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We examine two standard types of connectivity functions in the high-
density phase of nearest-neighbor Bernoulli (bond) percolation. We show that
these two quantities decay exponentially at the same constant rate. The
reciprocal of this constant defines therefore a correlation length. Unfortu-
nately, we cannot prove that this correlation length is finite whenever p > p,,
although previous work established this result for p above a threshold which
is conjectured to coincide with p,. We examine also a third connectivity
function and prove that it too decays exponentially with the same rate as the
two standard connectivity functions. We establish various useful properties of
our correlation length, such a semicontinuity as a function of bond density
and convexity in its directional dependence. Finally, for bond percolation in
two dimensions we show that the correlation length at bond density p; > p, =
1 is exactly half the correlation length at the subcritical bond density
P, = 1 — p; < p,. This sharpens some other exact results for two-dimensional
percolation and is the precise analog of known results for the two-dimen-
sional Ising model.

1. Introduction. We consider the Bernoulli bond percolation model at den-
sity p. (See Section 2 for notation, definitions and background material.) It is
well known that in dimension 2 or higher this model has a phase transition at
some value p, € (0,1). For p > p, there exists an infinite occupied cluster and we
say that percolation occurs in this phase. This article is concerned with the
connectivity functions in the percolating or high-density phase.

In the low-density phase (i.e., when p < p,), there is a well-defined correlation
length associated with the asymptotic behavior (as |x — y| = o) of the connec-
tivity function

(1.1)  7(p,x,y) = P{x and y are connected by an occupied path}.
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Indeed the limit
(1.2) —=——=—lim log'r(p,o ne;)

00

exists, where e; is the ith coordinate vector. In addition 7 satisfies the bounds
[Grimmett (1989), Sections 5.1 and 5.2]

n
1.3 K n4(1‘d>exp(——) <7(p,0, ne,) < exp(——)
) K fpy) < TP ne) S | Ty
for some K, = K,(p) > 0, independent of n (d is the dimension). Thus, in first
order, T decays exactly exponentially—at least along a coordinate axis—at the
rate 1/¢(p). The quantity £(p) is called the correlation length. For general
directions one has [see (2.1) for |x|]

1 d x|
(1.4) K2|x|“d(1‘d)exp(— mf{:lxil) <7(p,0,x) < exp( ) )

Above the percolation threshold the limit in (1.2) still exists, but this provides
no information since the limit is 0. In fact, since for p > p, there exists a unique
infinite occupied cluster [Aizenman, Kesten and Newman (1987); see also
Gandolfi, Grimmett and Russo (1988)], 7(p,0,x) - P%(p) > 0 as |x| - oo,
where P, (p) is the percolation probability. Nevertheless, one is interested in
having a concrete notion of a correlation length even in the percolating regime.
In fact the entire scaling theory is based on the notion that for each p # p, there
is a single important length scale (called the correlation length) and that all
quantities should be measured on this scale [cf. Fisher (1983) and Stauffer
(1979)].

Most workers agree that there are two acceptable notions of a connectivity
function above the percolation threshold:

m/(x, y) = /(p, %, y) = B,{x and y belong to the

(1.5)

same finite occupied cluster}
and
(1.6) #(x, y) = #(p, %, y) = v(p, %, y) - P2(p).

The quantities in (1.5) and (1.6) have the advantages that 7/(x, y) = 7(x, y) =

7(x, y) whenever P vanishes, and that for p > p_ they tend to 0 as |[x — y| — oo.

[Later we shall introduce yet a third connectivity function which amounts to the

difference of (1.5) and (1.6) and has a certain aesthetic appeal to the authors.]
Definitions (1.5) and (1.6) raise the following questions:

(0) Do these quantltles actually decay exponentially when P, > 0?7
+ (1) Do limits exist in the sense of (1.2)?
(ii) Do bounds similar to (1.3) and (1.4) exist?
(iii) If the answers to (0) and (i) are affirmative and the limits are 1/¢/(p)
and 1/£(p), respectively, are the “correlation lengths” ¢/ and £ the same?
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The zeroth question has been resolved to a certain degree of satisfaction in
Chayes, Chayes and Newman (1987); however, a technically stronger hypothesis
than P, > 0 was used. They assumed that p > p(S,) for some & < co, where
pAS,) is the percolation threshold of the “slab” S, :== Z¢~! x {0,1,..., k} (rather
than of Z¢). In this article we shall prove (in Sections 3-5) that the limits of

1
—mlog 7/(0,x) and ——log'r(ﬁ x)

exist when x moves out to oo in a fixed direction. The two limits are equal and
when x moves out along a coordinate axis we denote the corresponding limit by
1/£/(p). £(p) seems to us to be the proper choice for correlation length,
especially in view of the known results in dimension 2 [see Kesten (1987) and
Section 7]. Unfortunately, we only have that £/(p) < co when p > p(S,) for
some finite %2, but many people believe that p, = lim, _, . p(S,) so that p >
pAS,) for some finite 2 would be equivalent to p > p, (see Note added in proof,
at end). We will also obtain bounds corresponding to the upper bounds in (1.3)
and (1.4), although not quite as sharp as those.

Although the above constitute the principal results of this article, we will also
address some subsidiary issues:

(a) We establish that the inverse of the correlation length is convex as a
function of direction and upper semicontinuous as a function of the bond
density.

(b) As will be explicitly demonstrated in Section 6, the difference %(0, x) =
7(0, x) — 7/(0, x) is nonnegative. It turns out that (0, x) is the covariance of
the indicators of the events that 0 and x belong to the infinite occupied cluster.
Knowing that 7/(0,x) and (0, x) decay at the same exponential rate, it is of
interest to know whether or not their difference decays faster. Here we will show
that this is not the case: The limit of —|x| ! log #(0, x) agrees with the
analogous limits for 7(0, x) and 7/(0, x).

(c) Intwo dimensions all our results save the last are well known. We have for
the square lattice that p, = 1 and several exact results relate the correlation
length at p > p, and at 1 — p < p,. For example in Kesten (1987) it is shown
that they are of the same order of magnitude. For the nearest-neighbor Ising
ferromagnet [see, e.g., McCoy and Wu (1973), formulae 11.2.43 and 11.3.24] one
knows that the correlation length above threshold is exactly half the correlation
length of the dual model. For two-dimensional percolation we will establish this
relation by direct methods in Section 7.

2. Definitions and notation. We consider the d-dimensional lattice Z°.
Lattice distances will be measured in the L® norm; which is to say that for
X = (X005 Xq) and y = (..., ¥;) € Z¢ we take
(2 1) |x — y| = max{|x; = y],..., |%g = Yal}-

Nearest-neighbor pairs of sites, that is, pairs {x, y} € Z¢ with L;|x; — 5| =1,
are called bonds or edges, and we shall use {x, y} to denote the (unoriented)
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bond between x and y. The collection of all such bonds will be denoted by %,,. A
path is a sequence (finite or infinite) of bonds b,, b, ... without repetitions, such
that b, and b,,, have a common endpoint.

The Bernoulli bond percolation model is defined by independently choosing
each bond to be occupied (vacant) with probability p (respectively g == 1 — p).
The corresponding product measure on the configurations of occupied and
vacant bonds is denoted by P,. E, is expectation with respect to P,. In most
places, when no confusion is hkely, we shall suppress the subscript p m P, and
E,. A generic configuration is denoted by w. If S, and S, are collections of sites
in Z"’ (and B c Qd a collection of bonds), then we say that S, is connected to S,
(respectively, S, is connected to S, in B) if there exists an occupled path, that is,
a path all of whose bonds are occupied, from a vertex in S, to a vertex in S,
(respectively, an occupied path from S, to S, which is contained in B). We
denote this event by (S, « S,} (respectively, {S, & S, in B}). Maximal con-
nected subsets (sets of which each pair of vertices is connected) will be called
(occupied) clusters. The occupied cluster containing the vertex x will be denoted
by C(x) = C(x, w). If all bonds incident to x are vacant, then C(x) = {x}.

It is often convenient to visualize vacant bonds as occupied dual objects. For
d = 2 the dual objects are bonds of the dual lattice Z2 + (1, 1). For d = 3 the
dual objects can best be thought of as plaquettes, that is, as faces of unit cubes
with corners on Z3 + (,3,1) [see Aizenman, Chayes, Chayes, Frohlich and
Russo (1983)].

It is well known [Broadbent and Hammersley (1957), Hammersley (1959) and
Harris (1960)] that if d > 1, then there is a so-called critical probability, or
percolation threshold, p,, strictly between 0 and 1 such that for p > p, there is
with probability 1 an infinite occupied cluster, while for p < p,, all occupied
cluster are finite w.p.1. We write P_( p) for the so called percolation probability,

(2.2) P, (p) = P,{0 belongs to an infinite cluster}.

We write I, for the indicator function of an event A, that is,

_J1 ifweA,
AC) {0 ifoeA.

If w,, w, are two configurations, then there is a natural partial order given by
the definition

2.3 w; < w, if all occupied bonds in w, are also occupied in w,.
1 2 1

Events are said to be increasing or positive (respectively, decreasing or nega-
tive) if their indicators are nondecreasing (respectively, nonincreasing) in this
partial order. Harris (1960) [see also Fortuin, Kasteleyn and Ginibre (1971)]
proved that if both A and B are increasing (or both decreasing) events, then

(2.4) P,{A N B} > B,{A}P,(B}.

We will refer to (2.4) as the Harris—-FKG inequality. In van den Berg and Kesten
-(1985) and van den Berg and Fiebig (1987) an inequality going in the other
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direction was proved. We shall use the following special case:
@5) P,{3 edge disjoint occupied paths from S, to S, and from S; to S,}
2.5
< B(S, & 8PS, © 5,).

Finally, some general notation: e; is the ith coordinate vector, By is the cube
{x: |x]<N, 1<i<d}, [a,bd]X -+ X[ay b;] or II[a;, b;] is the box
{x: a;<x;,<b;, 1 <i<d}. Its left face and right face are the sets {a,} X
[ay, by] X - -+ X[ay, by] and {b,} X [a,, by] X - -+ X[ay, b;], respectively.

In Sections 4 and 5 we will have to consider C(x), 7(p, x, y), and so forth,
when x and/or y are not vertices of Z% In such a situation we define C(x) as
C([x]) and 7(p, x, y) as 7(p,[x],[ y]). Here [a] denotes the largest integer < a
when a is real, and [x] denotes ([x,],...,[x,]) when x = (x, n, x;). K;, K,,...
will denote finite strictly positive constants, whose specific values are of no
significance for this article. Their values may depend on the dimension d and p,
and K; may even change from appearance to appearance.

3. The existence of £/. To prove the existence of £/ and to give an upper
bound for 7/(0, ne,) we use a “subadditivity” argument. It turns out to be
somewhat simpler to start with a subadditive-type inequality not for
—log 7/(0, ne,), but for a closely related quantity, defined in terms of the
diameter of C(0), the cluster of the origin. We introduce this quantity now. Let
R,(L;) be the farthest reach of C(0) in the positive (negative) ith coordinate
direction:

R, = R, (w) = sup{x;: x € C(0, )},
~ Note that R; and L; may be infinite. Since the origin 0 lies in C(0) we have that
(3.1) -0 <L,<0<R;< .
The diameter of the cluster of the origin, D(w), is defined by
D; = D,(v) = Ry(w) — Ly(v), D = D(w) = maxD(w),

and the event of principal interest is
T, = {D(w) = n}.
In parts of the proof we shall want to specify which points in C(0) are points of

farthest reach. It is convenient to order the vertices in Z¢ lexicographically. We
will say that
(3.2) x>y if forsomei, x; =¥,...,%; = ¥, Xir1 > Yir1-
Using this order, we define )
T)(x)={D=D,=n,x€C(0), R, =x,and x
is the maximal point in C(0) with x, = R,},
T,(x)={D=D,=n,x€C(0), L, =x,and x
is the maximal point in C(0) with x, = L,}.
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(=)

“ -T

L

Fi1c. 1. Illustration of a finite cluster with D = D, = 6; Ty, Tg' (x) and Ty (y) occur in this example.

T, (x) [T, (x)] occurs when the maximal width of C(0) is n, occurs in the first
coordinate direction and the farthest points to the right (left) in C(0) lie in the
hyperplane {y: y, = x,}, while x is the maximal point among these points (see
Figure 1). In particular, T,*(x) can only happen for some x in B,. Thus, by
using symmetry in the coordinate directions we see that there must be some
x = x(n) = x(n, p) for which

(3.3) P(T, ()} = ————5P(T,}.

d(2n +1)

LEMMA 1. For some K, = K,(p) which is bounded away from 0 on every
interval [a, b] with 0 <a<b<landallp, n > 1, m > 1, we have that

(34) P(T,, .2} = Kin “P{T,}P(T,}.

Proor. We will construct a configuration in which T, ,, . , occurs, by “com-
bining” a configuration in 7, and a translate of a configuration in T, (x(m)) with
x(m) as in (3.3).

Assume that for some configuration @ and some y the event T,/(y) occurs.
For later reference we abbreviate this event by E(y). Note that when E(y)
occurs, then C(0) is contained in the box

B =[y—-nylx[-nn]x - x[-n,n],

y € C(0), the edge {y, y + e} is vacant, and C(0) has a point in the left face of
B’. Assume further that o is such that the translate by y — x(m) + 2e, of the
event T, (x(m)) occurs. We abbreviate this translated event by F(y). Note that
on F(y) the point y + 2e, = x(m) + (y — x(m) + 2e,) belongs to the cluster
C(y — x(m) + 2e;), and this cluster lies in the box

B =[y+2,yn+2+m]lx[yp—m yp+m]x- x[y,—m,y+m].
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Fi1c. 2. Ilustration of a configuration « in Tj (y) and in the translate of Ty (x(3)), with the boxes
B/’ B//'

The cluster contains also a point in the right face of B”, and the edge
{y + e, y + 2e,} is vacant (see Figure 2).

We now modify the configuration w somewhat. We form a new configuration
»” by making the edges {y, y + e,} and {y + e;, ¥ + 2e,} occupied, while we
make the other 2d — 2 edges incident to y + e, vacant. These are the edges

(3.5) {(y+e,y+e te}, 2x<j<d.

In this new configuration the cluster of the origin, C(0, w”), is contained in
B"UB”"U {{y,y +e}),{y + e, y+ 2e}}, and it contains points in the left
face of B’ and in the right face of B”. One easily checks that this implies
D(w?) = n + m + 2. Consequently,

(3.6) Tpimiz 2 U{w?: w € E(y) N F(y)}.

To deduce an inequality for probabilities from (3.6), we observe that, when n
and m are known, y can be uniquely reconstructed from w?, and that a given w?
can arise from at most 22¢-2 configurations w which differ only on the edges
incident to y + e,. Indeed, given w?, we find a farthest point to the left in
C(0, w”), with first coordinate L (w?). Then y is the unique maximal point [in
the order of (3.2)] in C(0, w?) N {2: 2, = L,(w”) + n}. Once we have found y we
also can read off from w? what the state of any edge was in w, except for the
edges {y + e,y + e, +e;}, 2<j<d. These are vacant in w”, regardless of
their original state. For any w € E(y) N F(y), denote by & the configuration
obtained by making all edges incident to y + e, vacant. Thus w? differs from &”
only in that it has the two edges {y, y + e,},{y + e,, ¥ + 2e,} occupied instead
of vacant. From the above observations it follows that w” uniquely determines y
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and &”. Distinct w? come from distinct &”. Moreover
p 2
P {w” occurs} = (m) P{&” occurs}.
Combining the last paragraph with (3.6), we obtain

P(Tymes) 2 P{U 0% 7 € B(3) 0 F(3)})

(3.7) = ZP{“’y: é” € E(y) N F(y)}

_ (lf ) Y P(&3”: we E(y) nF(y))}.

Finally, to estimate the last probability, we observe that E(y) depends only on
the edges in B’ or with one endpoint in B’ and one outside. Similarly F(y)
depends only on the edges in B” or with one endpoint in B” and one outside.
These two sets of edges are disjoint, hence independent, and both are indepen-
dent of the set of edges in (3.5). It follows that

> P(3”: w € E(y)nF(y)}

= (1-p)* " LP(E(y) N F(y)}
= (1 —p)2d'ZZP{E(y)}P{F(y)}
=1 -p)* 2Z‘,P{E(y)}P{T (x(m))} (by translation invariance)

)2d 2

>(1-p)" " ——P(T, }ZP{E(y)} [by (3.3)]

d(2 +1)¢

2d—-2

. ————P{T \P{T ).

In the last step we used the fact that

T,=UT} (y). O
y

=(1-p

LEMMA 2.

= lim —-—logP{T}

(3;,8) £(p)  n-w

exists, and
(3.9) P(T,} < Ko(p)ne /¢
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for some K, which is uniformly bounded on each interval [a, b] with 0 < a <
b<1.

Proor. The proof follows from (3.4) by standard manipulations with subad-
ditive sequences [see Hammersley (1962)]. We therefore merely indicate some
steps. Set

(3.10) g(n) = g(n, p) = 4~K,n~P(T,}.

We may assume without loss of generality that m > n in (3.4), obtaining for
m > 3,

(8.11) g(n)g(m —2) <4 K m “P(T,,,) <g(n+ m).

The existence of the limit in (3.8) now follows after simple modifications of the

standard proof. [Note that we have to use g(n) > 0 for every n > 1].
Next (3.9) follows from (3.8) and (3.11):

1
log g(n) < 510gg(2n +2)< -

1
(3.12) < —2—klog g(2%n + 281 — 2)
1
=40 (n+2) lim —log g(m). O
m—oo M
THEOREM 3. If £/(p) = oo, then

1 1

(3.13) |x1|1—1bnoo - mlog (p,0,x) = nlin:o - ;log P(T,} =o0.

If £/(p) < oo, then

(3.14) nli_w0 - %log'r’(p,o, ne,) = nan;o - -rlzlogPp{Tn} = gT(lp_)
and

(3.15) 7/(p,0, ne,) < Kot /(p)(n + £/(p)) ‘e~

for some K, = K, p) uniformly bounded on any interval [a, b] C (0,1).

REMARK 1. In the next section (3.14) and (3.15) will be complemented by
results on the asymptotic behavior of 7/(p,0, x) as x moves out to oo in a fixed
direction.

Proor. We use a variant of the argument in Lemma 1. Let D', D”, M and
N be positive integers such that D’ > N, D” > M. We replace the events E(y)
and F(y) in the proof of Lemma 1 by

E(y) = {y < C(0), C(0) c [0, '] x [~N, N]**and
y is maximal [in the ordering of (3.2)] in
CO)N {z: 2= D’}}
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Yy ytzey

0 (D1+Dz+2,o,...,0).

F16.3. Two clusters for a configuration » in E'(y) N F'(y).

and
F(y)={C(y+2e)c[D+2,D+2+D']x[-MM]""}
and C(y + 2e,) contains the point (D’ + D” + 2,0,0,. ..,0)},

respectively. For E’(y) to be nonempty we need y, = D’. On E’ we then have
D(w) = D)(w) = D’, and 0 (respectively, y) is one of the leftmost (respectively,
rightmost) points of C(0, w). Similarly the diameter of C(y + 2e,) = D” on F,
and y + 2e,; [respectively, (D’ + D" + 2,0,...,0)] is one of the leftmost (respec-
tively, rightmost) points of C(y + 2e;) (see Figure 3). We now construct a
configuration «w” by modifying w as in Lemma 1. The cluster of the origin,
C(0, w?), in the configuration w” stretches from 0 to (D’ + D” + 2,0,...,0),
while it is contained in

[0,D'+ D"+ 2] x [-(N Vv M),(Nv M)]*!

[a V b stands for max(a, b)]. The same arguments as in Lemma 1 (actually
slightly simpler than those) show that for any y with y, = D’,

P{(D=D'+D"+2,(D'+D"+2,0,...,0) € C(0) and
© (3.16) C(0) c [0, D'+ D" + 2] x [-(N v M),(N v M)] %)
> p*(1 - p)* *P(E'(»)) P{F'(»)}.

We first apply (3.16) with the following choices. Fix some n and take
N = M = n and take x(n) as in (3.3). Note that on T, (x),

C0)=C(x)c[x,x,+n] x[xy—n,x,+n] X - X[xy—n,x,+ n]

and C(0) contains a point in the hyperplane {z: 2, = x, + n}. By shifting this
configuration by —x we obtain a configuration in which

c(-x)=c0) c[o,n] x[-n,n]*"
(8.17) and

C(0) contains a point in the hyperplane {z: z, = n}.
Thus, the probability of the event in (3.17) is [by virtue of (3.3)] at least

P (x(n) = g PIT).
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On the event in (3.17) there are at most (2n + 1)%~! points of C(0) in
{2: 2, = n}. Consequently, for D’=n, N=n we can find a y € {D’} x
[—n, n]¢"! for which

P(E'(y)} = WP{TJ.

If we take also D” = n, M = n, then by symmetry
P{F(y)} = P(E'(y)}.
We therefore obtain from (3.16) for a suitable K, = K p),
P{D=2n+2,(2n+2,0,...,0) € C(0) and
C(0) c [0,2n + 2] X [—n, n]d_l}
> Kyn~*4+2( P{T,})".

Repeating this argument [now with D' =12n + 2) + (I - 1)2, y=
(D,0,...,0), D” = 2n + 2], we obtain by induction on &,

P{D=k(2n+2) + (k- 1)2, (k(2n +2) + (k- 1)2,0,...,0)
(3.18) € €(0) and C(0) < [0, k(2n + 2) + (k — 1)2] X [—n, n]?)
> (K,n+2)*(P(T,})%*.
In particular, forany n > 1, £ > 1,
(3.19) 71(p,0,(2kn + 4k — 2)e) > (K,n*4+2)*(P(T,})%*

- for some K, > 0 depending on p only (as long as p # 0 or 1). It is not hard to
see from (3.19) that then also

(p,0, je,) = Ks(K4n_4d+2)k(P{Tn})2k
uniformly in 2k(n + 2) <j < (2k + 2)(n + 2),

where now K; depends on p and n, but not on k. One merely has to modify
some edges incident to one of the vertices (1,0,...,0) with 2kn + 4k — 2 <l <
Jt+1<@k+2(n+2)+1.

From (3.20) we obtain (by first letting 2 — oo and then n — o0) that

(3.20)

1 1
limsup — ~log 7/(p,0, je,) < lim — —log P{T,}
jmeo now 1
(3.21) )

" t(p)’

Since
{0 © ne,, C(0) finite} c U T,

r=zn
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we also have, from (3.9)

T,(p’O’ nel) =< Z P{T‘r}

(3.22) .

r=n

(3.21) and (3.22) imply (3.14) and (3.15) when ¢/(p) < . [Note that one can
obtain (3.21), and hence (3.14), more directly from (3.18), as in Grimmett (1989),
Theorem 6.33; (3.20) is useful for (3.23), though.]

If £/(p) = o we merely obtain

1 1
]'im - _Tf(pyoy nei) = hm - _Tf(pyo, nel) = O‘
n— oo n

n— oo n

To obtain the full (3.13) in this case, we need once again a variant of the
argument of Lemma 1. We merely give an indication by means of a figure,
leaving the details to the reader. Let ¢ > 0 and x = (x,..., x;). We now wish to
connect 0 to x by successively combining paths from 2z = (x,,..., x 50,...,0)
to 2U*D = (xy,...,%;,,,0,...,0), 0 <j < d — 1. Choose n such that

P{D=k(2n +2) + (k- 1)2, (k(2n +2) + (k- 1)2,0,...,0)
€ C(0) and C(0) ¢ [0, 2(2n + 2) + (k- 1)2] X [-n,n]?""}
> exp(—ekn), k>1
[recall that we assume £/(p) = oo now; cf. (3.18)]. As in (3.20) we have also that
(3.23) P{je1 € C(0) and C(0) c [0, j] X [—n, n]d_l}
> Kgexp(—¢j), J=4n,

for some K; = K¢(p, n). For simplicity we take d = 2, x; > 4n, x, > 5n + 2.
We now consider configurations for which
(3.24) (x,,0) € C(0) and C(0) c [0,x,] X [—n,n]
as well as
x,%,) € C((xy, n + 2 and
625) (31%,) € Oz + 2)
C((xy,n+2)) C[x,—n,x,+n] X [n+2,x,]

(see Figure 4). By modifications of such a configuration in the “small” box
[x, — 1,x, + n] X [0,n + 2] we can now construct a new configuration & in
which (x,,0) and (x,, n + 2) are connected, so that

(%1, %,) € C(0,3)
and
c00,3) c[0,x, +n] X [-n,n]U[x,—n,x,+n] X [-n,x,].
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n n
Texz)

/I/(X] 5n+2)

n '
n{ Mf\j\(x] .0)

Fic. 4. The clusters C(0) and C(x,, n + 2) are contained in the long horizontal and vertical
rectangles, respectively. They can be connected by modifications in the dashed rectangle in the lower
right corner.

From this and (3.23) we obtain that
7/(p,0,x) 2 K;(p, n)P{event in (3.24) } P{event in (3.25)}
> KK ¢ exp(—elx,| — e|x,)).

Since & > 0 is arbitrary this leads to (3.13). O

We next list some of the properties of £/( p) as a function of p. Note that, for
P <D, ¢/(p) = &p) [as defined in (1.2)] since C(0) is finite w.p.1 below the
precolation threshold.

PROPOSITION 4. (i) £/(p) < oo for p < p, or when there is percolation in a
slab S, = Z9~' x {0,1,..., k} for some finite k.

(i) [¢/(-)]7* is upper semicontinuous on (0,1), and continuous on (0, Do)

(ili) ¢/(p) = 0 whenp |0 orp11.

REMARK 2. In a forthcoming article one of us (H.K.) will show that there
actually is equivalence in (i). That is, for p > p,, £/(p) < oo if and only if there
is percolation in some slab S, = Z¢~! X {0, 1,..., k}. This shows that ¢/( p) < oo
except on the interval from p, to lim, . p.(S,) (endpoints possibly included).
It is believed that p, = lim, _, .. p(S;) when d > 2 and that ¢/(p) = oo only at
p = p,. (For d = 2 this is known to be the case.)

ProoF. The exponential decay of 7(p,0, x), or equivalently the finiteness of
é(p), for p < p, was first proved in Hammersley (1957) [cf. also Aizenman and
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Newman (1984), Proposition 5.1, and Kesten (1982), Theorem 5.1]; actually these
references prove this for p < p; [where p, is another critical probability, cf.
Kesten (1982), page 52], but it is now known that p, = Pp. [Menshikov (1986),
Menshikov, Molchanov and Sidorenko (1986) and Aizenman and Barsky (1987)].
The fact that percolation in Z?~! x {0,1,..., k} implies £/(p) < o is proven in
Chayes, Chayes and Newman (1987), Theorem 1; see also Grimmett (1989),
Theorem 6.51. This completes (i).

We next point out that (iii) follows from simple Peierls arguments. For p |0
one uses

0
7(p,0, ne;) < ) (number of n-step self-avoiding walks from the origin) p™.

k=n

For p 71 one uses

o0 0
7/(p,0,ne;) < Y. Y (number of edge sets which separate 0
k=nli=k and ne, from co but not from each
other, and which contain an edge
incident to ke,, and contain / edges in
total)(1 — p)

The latter estimate is already used for d = 2 in Hammersley (1959), and for
general d in Kunz and Souillard (1978).

Finally, the upper semicontinuity of [¢/]! follows from the subadditivity
property used in the proof of its existence. More specifically, the functions
&(n, -) of (3.10) are continuous, since they depend only on the edges in the finite
box B,. Therefore [cf. Choquet (1966), Theorem 2.8.6]

h(p) = inf{— - i zlogg(n,p): n> 1}
is upper semicontinuous. But, by (3.12) and (3.8)
1 _ 1
W < mf{— mlogg(h,p): n> 1}
< lim - !

Jim — ——logg(n, p) o)’
so that h(p) = [¢/(p)] ™"

For p < p_ the continuity of £(p) = £/(p) is immediate from (1.3) and the
continuity of p — 7(p,0, ne,) for fixed n [Aizenman, Kesten and Newman
(1987)]. If one wants to avoid using the (not entirely trivial) continuity of
7(-, 0, ne,) one can use the fact that also

—— = lim P{0 & bound Oan,
0z = Am { ary }

together with upper and lower bounds for P,{0 & boundary of B,} analogous to
(1.3) [cf. Grimmett (1989), Theorems 5.10 and 5.14]. O
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4. Behavior of 7/( p,0,x) along general rays. In this section we consider
the behavior of 7/(p,0, x) for general x, when ¢/(p) < co. We will prove the
following theorem.

THEOREM 5. If £¢/(p) < oo, then there exists a convex function [,Lp RY -
[0, o0) such that

(4.1) lim — —log ™(p,0, nx) = p,(x).

n—oo

If n > 1/|x|, then

(4.2) (p,0, nx) < K,(£/(p) + 1)*"n?|x|%e =),
where K| is a constant. Moreover, if x #+ 0, then
(4.3) 1/¢/(p) < py(x)/1x| < d/¢/(p).

REMARK 3. It is clear that for every 0 < p < 1,

1
py(0) = lim — ;logP{C(O) <o} =0.

REMARK 4. If £/ = o the statements above are also true, by Theorem 3,
with p_(x) = 0 for every x. So, for x # 0, p,(x) is either always positive or
always 0.

REMARK 5. (4.3) tells us that the behavior of p (x) near p, is the same for
all x # 0. In particular, if their reciprocals diverge as p | p,, they diverge with
the same critical exponent.

REMARK 6. The proof of (4.1) given below can also be used to show that if
x, — x, then

lim — —loza;f’(p,0 nx,) = p,(x).

n-—oo

In order to prove Theorem 5, we will use an approach based on constructing
two independent versions of the percolation model and then a third version
which is coupled in a convenient fashion to the two previous ones. We will refer
to this approach as the “duplication trick.” Comparing it to the methods used in
the previous sections, we can say that it relies less on symmetries and for this
reason works when x is not on a coordinate axis..-On the other hand the
duplication trick, as used below, only works when we have a priori exponential
decay of r/, that is, when we know that ¢/(p) < . Thus we need the
cotnbination of both methods to prove everything with the generality that we
want to consider, in this article.

Next we introduce the three coupled versions of the percolation model. Let
a=(a, be %B,) and B = (B, b€ %B,) be two independent product random



1292 CHAYES, CHAYES, GRIMMETT, KESTEN AND SCHONMANN

fields of density p, each indexed by the set %, of bonds of Z%. As usual these
random fields indicate which bonds are occupied. We will denote by C,0)
[respectively, Cy(0)] the cluster of the origin in the configuration « (respectively,
B). More generally, subscripts a and 8 (and also y later on) will indicate objects
corresponding to each one of these configurations. We shall use below also the
notation

C(0) = {b € %#,: an endpoint of b is connected to the origin
by occupied bonds}.

Given « and B, we construct the third random field y = (y,, b € %#;) according
to the following rules:

(a) If |C(0)| = oo, then y, = a, for every b € %,,.
(b) If |C(0)| < oo, then y, = a, for b € C(0) and v, = B, otherwise.

We claim that y is also a density p product random field. The key idea [which
appeared, e.g., in Aizenman and Newman (1984)] is that C(0) is “self-determined,”
that is, for every A C %,, the event {C(0) = A} depends only on the states of
occupancy of the bonds in A. [The event C(0) = A can be viewed as a multidi-
mensional generalization of the event that a Markov time takes a specified
value.] With this in mind it should be easy for the reader to write down a formal
proof of our claim and we omit it.

ProoF oF THEOREM 5. We will use the construction above to show that
given 0 < a < b < 1 there exists K, < oo such that if |x| > 1 and p € [a, b],

(4.4) (p,0,%)1/(p, x, y) < Ky(£/(p) + 1) |x|%(p,0, y).

Observe that this inequality is trivial and useless if £/(p) = c0. For convenience
of notation, we will prove (4.4) when x, y € Z%, but the same proof works for
general x, y € R% Recall the definition B, = {x: |x;/<n, i=1,...,d}. Let
K > 1 be a constant. A look at Figure 5 should convince the reader that

P{{x € C(0), C(0) € By}, N {¥ € C(x), |C(x)| < 00})
< P{{y € C(0), |C(0)| < 0}, U {y & C(0), but there is a
(4.5) vacant bond which has one endpoint in B/, such
that if this bond were occupied, then the event
{y €C(0), |C(0)| < o0} would occur},}.

The subscripts «, 8, y indicate the configuration for which each event is consid-
ered. It is not hard to give a formal justification for the inclusion indicated in
Figure 5. In fact, if the left-hand side occurs, then either y € C,(0), which implies
{y € C(0), |C(0)| < 0},, or else (since x and y are connected in B) y must be
connected in y to C(0). In this last case there must (in y) be two neighboring
Sites which are joined by a vacant bond b € C(0), one of which is connected to 0
and the other to y. Since C(0) C B\, the site connected to 0 must belong to
By, Moreover, since [C(0)| < oo and |Gy(y)| < oo, making b occupied will
preserve |C(0)] < oo.
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F16. 5. The solid curves are occupied paths. The dashed curves surrounding the occupied paths are
vacant sets separating the occupied paths from .
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Let By be the set of bonds which have at least one endpoint in By. Then, by
the independence of a and 8 and (4.5),

P{x e C(0), C(0) c BKM}P{y € C(x), |C(x)] < oo}
< P{y € C(0), |C(0)| < 0}
+ Y P{bisvacantand y & C(0), but if b were occupied,
be By then {y € C(0), |C(0)| < oo} would occur}

1-p
(4.6) < P(y € C(0),|C(0)] < 0} + Y. ——P{bisoccupied, y € C(0),

be By,

IC(0)| < w0}

< P{y € C(0), |C(0)| < 0} + > Y. P{yeC(0),|C(0)| < o}

be By,

< K,K%x|?P{y € C(0), |C(0)| < o0 }.
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Here K, depends on p, but can be taken constant for p > a.
On the other hand
P{x & €(0), C(0) C By} = P(x € C(0), |C(0)| < o)
_ P{C(0) ¢ By, IC(0)] < o0}
P{x € C(0), |C(0)| < w0} |

But it is easy to see that there exists a ¢ < oo which can be chosen uniformly for
p € [a, b] such that P{x € C(0), |C(0)| < o0} > e~°*l. And if £/(p) < o0, by
summing (3.9) over n > K |x|,

P{C(0) & By, IC(0)] < )} < Ko( p)&/(p)[ K2l + £/(p)]*

x exp(—K|x|/¢/( p)).
Thus it is easy to check that there exists a constant K, > 0 such that if
K = K, (¢(p) + 1)? and |x| > 1, then
P{C(0) ¢ By, IC(0)| < 0} < 3P{x € C(0), |C(0)| < o0}.
Hence
(4.7) P{x € C(0), C(0) C By} = P{x € C(0), |C(0)| < o0}.

Combining (4.6) and (4.7), we obtain (4.4).
Now we will use (4.4) to prove (4.1) and (4.2). For this purpose substitute mx
for x and (m + n)x for y. If m > 1/|x|, then

mi(p,0, mx)7!(p, mx,(m+ n)x) < K,(¢/(p) + 1)2dmd|x|d7'(p,0, (m+ n)x).

We would like to say, using translation invariance, that 7/( p, mx,(m + n)x) is
equal to 7/( p,0, nx). Unfortunately, since mx and (m + n)x may not belong to
Z?, this may be false. Nevertheless, the distance between [nx] and [(m + n)x] —
[mx] is certainly not greater than 2 and so using (4.4) again and translation
invariance, we obtain

o1, mx, (m + n)x) = Ko/ (6(p) + 1))7/(p,0, n).
And if m > 1/|x|, '
/(p,0, mx)7/(p,0, nx)
(4.8) 0
< Ky(¢/(p) + 1) " mx|%(p,0,(m + n)x).

(4.1) and (4.2) follow from this inequality in the same way as in the proof of
Lemma 2. .

“ pp(x) depends of course on the direction and on the size of x. The size of x
influences p, in a trivial way since p, clearly has the homogeneity property

pp(ax) = ap,(x).
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The convexity of p(-) follows easily from (4.4). Indeed, given x, y € R? and
n > 1/|x|, we have, analogously to (4.8),

/(p,0, nx)7/(p,0, ny)
<K (¢(p) + 1)4dnd|x|d1-(p,0, n(x +y)).
Taking logarithms, dividing by n and letting n —> oo yields
(4.9) pp(x +y) < pp(x) + p,y().
In particular,if 0 <a <1,
pplax + (1 = a)y) < pylax) + p,((1 = a)y) = ap,(x) + (1 — a)p,(»).

To prove the lower bound in (4.3), observe that by (4.9) and symmetry, if
x = (xy,...,%y), then

2|x1|/£’(p) = 2|x1|au'p(el) = p’p(2|x1|el)
< au'p((lxlly x27'--, xd)) + ,u.p((|x1|, —x2,..., _xd))
=2p,(x).

The upper bound in (4.3) follows easily from (4.9), using induction on the
number of coordinates of x which are different from 0. O

5. Equivalence with another definition of correlation length. We turn
now to the correlation length defined in terms of the quantity

#(p,0,x) = P(x € C(0)) - P2(p).

We will prove that the correlation length (in every direction) defined by using
is identical to the one obtained using /.

THEOREM 6. For every x € R?,

1
(5.1) lim - —r;log #(p,0,nx) = p,(x).
n— oo

In particular,

lim — ~log #(p,0, ne,) = 1/£/(p).

n— oo n
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ProOF. We start by relating 7/ and 7 to another quantity of interest. Define

€(p,x,y) = P(IC(x)| = 0, [C(y)| = o} = PZ(p).
%(p, x, y) is the covariance of the indicator functions of the events that x
belongs to the infinite cluster and that y belongs to the infinite cluster. Now,
using uniqueness of the infinite cluster [Aizenman, Kesten and Newman (1987)
or Gandolfi, Grimmett and Russo (1988)],

#(p,x,y) = P{y € C(x), [C(x)| < o0}

+ P{y € C(x), |C(x)| = o} — P2(p)
=1/(p,x, y) + P(IC(x)| = |C(¥)| = w0} — P3(p)
=/(p,x,y) + €(p,x, y).

By the Harris—FKG inequality, ¢(p, x, y¥) = 0. Hence

(5.2)

(5.3) #(p,x, ) 2/(p,x, y).
Therefore
1
(5.4) limsup — —log 7(p,0, nx) < p,(x).
n— oo n

So, in case £/(p) = oo, (5.1) follows immediately from (3.13), with p,(x) = 0.
If £/(p) < oo, we will show that

1
(5.5) liminf — —log ¢(p,0, nx) = p,(x).
n— oo n
Combining (5.5) with (5.2) and (5.4) yields (5.1). To prove (5.5), we observe that

- €(p,0, nx) = P(IC(0)] < oo, [C(nx)] < 00} = (1 = P(p))*
= P{|C(0)| < oo, |C(nx)| < oo, C(0) N C(nx) = ¢}
+ P{|C(0)| < o, |C(nx)| < o0, nx € C(0)}
+ P{|C(0)| < oo, |C(nx)| < o0, nx & C(0), C(0) N C(nx) + ¢}

-(1-Py(p))"

Now, by the van den Berg—Kesten [van den Berg and Kesten (1985)] inequality,
the first term in the right-hand side is smaller than the last one. Also if the event
in the third term happens, then there is a bond b which is vacant and has one of
its endpoints connected to 0 and the other to nx. So for every K,

%(p,0, nx) < 7/(p,0, nx) + P{|C(0)| < o0, C(0) N (Bg,)* # ¢}

+ Y. P{bisvacant, but if b were occupied, then the
beBy, event {nx € C(0), |C(0)| < oo} would occur}

< 7/(p,0, nx) + P{|C(0)| < 0, C(0) N (By,)  + 2}
+(1 = p)p !B, P{nx € C(0), [C(0)] < w0}.
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Now we use Lemma 2 to bound the second term and observe that the probability
which appears in the last term is again 7/( p, 0, nx). We have that there exists a
constant K, = K,(p) < oo such that, for large n,

(5.6) %(p,0,nx) < K,K%n%/(p,0, nx) + exp(—Kn/(2£f(p))).
Since K is arbitrary, (5.6) together with (4.1) implies (5.5). O
6. The covariance. (5.5) motivates us to ask whether #(p,0, nx) decays

faster than 7/( p,0, nx) and 7(p,0, nx). We will prove that in fact it decays to
first order with the same rate, when P, (p) > 0.

THEOREM 7. For every x, y € R,

(6.1) ¢(p,x,y) = P(p)r!(p,x, ¥).
If P(p) > 0, then

1
(6.2) lim — ;log‘f(p,o, nx) = py(x).

It is clear that (6.2) follows from (5.5) and (6.1). It is interesting to observe
that when P, (p) = 0, then #(p,0, nx) = 0 and the limit in (6.2) is in fact + co.
Hence (6.2) holds for p > p,, but we expect it to fail even at p, where one
believes that P, (p) =0 but £/(p) = oo. (In two dimensions these facts have
indeed been proven.)

PROOF OF (6.1). Let & be the family of finite subsets of Z% For S € %, let
E(y, S) be the event that y is connected to infinitely many sites using only
bonds which do not touch S. Now

¢(p,x, y) = P{IC(x)| < 0 }P{IC(¥)| = o} — P{|C(x)| < 0, |C(y)| = 0}
Y. (P{C(x) = S}P{IC(y)| = 0}

Se#F

—P{C(x) =S, |C(y)| = })
Y. P{C(x) = S}(P{IC(y)| = »} = P(E(y,5)})

SeF )
> } SP{C(x) = S}(P{IC(»)| = )} = P(E(y,S)})
- L PC) = )RR = D) pin ),

In the next to last step we used the fact that if y € S, then E(y, S) cannot
happen. O

7. Two-dimensional duality relation. Here we consider bond percolation
on Z2, and prove that for p > p, = 1, it is the case that £/(p) = 36 — p). The
explicitness of this result stems in large part from the self-duality of the model.
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However, even for a larger class of two-dimensional percolation models, a proof
along the lines of this section would equate £/ with one-half the correlation
length of the dual model.

For bond percolation on Z2, the dual problem deals with bond percolation on
Z? + (1,1). Each bond of Z? intersects exactly one bond of Z* + (3, }) and vice
versa. We declare a dual bond of Z2 + (3, 1) to be occupied (vacant) if the unique
bond of Z2? which it intersects is vacant (occupied). Thus, when the probability
of a bond being occupied in the original problem on Z2 equals p, then the
corresponding probability for the dual problem is 1 — p. It is well known [cf.

Hammersley (1959) and Kesten (1982), Corollary 2.2] that
(7.1) {0 & ne, but C(0) finite}
occurs if and only if

{0 & ne, and there exists an occupied dual

7.2
(72) circuit surrounding 0 and ne, }

occurs. The intuitive reason for £/{(p) = 1£(1 — p) when p > p, is now clear. For
the event in (7.2) to occur, the dual occupied circuit must contain at least two
disjoint paths of diameter at least n. Since 1 — p < p,, the dual process is in the
nonpercolating phase, and it turns out that the probability of two such paths
existing will in first order be exp(—2n/£(1 — p)). As we shall see below the extra
cost of the connection between 0 and ne, is insignificant.

THEOREM 8. For bond percolation on Z2,
(7.3) ¢/(p) = 3£ - p) whenp > p..

Proor. First we show that

(7.4) H(p,0,ne)< ¥ r{r(l—p,0,re))

r=n+1

By virtue of (1.3) and the finiteness of £(1 — p) [cf. Proposition 4(i)] the
right-hand side of (7.4) is at most

0 [1 2 ]_2 2n )
(n+2) —exp( §(1—p)) exp( t-p) )
Thus, by (3.14), (7.4) will imply

(7.5) ¢/(p) < 31 -p).

Now (7.4) follows quickly from the intuitive argument given above, and the
inequality (2.5). A dual circuit surrounding 0 and ne, must intersect the first
coordinate axis in (at least) two points (—& — 1,0) and (n + I + 3,0), k, 1> 0.
By applying (2.5) to the dual process we see that the probability of (7.2) is at
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most

Y. P,{3 two edge disjoint dual occupied paths
k, 120 from (—k — 1,0) to (n + I + 1,0)}

IA

Y {t@-p,0,(n+1+k+ 1)e1)}2
k, 120

o0

Y r{r(1 - p,0,re,)}>.

r=n+1

IA

This proves (7.4) and therefore (7.5) also. To find a lower bound for the
probability of (7.2), we note that (7.2) occurs when, for some fixed %, the
following four events A,;-A, occur (see Figure 6):

A, = {3 occupied dual connectionin [ -1, n + 1] x [k + %,3k + %]
from (— 1,2k + ) to(n + 1,2k + 1)},

y

A, = {EI occupied dual connectionin [-1,n + 1| X [-83k — L, -k —

N

from (-1, -2k — L) to (n+ &, -2k -

™ |
N—
——
-

A, = {all the dual edges {(— %,/ — 1),(—3%,j+ })} and
{(n +1,j- %),(n + L7+ %), —2k<j< 2k} are occupied},

A,={0 o ne, in [0, n] x [ -k, k] (on the original lattice) } .
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The events A, N A, N A; and A, depend on disjoint edge sets and are therefore
independent. A;, A, and A, are decreasing events to which we can apply the
Harris—-FKG inequality. The probability of A, equals (1 — p)®*2, and the
probabilities of A, and A, are equal. These observations yield

(p,0,ne)) > P{A, N A; N A;N AL}

2
> (1-p)*"?[P{A}] P{AL).
Now for every fixed ¢ > 0 it is possible to find a % such that for all large n,

(7.8) P{A,} = exp(—en).

(7.7) and (7.8) have been used elsewhere, and the reader can find related results
and proofs in Chayes and Chayes (1986a), Chayes and Chayes (1986b) and
Grimmett (1989), Section 9.5. Suffice it here to say that for given ¢ > 0 we can
first pick N, then k& > N, such that

P,_,{0 & Ne,} =1(1 - p,0, Ne,)

(7.6)

(7.7) P{A} > exp[—(n + 1)(£(1 ! p)

> exp( (£(1 ! p) i ) [ef. (1.2)],
. 1 28
(7.9) P,_,{0 & Ne, in B,} > exp{ (.ﬁ(l p) )}
Then we observe that A, occurs if there are dual connections from (— 3,2k + 2)

to (B — 3,2k + é)in[— Lk—-X[k+ },3k+ 3], from(k+(j—1)N
2k+§)to(k+jN—§,2k+ Hin (k+ (j— 1N - },2k + )+ka0r]—
1,..., J, = [(n — 2k)/N], and finally from (k& + JoN — 3,2k + 3) to
(n+ 3,2+ 1) in [+ joN— 3,n+ 31 X[k + 3,3k + ;]. All these are de-
creasing events, and by the Harris—FKG inequality the probability of all these
events occurring is at least

Ko(p, N, k)[P,_,{0 © Ne, in B,}]”

1
> exp(—n(————— + e)) for large n [by (7.9)].

£(1-p)
This proves (7.7), and (7.8) is proved similarly. (7.6)—‘(7 .8) together imply that
¢/(p) = 34(1 - p). 0

Note added in proof. G. Grimmett and J. M. Marstrand have recently
proven that (*) p, = lim,_, . p{S,). In particular, {¢/(p) < oo for all p > p,.
Several comments (such as Remark 2) in this article are superseded by (*).
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