p(D,) ~ #m? this yields lim,_, a, =1. To
complete the proof, replace £ by K;(m, n) in (3.3) and note that
1 o(m, J(m, Kg(m, n)))

— Yy 15(S;)) > 1 as.asn - oo. ]
n i=0

1 T(me)
;1—2-E”m Y 1(8)| =1 asm— .
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Now consider the m -big winding at the time of the nth return to G, that is,
the first term on the right-hand side of (3.2), with m replaced by m,,,

[.L(G) J(m,, Kg(m,, n))

YT em,)
i=1
M(G) J(m,,[7n/W(G))
(3.4) = ¢(m,, 1)

an - "
[.L(G) J(m,, Kg(m,, n)) ) J(m,,[mn/p(G)]) )

+ Tn E g(mn: l) - Z ‘E(mn: l) .

i=1 i=1

Here [ -] denotes the integer part. Theorem 3.1(a) and Proposition 3.2(a) imply

that for every sequence m, increasing to oo, the first term on the right-hand side

of (3.4) converges in distribution, as n — oo, to a standard Cauchy random

variable. By Proposition 3.3,

rG)

an

for every sequence m, increasing to oo slowly enough. Choose such a sequence
m,,. Then for each ¢ > 0,

#(G)Kg(m,, n)

[l-e,l+e]( an

Thus there exists a sequence ¢, (which may depend on our choice of m,)
decreasing to 0 and such that

#(G)Kg(m,, n)
mn

Kg(m,,n) > 1 as.asn— oo,

)—>1 a.s.asn — oo.

(35) 1[1_%1+8"]( ) -1 as.asn— .
Equipped with these sequences m, and ¢,, we now consider the second term on
the right-hand side of (3.4). Let

J(m,, Kg(my,, n)) J(m,, [7n/W(G)]

A, = ) §(m,,1) — ) £(m,, 7).

i=1 i=1

Then
An An I'L(G)KG(mn’ n)
an| |an| R ewltenl an
e K(G)Kg(m,, n)
an R\ [1—¢,,1+¢,] an .

In view of (3.5), the second term on the right-hand side of the last equation goes
to 0 a.s. as n — co. The first term is bounded above by

1 I(m,, J) Iy, L7 /(@)D
— max Y &(m,,i) - Yy ¢(m,, i)
TN (mn/w(G)(1—g,)<j<(mn/wWG)A+e) | =1 " i=1 »

and therefore converges to 0 in probability as n — o0, in view of Theorem 3.1(b)
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and Proposition 3.2(b). Thus for every sequence m, increasing to oo slowly
enough, the first term on the right-hand side of (3.2), with m replaced by m,,
converges in distribution to a standard Cauchy random variable. This is true in
particular for every sequence m,, taking values in the set {I(1), {(2), {(3),...} and
increasing to oo slowly enough.

Now consider the m,-small winding at the time of the nth return to G, that
is, the second term on the right-hand side of (3.2) with m replaced by m,,.
Observe that

J(m, Kg(m, n)) K4(m, n)
Z ‘Eo(m’ l) = E B(m, i):
i=1 i=1
where
J(m, Kg(m, n))
K¢(m, n)= Zl l{n(m, i—1)=0, o’(m, i) < o(m, i)}*
i=

The following result is an ergodic theorem for K 4(m, n). Its proof is omitted. It
is essentially the same as the proof of Proposition 3.3.

PROPOSITION 3.4. For each m there is a positive constant a}, such that
(a) (1/7n)u(G)K4(m, n) - a, a.s.asn— o;
(b) a,,—»>1/2 asm — .

Combined with the first part of Theorem 2.4 and our choice of
1), 2), I(3), ..., Proposition 3.4 implies that if m, is a sequence of positive
integers taking values in the set {I(1), [(2), {(3),...} and increasing to oo slowly
enough, then the second term on the right-hand side of (3.2), with m replaced by

m,,, converges in probability to ¢/2 as n — co.
Finally, consider the last term on the right-hand side of (3.2). If we let

X, 1 = maxlp (/) = ¢(o(m, J(m, k)l
with the maximum taken over j’s satisfying
o(m, J(m, k)) <j<o(m,J(m, k+1)),
and if m is large enough, then |A,, .| < X,, x_(m, n)- Thus for every & > 0,

P~
> 1]‘

> a] < P[ X, kyim,m) > NE]

W(@Kq(m,n)

m

= P[Xm, Kg(m, n) =~ &,

n
G)K (m,n
+P[XmKG(mn)>ne, 1(G)Ko )—amsl]
»Kalm, 7n
#(G)Kg(m, n) 27(1+a,) .
= P” 7 " np(G)e® ?:fE[X’"’k]'
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The first term goes to 0 as n — oo, by Proposition 3.3. A straightforward
argument (based on the fact that sup, ., E_ [(T(me))?] < ) shows that
sup,.; E[X?2 ,] < oo. Hence the second term also goes to 0 as n — co. Thus for
every sequence m,, increasing to co slowly enough, the last term on the right-hand
side of (3.2), with m replaces by m,, converges to 0 in probability as n — oo.
This is true in particular for every sequence m, taking values in the set
{U(1), 1(2), 1(3), ...} and increasing to co slowly enough.

Thus we have shown that for every bounded Borel set G with u(G) > 0 and
for every starting point x,,

1(G)9(Ng(n))

mn

-,C+¢/2 asn— oo,

where C is standard Cauchy and c is as in (3.1).
If condition (C.2) (the lattice case) holds, take G = {(0,0)} and let x, = (0, 0).
Define

I = (8(0), 8(1),..., S(Nyoay(n)))-
Then II is a random variable taking values in the countable set

(o]

k-1
k
U {(so, 815-005 83) € (L) s5=15,=(0,0)and Y lg-@oy =N~ 1}.
i=1

k=n

If p=(sp S1,--., Sz) is an element of that set, let p = (—sp,— Sp_15...» =Sy,
—8,) and observe that

(a) P[II = p] = P[II = pJ;

(b) the windings of the paths p and p are equal in magnitude but opposite in
sign.
This implies that if S starts at the origin, then ¢(Nj o)(n)) has, for every n, a
symmetric distribution centered at 0. Thus ¢ = 0. If condition (C.1) holds (the
absolutely continuous case), take G = D, the unit disk centered at the origin. An
appropriate modification of the above argument can be used to show that if S
starts with uniform distribution on D, then ¢(Np(n)) has, for every n, a
symmetric distribution centered at 0. Thus ¢ = 0. This completes the proof of
Theorem 2.4.

REMARK 1. In the process of proving Theorem 2.4 we have obtained the
following result.

THEOREM 3.5. If conditions A, B and C are satisfied and if G is a bounded
Borel set with p(G) > 0, then

#(G)¢(Ng(n))/mn », C asn - w,
where C is standard Cauchy.
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The Brownian analogue of Theorem 3.5 says that
(3.6) 1(G)0(Tg(t)) /27t >, C ast— oo,

where C is standard Cauchy, p is Lebesgue measure and Tg(t) = inf{s > 0:
Jol(z(uycy du = t} [Lyons and McKean (1984) and Pitman and Yor (1984,
1986)]. As in Section 1, the difference between the random walk result and the
Brownian motion result can be explained in terms of small windings and big
windings: A refinement of (3.6) says that

H(G)emau(TG(t)) H(G)obig(TG(t))

at at

-,(C,,C,) ast— oo,
where C; and C, are independent standard Cauchy [Pitman and Yor (1986)].

REMARK 2. If S is the simple symmetric random walk on the integer lattice
and if y, denotes the winding of S between the (i — 1)th and ith visits to the
origin, then the y,’s are iid random variables with symmetric distribution having
support {kw/2: k € Z%}. Using Theorem 3.5, one can check that (2/7n)L2 v,
converges in distribution to a standard Cauchy random variable.

4. The first approximation. Throughout the rest of this paper we assume
that x, is the origin. The general case can be handled in the same way.

PROPOSITION 4.1. Suppose that the sequence of iid R2-valued random vari-
ables X = (X,, X,, X,,...) satisfies conditions A and B. Then, without chang-
ing its distribution, one can redefine the sequence X on a richer probability
space together with a standard two-dimensional Brownian motion Z, starting at
the origin, in such a way that for some positive constants a and x (depending
only on the distribution of X))

supy ., < IS(w) — Z(u)|| 1

K
(4.1) P Py > F < t—a forallt > 0,

where
[u]
S(u)= Y X, + (u-— [u])X[u]+l'

i=1

([u] denotes the integer part of u.)

ProoOF. If (4.1) were replaced by ||S(t) — Z(¢)|| = O(t'/?~%) a.s. (for some
constant § > 0 depending only on the distribution of X)), then the proposition
would be a special case of Theorem 3 in Berkes and Philipp (1979). The final step
of their proof can be adapted to prove (4.1) [see the appendix of Bélisle (1986)].

O

PROPOSITION 4.2. Suppose that conditions A and B hold. Let X, Z, a and x
be as in Proposition 4.1. There exist positive constants 8, r, and ¢ (depending
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only on the distribution of X,) such that the following approximations hold for
everyr > r,.

Let A be the open annulus of radii re™' and re centered at the origin. Let X,
be an R2-valued random variable independent of (X, Z) and satisfying, with b
as in condition B,

(4.2) Plr-b<|X)<r+b]=1.

Let S’ be the random walk defined by S'(n) = X, + X% ,X;, let Z' be the
Brownian motion defined by Z'(t) = rX,/|| X,| + Z(t), and let

r=min{j > 0: §'(j) & A},
T« = Inf{¢ > 0: Z'(t) & A},

¢ = the total angle wound by S’ around the origin up to time 7,
£, = the total angle wound by Z' around the origin up to time 7,

1 Sl = e,
Tl H s < e,

, ={ 1 if |Z'(74)ll = re,
ol-1 i 1Z(re)ll =ret

Then
(a) 1/2 —c/r*<Plp=p,=1] <1/2;
(b) 1/2—c/rP<P[p=p,=—-1] <1/2;
(c) E[|¢ - £&4l] < ¢/7.

PrOOF. Take 8 = a/3 and ry= /"%, Fix r > r,. Let A° be the open
annulus of radii re™! + 2r'~* and re + 2r'=¢ let

% = inf{t > 0: Z'(¢) & A},
consider the events
E = {we€Q:Z/(r)l| = re + 2r'72},
E,={weQ: 1) <r?te},

E, = {w €Q: sup |S(s)—-Z(s)|< 2r1‘°‘}

O<s<r?*«
and observe that E, N E, N E; C {w € Q: p = p, = 1}. Thus
Plp=ps,=1]2P[E ]+ P[E,] + P[E,] - 2.
Here Q is the probability space on which X and Z are defined. Standard
computations yield ‘
c c
P[E,]>1- s and P[E,]>1- —

for some constant ¢ (which may now change from line to line) and from (4.1) and
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(4.2) we get
c
P[E3] >1- =
r

Hence we have
1 c 1

C
P[p=p*=1]2§—r >~ = .

2 r

Since P[p, = 1] = }, we get (a). The proof of (b) is similar. Now consider the
winding difference |¢ — ¢, ). This time let A* be the annulus of radii re™! — 2r'
and re + 2r'~* and let A~ be the annulus of radii re~! + 2r!~® and re — 2r'~°.
Let

Te=1inf{¢>0:Z'(¢t) € A"},
Te=1inf{t>0: Z'(¢t) € A"}

and consider the events

1
E, = {w €Q: sup |0(¢) —0(7%)| < F},

Te<t<t}

E;={weQ: ri<rite},

E, = {w €Q: sup |S(s) - Z(s)| < 2r1_°‘},

O<s<rite
where 6(t) is the total angle wound by Z’ around the origin up to time ¢. Write
(43)  E[jg- & - L[ € — £4ldP + E/ 1§ — £4] dP.
E,nE;NE; (E,NEsnEg*
If we E, N E; N Eg, then

£(0) — £a(0)I < 5.

Hence the first term on the right-hand side of (4.3) is bounded above by c/r°.
For the second term,

|§ — &| dP

(E,NE;NEg)°
< \/E[(£ - 5*)2] \/P[(E4 NE;N Eﬁ)c]

< (VE[€2] + VE[¢.?] )/P[EST + P[ES] + PLES] .

From Section 2 we know that for every r > 0, E[£2] = 1. Now let @, and @; be
the first and third quadrants of R2. For |£(w)| to be larger than ;/2, the path
S’(w) has to wind around the origin at least [ j/2/27] loops before it exits the
annulus A. Hence there has to be at least [ j1/2/27] — 1 excursions from the set
Q; N A to the set @, N A before exiting A. Thus for every r > 0,

E[¢] < 3 P[e?)] = 3 Pig/> 7] < 5 plrem,

J=0 J=0 J=0

(4.4)
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with p = sup, . (sup, c g, » 4 P(x, 1), where p(x, r) is the probability, starting at
x, that S will hit @, N A before it exits A. It is easy to check that p < 1. Thus
sup, . o E[£?] < co.

As above, we have P[Ef] < ¢/r* and P[E§] < c¢/r® Now, using conformal
invariance, stationarity, scaling and symmetry, we get

P[E{] < P[ sup B(t) > cr”],
0<t<o

where ((a(t), B(t)); t=0) is a standard two-dimensional Brownian motion

starting at the origin and where o = inf{t > 0; a(¢) = 1}. A standard computa-

tion yields P[E{] < c/r?. Thus the right-hand side of (4.4), and hence (4.3), is

bounded above by c/r%. This completes the proof of Proposition 4.2. O

THEOREM 4.3. Let X = (X,, X,, X;,...) be a sequence of iid R2-valued
random variables. Assume that conditions A and B are satisfied. Then there
exists positive constants 8 and c (depending only on the distribution of X,) such
that for every positive integer m we can, without changing its distribution,
redefine the sequence X, and hence the sequences (n(m,i); i =0,1,2,...) and
(é(m,i); i =1,2,...), on an appropriate probability space, together with se-
quences (nyu(m,i); i=0,1,2,...) and (§.(m,i); i =1,2,...), in such a way
that

@) (ma(m,i); i = 0),((u(m,1); i = 1)) is equal in distribution to the pair
((n(2); © = 0),(£(2); i > 1)) of Section 2, and

() (ne(m,i); i 2 0),(§4(m, i); i 2 1)) is close to (n(m, i); i = 0),(§(m, i);
i > 1)) in the sense that for every positive integer j, the following approxima-
tions hold: Let (ky, ki, ks, ..., k;) and (1, L, 1y, ..., ;) be nonnegative integers
such that P[FN F,]>0, where F=N{_¢(n(m,i)=k;} and where F, =
Vio(na(m, i) = L;). Then:

@) Ifkj>0andlj>0,
1 c

3 (me"f)s < P['q(m, J+1)=kj+1,

b

DN

na(m, j+1) =1+ YFNF,] <
1 c

2 (meh)’

< P['ﬂ(m»j"' 1) = ki—1,

1
na(m,j+1)=1-1FnN F*] <3
i) If ;= 0 and ;> 0,

© Pla(m, j+ 1) =1, mu(m, j+1) =L+ UFNF,] =

’

N| = D] =

P[ﬂ(m,l“" 1) = 1: "h(m:j"' 1) =lj_ lanF*]
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(iii) If k; > 0 and I, = 0,

1 c
5~ T3 <Pln(m,j+1)=k;+1,nm, j+1) =1Fn F.]
2 (meh) /
1 N c
<z )
2 (meh)®
1 c . .
P sP[n(m,j+1)=kj—1,n*(m,j+1)=1|FﬁF*]
2 (meh)
1 N c
<= .
2 (me*)’

Pln(m, j+1)=1,9,(m, j+ 1)=1FnF,]=1.
)

E[Ié(m’ j+ 1) - g*(m’ j+ l)llFﬁ F*] <

(met)®”
PRrOOF. Let X, Z, §, c and 1, be as in Proposition 4.2. Fix m > 1. Consider a
sequence of iid copies of (X, Z),
(Xm,i’ Zm,i) = ((Xm,i(n); nz= 1)’(Zm,i(t); > O))’ l = 0’1’2"“ .

For each i, let S, ; = (Sn, {(n); n > 0) be the random walk defined by S, (n) =
X% _1X,, (7). Proceed with the following construction:

Step 0. Let 7(m,0) = min{n > 0; 1Sm, o(R)Il = m}, n(m,0) = n,(m,0) = 0.
Step 1. Consider the pair (X, 15 Z,1)- Let

Srr,z,l(n) = Sm,l(n) + Sr:z,o("'(m’o))» n=0,
Sn.0(7(m,0))
1S, o(7(m,0))]1°

7(m,1) = min{n > 0: |IS;, ()|l = me},

Zpi(t) = Z,,(t) + m

7'(m,1) = min{n > 0: ||S;, (n)|| < me~*or > me},

T4(m,1) = inf{t 2 0: |1Z,, (¢)l| = me™ or = me},

n(m,1) =1,

nx(m,1) =1, _
£(m,1) = the total angle wound by S,,,1 around the origin at time 7'(m, 1),
£(m,1) = the total angle wound by Z,, 1 around the origin at time 7,(m,1).

For j > 2, proceed recursively with:
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Step j. Consider the palr( m, j» Zm, j) Let
S, i(n) =8, [(n) + 8, ;i(r(m, j—1)), n20,

m,j—l(T(m’ ] - 1))
1Sn, j-1(7(m, j = D)I”

[lf 1S, j—1(r(m, j = 1))l = 0, set
s (r(m, = D)8, o a(r(m, = 1) = (1,0)],

'(m, j) = mm{n > 0: ISy, ;(n)|| < me"™ /"Dl or > me"(""f‘l)“},

Z,, (t) = Z,, [(t) + me"™ ™D t>0

( ) '(m, j) if n(m, j—1) >0,
m(m, j) = min{n > 0: ||S;, (n)|| = me} if n(m,j—1) =0,
T*(m’ ]) = inf{t >0: ||Zr:¢,1(t)|| = rne"'(m)j_l)—l or = me'n(m,j—l)+1}’
n(m, J— 1) +1 if ||S;, J(T(m ]))” > me™(m J- H+1
a(m, j—1) =1 if IS, (r(m, j))| < me"™ /D71,

Tl(m, ]) = {

1 if Tl*(m, .I - 1) = 0,
ne(m, j—1)+1 ifnu(m,j—1)>0
ne(m, j) = and ||Z,, j('r*(m, = men(m: =D+

'ﬂ*(m,j—l)_l if'ﬂ*(m,j_l) >0
and ||Z;, (74(m, j))| = me™™ /D7,

£(m, j) = the total angle wound by S, ; around the origin at time '(m, j),
£.(m, j) = the total angle wound by Z;, ; around the origin at time 7,(m, j).

This completes the construction. Connecting the excursions (S, (n); n=
0,1,2,..., 7(m, j)), j =0,1,2,..., in the obvious way we obtain a random walk
which is, in distribution, identical to the original random walk of Section 1.
Hence, the sequences (n(m, i); i=0,1,2,...) and (&(m,i); i=0,1,2,...) just
constructed are, in distribution, identical to those constructed in_ Sectlon 2.
Strong Markov property and conformal invariance yield (a). If me ki > r, the
conclusion of (b) follows from Proposition 4 2. There are only finitely many pairs

of integers m > 1 and k > 0 for which me* < r,. It follows easily that (b) holds
if we take c¢ large enough. O

5. The second approximation. Let m, be a positive integer large enough
so that ¢/m{ < 1/2, where c and § are as in Theorem 4.3. For integers m > m,
and k> 1 let

a(m, k) = c/(me*)’.

Now fix m > .mo and let V,,V,,V,,... be a sequence of independent random
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variables with uniform distribution over the interval [0, 1]. Let
"L(m’O) = ﬁ(m’O) = ﬁ*(m,O) = 'nU(m’O) =0,
"L(mrl) =f(m,1) = fx(m,1) = ﬂu(m»l) =1
and, for j > 1, proceed recursively with

1 if 9 (m, j) =0,
"L(m’j)—l if "L(m’j)>0
n(m, j+1)= andV,,, <1/2 + a(m,n(m, j)),

ny(m, j) + 1 if ny(m, j) >0
and Vj+1 > 1/2 + A(m’ "L(my J))y

. . fx(m, j) — 1 if fix(m, j) >0and V;,, < 1/2,
Aa(m, j+ 1) = fe(m, j) + 1 if fig(m, j) > 0and Vi, > 1/2,
1 if 4(m, j) =0,
i(m, j) —1 if #4(m, j) >0, fix(m,j) =0
andV;,, € [0, po]
orif 4(m, j) > 0,74(m, j) >0
i(m, j+1) = and V;,, € [0, p,] U [1/2, p,],
i(m, j) +1 if 4(m, j) > 0, fix(m, j) =0
andV;,, € (pos1]
orif f4(m, j) > 0,f4(m, j) >0
andV;,, € (P, 1/2) U (Pz»l],

1 if nU(m,j)=O’
nU(m’j)_l if’?u(m,]')>0
nU(m’j-‘- 1) = ande+131/2_A(m,nU(m1 J))y

nU(m’j)_‘_l lfnU(m’])>O
and V,,, > 1/2 — a(m, ny(m, j)),

where
po = Pln(m, j+1) =n(m, j) = Un(m, i), ne(m,i); i=0,1,2,..., jl,
py = P[n(m, j+1) =n(m, j) = 1,n4(m, j+1)
= nu(m, j) = Un(m, i), nu(m,i); i=0,1,2,..., j],
Py =Pn(m, j+1) =n(m, j) +1,n4(m, j+ 1)
= na(m, j) + Un(m, i), na(m,i); i=0,1,2,..., j].

The subscripts L and U stand for “lower” and “ upper.” The following result
follows at once from Theorem 4.3 and the above construction.
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PROPOSITION 5.1. For m = m,,

@) (i(m, 7), a(m, j); j = 0) =4 (n(m, j), nx(m, j); j = 0);

(b) Py (m, j) < §i(m, j) < ny(m, j) for everyj > 0] = 1;

(©) Plny(m, j) < f4(m, J) < ny(m, j) for everyj =2 0] = 1;

(d) (n(m, j); j = 0) is a Markov chain on the nonnegative integers, starting
at 0, with transition probabilities given by P;(0,1) =1 and, for k>1,
P(k,k—1)=1/2+ a(m, k) and P(k, k + 1) = 1/2 — &(m, k);

(e) (ny(m, j); j=0)is a Markov chain on the nonnegative integers, start-
ing at 0, with transition probabilities given by Py(0,1) =1 and, for k=1,
Py(k,k—1)=1/2 — a(m, k) and Py(k, k + 1) = 1/2 + A(m, k).

Now let a;(m,0) =0, a;(m,1) = 1 and for k > 2 define a;(m, k) recursively
via
(aL(m’ k- 1) - aL(m’ k- 2))/(aL(m’ k) - aL(m’ k- 2))
=1/2 — a(m, k—1).
Let h; be the inverse of a;, defined by
h(m,a;,(m,k)) =%k, k=0.

Let B; = (By(t); t > 0) be a standard reflected Brownian motion starting at 0.
Let 7;(m,0) = 0 and for j > 1 define 7;(m, j) recursively via

m(m, j) = inf{¢ > 7 (m, j — 1): By(t) = ay(m, k)
for some k # h;(m, B (m(m, j — 1)))}.

Then for each m > m, the sequence (hy(m, B;(7(m, j))); j = 0) is equal in
distribution to the sequence (n,(m, j); j = 0). A similar representation holds for
the sequence (ny(m, j); j = 0). These Brownian embedding representations
allow the following computations [where we define N;(m, k), I;(m, k) in terms
of the sequence (n,(m, j), j=0) and Ny(m,k), I;(m, k) in terms of the
sequence (ny(m, j); j = 0) just like we defined N(m, k), I(m, k) in terms of the
sequence (n(m, j); j = 0) in Section 2].

PROPOSITION 5.2.
(a) I(m,k)/k —q I(k)/k, Iy(m, k) /k -, I(k)/k
as m — o, uniformlyin k.

(b)  Ny(m,k)/k* >4 N(k)/k?, Ny(m, k)/k* >, N(k)/k*

as m — oo, uniformly in k.

ProoF. We will consider the sequences I;(m, k) and N, (m, k). The se-
quences I;;(m, k) and Ny (m, k) can be analyzed in the same way. From (d) of
Proposition 5.1, we have (n,(m, j); j=0) =, (n(j); j=0) as m - co from
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which we get

I,(m,k I(k
(5.1) L( Z ) -, (k) asm — oo, foreach k > 1,
and

Ny (m,k)  N(k)
k2 d k2

A direct computation, using the Brownian embedding representation of 7,

shows that I;(m, k) has a geometric distribution with mean a,(m, k). Further-

more, for m > m,, a;(m, k)/k converges to a,, as & = oo, uniformly in m, for
some constant «,, such that a,, » 1 as m = cc. Thus, for m > m,,

I,(m, k)
k

where E is standard exponential. Combined with (5.1), this implies part (a) of
the proposition. For part (b), observe that for m > m, and k& > 1,
N(k) NL(m’ k) NL(mO’ k)
k2 S3 k2 S3 k2 °

Here <, denotes stochastic ordering. From Proposition 2.2, N(k)/k2 -, T as
k — oo, where T is the hitting time of 1 by a standard reflected Brownian
motion starting at 0. The sequence of processes 7, ,, () = (1/ Vr)n(my,[nt)),
converges weakly to a standard reflected Brownian motion starting at 0, as seen
from Guttorp, Kulperger and Lockhart (1985). Thus N;(m,, k)/k%2 >, T as
k — oo. Thus from (5.3) we get, for m > m,,

Ny (m, k)

k2

Combined with (5.2), this implies part (b) of the proposition. O

(5.2) asm — oo, foreach & > 1.

-, a,E ask — oo, uniformly in m,

(5.3)

-4 T ask — oo, uniformly in m.

PROPOSITION 5.3. For every nonnegative integer 1,

1 *
Sup sup - Y P[ny(m,i) <] < .

m>mgy k>1 i=0

PrROOF. We consider the case I = 0. The general case can be analyzed in the
same way. Recalling the definition of a;(m, k), we observe that for 2 > 2 and
m = m,,

k-1
a(m, k) —ay(m, k—1) = [1(1/2+a(m,i))/(1/2 - a(m,i)).
i=1
Hence, recalling the definition of a(m,i), we observe that (a,(m, k) —
a;(m,k —1); m > my, k > 1) is decreasing in m and increasing in k. Thus
sup sup(a,(m,k) —a,(m,k—1)) = klirx:o(aL(mo, k) — a (mgy, k—1)).

m>mgy k>1
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Let a denote the limit on the right-hand side. Since L¥_,a(m, k) < oo, it is
easy to show that a < . Now fix m > m,. Recalling the Brownian embedding
representation of the sequence (1 (m, j); j=0), let 7/(j) =0 and for j > 1
define 7/(j) recursively via

() = inf{t > 7{(j = 1): By(¢t) = B(7{(j - 1)) — 3a
or B;(7/(j— 1)) + 3a}.
The differences 7/(j) — 7£(j — 1) are iid with mean 9a? and variance 54a*. Thus
(5.4) E[7/(k)] =9a% and var[7/(k)] = 54a’k.

Furthermore, each interval [3ak,3a(k + 1)] contains at least two of the
a;(m, j)'s and this implies that ,(m, k + 1) < 7/(k). Therefore

k k
E P["L(m’ l) = O] = Z E[l(ﬂL('n, i)=0}]
i=0 i=0

T (m, k+1)

[ (i)
<E fo 15,0 <1) dt]

E{7/(k)]

(k) El7/(k)]
+ E[ fo Lig,n<1) @t — fo L,y <1) dt]

E(r(k)]_| 2 ;
<1 +fl N — dt + var[r(%)] .

Now, using (5.4), we obtain

<14 /;E[Ti(k)]P[BL(t) < 1] dt + E[]»'r[:(k) - E[7£(k)]|]

k
sup sup(1/Vk) Y, P[n,(m,i) =0] < co. m|

m>mg k>1 i=0

PROPOSITION 5.4.

m8

sup supv—ie— Zk:E[lg(m,i) — ¢4(m,i)]] < oo,

m>mg k=1 i=1

where & is as in Theorem 4.3.
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ProOF. For m > m,and i > 1,

E[|§(m, i) — &x(m, i)]]
}:. E[|£(m, i) — &x(m, )| |In(m, i — 1) = j[P[n(m,i- 1) =]

IA

=5 L e Pln(m,i=1) =]
65

me ie SJP[TIL(mo» -1) =J]

Jj=0

< ml}ggl’[m(mo,l -1) =/]

c
< mp[nL(mo, i—-1)< 1].
This first inequality follows from Theorem 4.3. Parts (a) and (b) of Proposition
5.1 imply that my(m,i—1) <,n(m,i—1) while part (d) implies that
n(mg, i — 1) < m(m,i—1). Thus E[e %™ i-D] < E[e~%™0m0:i~D], This is the
second inequality of (5.5). The last inequality of (5.5) follows from part (d) of
Proposition 5.1. Proposition 5.4 now follows from Proposition 5.3. O

6. Proof of Theorem 2.1. From Proposition 5.1 we have, for m > m, and
k>1,

——IU(m k) <, kI(m k) <, IL(m,k)
and
NU(m k) s kzN(m k) s kzNL(m k)

Thus (a) and (b) of Theorem 2.1 follow from (a) and (b) of Proposition 5.2. Now
consider the right-hand side of

1 N(m, k) 1 No.(m, k) 1 N(m, k) N (m, k)

7 E £(m, i) =7 Z £*(m, i) + = Z £(m,i) - 2 £*(m,i)
e} koo ' k\ i3 i=1

[with N.(m, k) = min{j > 0; n.(m, j) = k}]. For every m and every & the
first term is equal in distribution to (1/£2)L¥*)¢(i) and the absolute value of the
second term is bounded above by

N(m, k)

61) 7 % i) - ga(m i)l mes ¥ tu(m i),

i=4L+1

! 2 ki< llslzsz

where i, = N(m, k) A Ny(m, k) and i* = N(m, k) V N,(m, k). Thus in order
to prove part (c) of Theorem 2.1, it suffices to show that both terms in (6.1)
converge in probability to 0 as m — oo, uniformly in k. Fix ¢ between 0 and 286.
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Then

1 N(m, k)
Pl:_k‘ Z |€(m» l) - 5*(m7 l)l > e:l
i=1

+ P[N(m, k) > m*k?]

1 mek?
< Pliz E |§(m, i) — 5*(m> l)l > &
i=1

ek2
<+ Z E[|&(m,i) — £x(m,i)]] + P[N(m, k) > m®?].
i=1
By Proposition 5.4, the first term goes to 0, and m — oo, uniformly in k. By part
(b), the second term goes to 0, as m — oo, uniformly in k. Now consider the
second term on the right-hand side of (6.1). Fix £ > 0. For every a > 0 we can
write

1 b
P|— max Y tu(m,i)|>e
k le<l<ly<i* i=l+1
B L
<P|—- max Y, ¢u(m,i)|>eand |[N(m, k) — Ny(m, k)| < ak?
kivshshsit|; 7
+ P[|N(m, k) — No(m, k)| > ak?]
(6.2) ) ]
1 2
<P|-  max Y &(i)|>e| + P[|N(m, k) — Nu(m, k)| > ak?]
ko<i<t,<2[ar?1|i< 41
. 2
<P|—  max Y &) >e
k 0sh<l<2ak®]|i=g +1

+ P[(NL(m, k) — Ny(m, k)) > ak?].
The second inequality follows from the fact that
IN(m, k) — Ny (m, k)| < ak?
= N,(m, k) — [ak?] < i, <i* < N,(m, k) + [ak?]

and the fact that £,(m,1), £,(m,2),... are iid independent of N,.(m, k) and
equal in distribution to £(1), £(2),... . The last inequality follows from Proposi-
tion 5.1. Now observe that the sequence
l >1
( 051, <z2 <1 f )

Z £(1)|;
i=hL+1
is tight since, by Donsker’s invariance principle, it converges in distribution as
I - oo. This implies that for every sequence a,, decreasing to 0, the first term on
the right-hand side of (6.2), with a replaces by a,,, goes to 0 as m — oo.
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Furthermore, from Proposition 5.2 we get (Ny(m, k) — Ny(m, k))/k% —>p 0 as
m — oo, uniformly in k. Thus if a,, decreases to 0 slowly enough, then the
second term on the right-hand side of (6.2), with a replaced by a,,, goes to 0 as
m — oo, uniformly in k. This shows that the second term on the right-hand side
of (6.1) goes to 0 in probability as m — oo, uniformly in k. The proof of Theorem
2.1 is complete.
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