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FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR
THE PRODUCT-LIMIT ESTIMATOR OF A DISTRIBUTION
FUNCTION UNDER RANDOM CENSORSHIP OR TRUNCATION

BY MING Gao GU aND Tz LEUNG Lar!

Columbia University and Stanford University

Functional laws of the iterated logarithm are established for a modified
version of the classical product-limit estimator of a distribution function
when the data are subject to random censorship or truncation. These func-
tional laws are shown to hold for the entire interval I over which the
distribution function can be consistently estimated, under basically the same
assumptions that have been used in the literature to establish the weak
convergence of the normalized estimator in D(I). Making use of stochastic
integral representations and empirical process theory, strong approximations
involving ii.d. continuous-parameter martingales are developed for the prod-
uct-limit estimator, and these strong approximations are then applied to
derive the functional laws of the iterated logarithm.

1. Introduction and background. Let X, X,,...,Y,,Y,,..., T}, T;,... be
independent random variables such that the X, are real valued and have a
common continuous distribution function F, the Y; are extended real valued and
have a common distribution function G [G(y) = P(Y; < y}] and the T; are
extended real valued and have a common distribution function H. The nonpara-
metric maximum likelihood estimator of F' based on Xj,..., X,, is the empirical
distribution function F, defined by

n
(1.1) F(x)=n"" ZI(X,-sx}‘
1

In many applications, however, the X, are not completely observable and only
“censored data” of the form (X; A Y,9;), i=1,...,n, are available, where
6, =Ix,.y, and we use the notation A and V to denote minimum and
maximum, respectively. For example, survival data in clinical trials or failure
time data in reliability studies are often subject to such censoring [cf. Kalbfleisch
and Prentice (1980)]. Based on these randomly censored data, the nonparametric
maximum likelihood estimator is the product-limit estimator F*, first intro-
duced by Kaplan and Meier (1958) and defined by

n

(1.2) 1-Fxs)=  T1 = {1-1/N(X)},

i:8;=1and X,<s
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LIL FOR PRODUCT-LIMIT ESTIMATORS 161

where
n
X=XAY, N(s)=YIz.,.
i=1

Another model of incomplete observations is the “random truncation model,”
which assumes the presence of truncation variables T, so that (X;, T;) can be
observed only when T; < X;. There is no loss of generality in assuming left
truncation since the case of right truncation (in which X; can be observed only
when X; < T;) can be transformed to a left truncated model by multiplying the
observations by —1. Thus, the data consist of n observations (X?, T°) with
X? > T?. Important examples of this kind of data can be found in the economet-
rics literature [cf. Tobin (1958) and Amemiya (1985)] and in astronomy [cf.
Lynden-Bell (1971), Jackson (1974) and Nicoll and Segal (1980)]. We can regard
the observed sample as being generated by a larger sample of independent
random variables X;, T}, i = 1,..., m, where n = n(m) is given by

m
(1.3) ) Lix,ory=n.
i=1

The nonparametric maximum likelihood estimator in this case is the product-limit
estimator of the form

n

(1.4) 1-F(s)= [1 {1-1/#(x%5n))},
it X2 <s

where

(1.5) #(s;n) = II(X;’zszT;’}

[cf. Lynden-Bell (1971), Jackson (1974) and Woodroofe (1985)].

Limit theorems on the empirical distribution function F,, including its uni-
form strong consistency (the Glivenko-Cantelli theorem), the weak convergence
of the normalized process n'/%(F, — F) to Brownian bridge and associated
functional laws of the iterated logarithm are classical results in probability
theory. There has been considerable effort in the literature to extend these
results to the product-limit estimator F,* in the random censorship model. Let

(1.6) r=inf{x: F(x) =lor G(x) =1}, inf@ = oo,
and let Xm < - < Xm) denote the order statistics of the observed sample.

Then X'(n) <7 and lim,_, X, =7 as. Making use of martingale theory and
stochastic integral representations, Wang (1987) recently showed that

(1.7) sup |F*(¢) — F(t)| -5 0.
t<X,,

He also indicated that if F(7) =1 or if G(t — ) < 1, then

(1.8) sup|F*(¢t) — F(¢) - 0 as.

t<rt
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Making use of martingale functional central limit theorems and assuming that

(1.9) fwdF(s)/(l - G(s-)) < oo,

Gill (1983) showed that {n*/*(F,*(t) — F(¢ A X,,,))), £ < 7} converges weakly in
D(— o0, 7) to a zero-mean Gaussian process {Z(t), ¢t < r} with covariance func-
tion
EZ(t)Z(t') = (1 - F(¢))(1 - F(¥))
1.10 / _ _
(1.10) x/‘“u—a(s-)) Y1 - F(s)) %dF(s), ¢tV <r.

The limiting Gaussian process Z can therefore be written as

(1.11) Z(t) = (1 - F())W(o(t)), ¢t<r,
where {W(s), s > 0} is a standard Wiener process and
(1.12) o(t) = /_‘w(l — G(s-)) "Y1 - F(s)) % dF(s).

Note that if G(s) = 0 for all s < 7 (i.e., no censoring is present), then o(¢) =
F(t)/(1 — F(t)) and {Z(F Y(s)),0 <s <1} is a Brownian bridge, while F*
reduces to the empirical distribution function F,, since N, ( X"“-)) =n—i+1lin
this case.

Results on the laws of the iterated logarithm for F, *, however, are much less
complete. A commonly used method in the literature to obtain such results is to
regard the cumulative hazard function

n

(113) A, (x) = [ dL,(s)/Ny(s), where Ly(s)= ¥ Iz cuo-1)

- i=1
as a functional of the empirical subdistribution functions n~'L, and n"!N, and
to apply empirical process theory to analyze these empirical subdistribution
functions and the associated functional. A difficulty with this method is that for
s near 7, n”'N,(s) approaches 0, leading to a “singularity” of the functional
associated with A,. Assuming that G is continuous with G(7) <1 = F(7) and
using instead of (1.2) the slightly modified version

n
1 - FXs) = I (1-1/(N(X,) +1)}, ifs<X,,
(1.14) i:8=1and X;<s
=0, ifs>X,,
Foldes and Rejt6 (1981) were able to use this approach to show that
(1.15) lim sup (n/loglog n)"? sup|FX(s) — F(s)| < o a.s.

n—oo s<T

Subsequently, Csorg6é and Horvath (1983) studied an alternative left continuous
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modification of (1.2) defined by
n
1 - Fl(s) = T {1-1/N(X)}, ifs<X,,,
(1.16) i:8,=1and X,<s
=0, ifs>X,.

They showed that if ¢ < r, then with probability 1, the sequence
{(n/2loglog n)'/*(F" — F)|_,, 4} of functions restricted to (—co, t] is rela-
tively compact in the space of bounded functions on (— o0, ¢] with the sup-norm
metric and its set of limit points is

(1.17) {(1=F())o'*(t)g(a(-)/o(t)): g € K},
where ¢ is defined in (1.12) and K is Strassen’s (1964) unit ball of absolutely
continuous functions on [0, 1] defined by

(1.18) K= {g|g: [0,1] - R, g(0) =0, fol(dg/dx)zdx < 1}.

They also noted that if G(7 — ) = 1 > F(r), then this result cannot be extended

to (— oo, 7) since X, < 7 a.s. in this case and by (1.16),

(119) FY X, +)-F(X,+)=1-F(X,)>1-F() (>0) as.

In this paper we use a different approach to study functional laws of the
iterated logarithm for the product-limit estimator. First note that since Strassen’s
set (1.18) is the unit ball of the reproducing kernel Hilbert space of the Wiener
process W, it follows from (1.11) that (1.17) is the unit ball of the reproducing
kernel Hilbert space of the limiting Gaussian process {Z(s), s < t} in the afore-
mentioned weak convergence result due to Gill (1983). Note, however, that if
t =1 and F(7) =1[= o(7) = ], then the unit ball of the reproducing kernel
Hilbert space of {Z(s), s < 7} cannot be written in the form (1.17). Since Gill’s
weak convergence theorem holds in D(— oo, 7) under the assumption (1.9), it is
natural to ask whether one can develop a functional law of the iterated loga-
rithm for some suitable modification of F* on the entire interval (— oo, 7).
Recalling that the uniform strong consistency property (1.8) holds for F* if
F(7) = 1 and that this property fails to hold in (1.19) where G(7 — ) = 1 > F(7),
we shall modify F,* by the following product-limit estimator F;,.

Let ¢ > 0 and § < a < } and choose ¢, > 0 such that
(1.20) e, >0 and e,n" > 0 asn — co forsome y < a/2.

For every s, define F,*(s) by (1.2) and let
Lot F(s) =FX(s A Xy oney) it FX(Kin_ponep) <1 - e
(1.21) = F*(s), otherwise.

For this product-limit estimator, we are able to establish various functional laws
of the iterated logarithm on the entire interval (— oo, 7), under Gill’s assumption
(1.9) in the case F(7) < 1 and under a slightly stronger assumption [see (1.22)] in
the case F(7) = 1, as corollaries of the following strong approximation result
using i.i.d. martingales.
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THEOREM 1. Let F, be the product-limit estimator (1.21) based on the
censored data (X, 8;), i=1,...,n, where X,= X, A Y, and 8, = I x, .y, Sup-
pose that the distribution function F of the X; is continuous. Assume that the
distribution function G of the Y, satisfies (1.9) in the case F(1) < 1, where 7 is
defined in (1.6). In the case F(7) = 1, assume the stronger condition

(1.22) (1-F(s))’=0(1-G(s-)) asstr, forsome0 < p < 1.
For s < r, let A(s) = —log(1 — F(s)) and define

(1.23) §&(s) = I(X,-sx/\s) - /jooI(X,-/\Y,Zu} dA(u),
(124) X(s)= (1= F(s) [ (1= F(w) (1 - G(u-)) " d,(u).
(i) Suppose that F(7) = 1. Then for every q € (B/(B + 1), %),

(1.25) sup

s<rT

=0(n?) a.s.

n(F(s) - F(s)) - iXi(s A F{(1 - n~0-9))

~

(ii) Suppose that F(7) < 1. Let s, = X, _[.e), Where ¢ >0 and ;< a <}

are the same as in the definition (1.21) of F.. Then for every ¢ € (1 — 3a/2, )

(1.26) sup |n(F,(s) — F(s)) - Zj:Xi(s A S,)

s<T

=o(n?) + O(n*) a.s.

COROLLARY 1. Under the same assumptions as in Theorem 1, with probabil-
ity 1, the sequence {(n/2loglog n)/*(F, — F)} is relatively compact in D(— o, T)
and its set of limit points is the unit ball K, of the reproducing kernel Hilbert
space of the covariance kernel (1.10). Consequently,

limsup (n/2loglog n)"/? sup|F.(s) — F(s)|
n—oo s<T

= sup(1 — F(t))o(t) a.s.,

<t

(1.27)

where o is defined in (1.12).

COROLLARY 2. Define
U(r,s) = r(ﬁ[nr](s) - F(s)), 0<r<l,s<r.

Under the same assumptions as in Theorem 1, with probability 1, the sequence
{(n/2loglog n)'/2U,} is relatively compact in D([0,1] X (— o, 7)) and its set of
limit points is the unit ball K, of the reproducing kernel Hilbert space of the
covariance kernel

I((r,t),(r",¢)) = (r A r)EZ(t)Z(2),

O<r,r<ltvit<nr,

(1.28)

where EZ(t)Z(t") is given by (1.10).
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As will be shown in Section 2, Theorem 1 and Corollaries 1 and 2 on the
modified product-limit estimator F, also imply laws of the iterated logarithm
and strong approximations for the classical product-limit estimator (1.2) and its
variants (1.14) and (1.16). This is the content of

COROLLARY 3. Under the same assumptions as in Theorem 1, consider the
classical product-limit estimator F,* defined in (1.2) and its variants F! and FI!
defined in (1.14) and (1.16), respectively. Then F!(s) = F*(s — ) for all s.

(1) Suppose that F(t) = 1. Then for every q € (B/(B + 1), }), (1.25) still holds
with F, replaced by F*or EL Consequently, the laws of the iterated logarithm
in Corollaries 1 and 2 still hold if F, is replaced by any of F,*, Fl, FI.,

(ii) Suppose that F(7) < 1. Let §< a<jandlet T, = sun{t 1 - G(t -)=
n~ 1=}, Then for every q € (1 — 3a/2, %),

(1.29a) sup |n(F*(s) — F(s)) — EX(S

t<m,

=o(n?) a.s.

Consequently, the law of the iterated logarithm (1.27) still holds with T replaced
by t, if F, is replaced by F* or E. Moreover, letting 1 < q < L and (q) =
sup{t 1-G(t—)=n"9, we have

(1.29Db) sup

s |n(Fl(s) - F(s)) - ix,(s)

and the law of the iterated logarithm (1. 27) still holds with T replaced by 7,(q) if
F_ is replaced by F.

=0(n?) a.s.

REMARK. The step functions F*, F, and F! are right continuous and
therefore are elements of D(—oo, 7). However, F! is left continuous and
therefore for this case, D(— o0, 7) in Corollary 3(i) refers to the class of left
continuous functions with right-hand limits.

The proofs of Theorem 1 and Corollaries 1-3 will be given in Section 2. If the
X, are uniform random variables on (0,1) and Y, >1 as., then =1 and
EZ(t)Z(t') is the covariance kernel of Brownian bridge. Thus, (1.28) reduces to
the covariance kernel of the Kiefer process and Corollary 2 reduces to the
Kiefer—Wichura functional law of the iterated logarithm for sequential empirical
processes [cf. Kiefer (1972), Wichura (1973) and Lai (1974)]. Note also that in the
case F(7) =1, Corollary 3(i) provides a definitive form of the Foéldes—Rejt6
result (1.15) under (1.22), which is much weaker than their assumption G(7) < 1.
As will be shown in Section 2, the limit set K, in Corollary 1 has the explicit
representation

- [p v - = FO) [ 1= 66-) 7 - Fs))

(1.30) Xh(F(s)) dF(s) for t < 7,

F(7)

for some h € L, [0, F(7)] w1thf h*(u)du < 1}.
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Likewise the limit set K, in Corollary 2 can be represented in the form

K= evnn - 0-FO) [ (1-6(s-) "
X(1 = F(s)) 'h(p, F(s)) dp dF(s)
(1.31) fort<rand0<r<l,
for some h € Ly([0,1] x [0, F(7)])

with [ [ R2(p, u) dp du < 1}.
[0,11x[0, F(7)]

Theorem 1 is very different from previous strong approximations of the
Kaplan-Meier estimator due to Burke, Csoérgé and Horvath (1981) and to Lo
and Singh (1986). Assuming that G is continuous, Burke, Csorgé and Horvath
(1981) used strong approximations of empirical subdistribution functions and
expressed the Kaplan—-Meier estimator as a functional of these subdistribution
functions to show that if A, > {2(1 + 8)n"'log n}/? for some & > 0, then by
redefining the random variables on a new probability space if necessary, there
exist Gaussian processes Z, with limiting covariance (1.10) such that

sup In'2(F*(s) = F(s)) = Z,(s)|
A=F(s)N(1-G(s)=A,
= O(max{n‘1/3}\;2(log n)*?, n=V2\;*log n, n=%2A;%(log n)2})
a.s.

(1.32)

Taking t, < 7 and partitioning the interval [0, ¢,] into sufficiently small subin-
tervals (assuming the random variables to be nonnegative), Lo and Singh (1986)
made use of uniform probability bounds for sums of ii.d. bounded random
variables to prove a strong approximation of the form

F*(s) — F(s) —n! Xn:f(Xi,S.i; s) = O((n_1 log n)3/4) a.s.

1

(1.33)  sup

0<s<t,

where

P85 8) = (1= F){ = [ (1) () + (1) e

0

for 6 =0 or 1 and ¥*(u)=P(X, <uAY), Y(u)=PX; AY,>u}. It is
interesting to note that (1.32) provides a sharper rate of approximation than
(1.33) since (1.32) implies that

sup|F*(s) — F(s) — n"Y?Z,(s)| = O(n~%%(log n)**) as.

s§<t,

However, the approximations (1.32) and (1.33) are clearly not strong enough to
yield functional laws of the iterated logarithm in D(—oo, ) or D([0,1] X
(— o0, 7)), as given in Corollaries 1 and 2.
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In Section 3 we develop analogues of these results for a modified version of the
product-limit estimator (1.4) in the random truncation model and also study the
case in which the data are subject to both censoring and truncation. In Section 4
we extend these results to time-sequential product-limit estimators which are of
particular interest in the analysis of sequentially monitored survival data during
the course of a long-term clinical trial [cf. Tsiatis (1982), Jennison and Turnbull
(1985) and Gu (1987)].

2. Proof of Theorem 1 and its corollaries. Throughout this section we
shall use the same notations and assumptions as in Theorem 1. Let #(s) denote
the complete o-field generated by I ¢, .}, 01 <4 Xil(% <y i =1,2,..., and
let

@1 M) = D60 = Dz - [ M) dAG),

where N, is defined in (1.2). To prove Theorem 1, we make use of exponential
inequalities for martingales (in Lemmas 3 and 4) and for weighted empirical
processes (in Lemma 2) together with the following well-known martingale
property of M, [cf. Gill (1980) and Métivier (1982)]. We shall use the notation
AM,(s) to denote M, (s) — M, (s —).

LEMMA 1. For every n>1, {M,s), #(s),— o0 <s< o0} is a square
integrable martingale whose predictable variation process is (M,)(t) =
[t N(s)dA(s).

LEMMA 2. Forecery 0 <8 <1ande> 0,

(2.2) sup (EN,(s))"* " YEN,(s)/N,(s) =1 -0 a.s.

s: EN,,(s)zn"

PROOF. Recall that n !N (s) = n” X" I % ., and that the X, are ii.d. with
P X'i > s} = (1 — F(s))1 — G(s —)), where F is continuous. If G is also contin-
uous, then we can apply Lemma 3 of Wellner (1978) to conclude that for every
1>2A>0and0<8<A/2,

P{ sup |EN,(s)/N,(s) — 1| > n')‘/2+9} = O(exp{ —%n”}).
s:n T 'EN,(s)=n"1"0
Hence by the Borel-Cantelli lemma, for every 1 > A > 0 and 6 > 0,

(2.3) sup |EN,(s)/N,(s) — 1| = o(n"*/2*%) as.
st ENy(s)=n*

Without assuming the distribution function of the X, to be continuous, we can
apply Theorem 1.3.1 of van Zuijlen (1977) together with the result (2.3) under
the continuity assumption to show that (2.3) still holds in the general case.
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Given 0 < ¢ < 3 and 1 > 8 > 0, take y > 0 such that y/2 < 8e. Let J be the
smallest nonnegative integer such that § + (J + 1)y > 1. For j = 0,1,..., J,

sup (EN,(s))"* |EN,(s)/N,(s) - 1]

S <EN,(s)<nf+(/+DY
< sup  nOYIARTIEN (5)/N,(s) — 1
EN,(s)=n®*/Y
< { sup |EN,(s)/N,(s) — 1|}n(8+j7)/2“3”‘7/2) -0 as.
EN,(s)=n®*/7

by (2.3). Hence (2.2) follows. O

LEMMA 3. Forevery0 <p <1lande>D0,

sup |(1—EX(¢t))/(1 - F(t)) — 1| = o(n*2*¢) a.s.
t: EN,(t)=n" .

Moreover,

(2.4) sup IN,(t)/EN,(t) — 1| = O(1) a.s.

t: EN,(t)=n® or N,(t)>n*

Proor. (2.4) follows from Lemma 2 (with § < p). Let

Z,(t) = f_tw[I(N,,(s)zn"/2}/Nn(s)] dM,(s).

Then by Lemma 1, {Z,(t), #(t),— o0 <t < oo} is a martingale whose pre-
dictable variation process is

)0 = [ [Tz e/ Nols)] dA(s).

Note that
(2.5) sup (Z,)(t) <2n°* sup ft dA(t) <2n *logn.
EN,(t)=n* 1-F(t)zn=1-» "~

Since sup, |AM,(s)| < 1a.s. by (2.1) and the continuity of F, sup, |AZ,(s)| < 2n~"
a.s. Hence by the exponential inequality for martingales [cf. Shorack and
Wellner (1986), page 899], for every 0 < ¢ < p/2,

P{ sup|Z,(¢)| = n‘P/2+"} = exp{ —(% + o(1))n*(210g n)_l},
t<b,
where

b, = sup{¢: EN,(¢t) > n®}

9 — sup{#: (1 = F(§))(1 = G(¢-)) 2 n=0-0).
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Therefore by the Borel-Cantelli lemma,
(2.7) sup|Z,(t)| = o(n=*/2*¢) as.

t<b,

Defining L, and A, as in (1.13) and using the convention 0/0 = 0, it follows
from (1.2) that

log(1 ~ F*(t) = ¥ log{1 - AL,(s)/N,(s)}.

s<t

Therefore, by (2.4), with probability 1, we have uniformly in ¢ < b,
t -1 -2
log(l — EX(t)) = — N.(s + O{(N,(s dL (s
g ECEN)= [ (M) +0((N(s) )} dLy(s)
= -A,(){1+0(n")}.
Moreover, by (2.4), with probability 1, for all large n,
inf Iy me/2) = Loz neymy = 1

s<b
and therefore

(29)  Z(t) = [* dM(s)/N,(s) = A,(t) — A(t) forall t< b,
Combining (2.7)—(2.9), we obtain that with probability 1, for all large n,
log{(1 — F*(2))/(1 = F(2))} = —{A,(¢) — A(2)} + O(n™PA(2))
=Z,(£){1 + 0(n7")} + O(n™*A(2))
= o(n~*/?*¢) uniformlyin ¢ < b,,
since A(b,) < [1_puysn-a-» dA(2) = O(log n). O

LEMMA 4. Define

U, ‘Q-F Lo R o)) 1 L Vam
(= 0= FONW =5 | 3 ~ By | )
(i) Suppose that F(t) = 1 and (1.22) holds. Then for every q < 1 such that
q > B/(B + 1), where B is given in (1.22), sup, _ Fey=n-a-o U )| = o(n") a.s.
(i) Suppose that F(t) <1 and (1.9) holds. Let ¢ >0 and 0 < a < % and
define b, = sup{t: (1 — F(t))(1 — G(t —)) = ten ). Then for every q <1
such thatq > 1= 3a/2,sup, _, |U()| = o(nq) a.s.

Proor. Using Lemma 3 and an argument similar to the proof of Lemma 2, it
can be shown that for every 1 > § > 0 and ¢ > 0,

(2.10) sup  (EN,(s))*79(1 - F*(s))/(1 = F(s)) — 1| > 0 as.
s: EN(s)=n®

First consider the case F(r) =1. Let 1>¢ > B/(B+ 1) and let a,
F~'1 — n=(~9). By (1.22), there exists A > 0 such that for all large n,

(2°11) ENn(an,q) -2 n(l - F(an,q))(]- - G(an’q _)) > )\nl‘(”ﬂ)(l—‘”.
Since 1 — (1 + B)(1 — q) > 0, it follows from (2.11) together with (2.10) and (2.2)
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that with probability 1, uniformly in s < a

1-Fr(s-)) 1 1
( 1— F(s) )Nn(s) EN,s)

B 1 1
" N(s) ENJs)

(EN,,<s>>-V2“)

+ 0

N.(s)

(EN,,(s»-W“)

(2.12)

Nn(s)
_ 0( (n(1 - F(s))(1 - G(s _))}_He).

N,"*(s)
By Lemma 1, {U,(t), #(t), — o0 <t < a, ,} is a martingale and by (2.12),

g 2 — FX(s - : 2
Uan,q) = an_w (1 - F(s)) {( 1 1- F((s) ))st) - EN,I,(S)}

(2.13) X N,(s)dA(s)
= O(n%f_a:(l - F(s))*™'(1-G(s —))_2+2€dF(s))

= o(n?*?0-9) as. by (1.22),
for every ¢ > 0. Moreover, letting
Un(S) = n(]' - F(S)){(]. - Fn*(s _))/[(1 - F(S))Nn(S)] - l/ENn(s)}7
we obtain from (2.12), (2.10) and (1.22) that for every ¢ > 0,

su UA\S) = S n(l — s s —-3/2+e¢
c1g) R ) 0(3;;30{ (1= F(s)(EN(s)) ™))

= O(n~V/2+e+@+DA-0/2) g

Since ¢ > B/(B + 1), it then follows from (2.13) and (2.14) that for some p > 0,

(2.15) P{(Un>(an’q) <n®*and sup |v,(s)| < n?"? for all large n} =1.

5504

Let ©,(s) = (—n?7%) V (v,(s) A n97%), U(t) = [t . 5(s) dM(s). By (2.15),
P{v, = v, and U, = U, for all large n} = 1. Since sup,|AM,(s)| <1 as. and
since sup, |,(s)| < n?”2¢, application of the exponential inequality [cf. Shorack
and Wellner (1986), page 899] to the martingale {U(t), #(¢), t < a, .} gives

that for every £ > 0,

(2.16) P{ sup |U(t)| = en?, (U,)(a,,,) < n2"“’} = exp{ — (3 + o(1))e*n*}.

t<a,,
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Applying the Borel-Cantelli lemma to (2.16) and combining the result with
(2.15), we then obtain the desired conclusion that sup,_,, JULD)] = o(n?) as. '

Now consider the case F(r) < 1. Since b, = sup{t: EN,(t) > 3cn®} and since
EN,(t) is left continuous, it then follows from (2.2) and (2.10) that (2.12) still
holds uniformly in s < b,, with probability 1. In place of (2.13), we now have for
every € > 0, .

U(b) = O [* (1= 6(s =)™ aF(s)|

=0(n*{1 - G(b,-)} ) = O(n**09) as,
recalling that [T _dF(s)/(1 — G(s —)) < oo by (1.9) and that 1 — G(b, — ) >
(3¢ + o(1))1 — F(7))"'n~@"* by the definition of b,. Moreover, in place of
(2.14), we now have
(2.18) sup|v,(s)] = O(n!~G/279) a5,

s<b,

(2.17)

for every & > 0. Hence using the exponential inequality for martingales as
in (2.16), it can be shown that sup,_, |U,(?)| = o(n?) as. for every 1 > g >
1-3a/2[> 3(1 — a),since a < 3].0

Proor or THEOREM 1. First note that s, (= }Z(n_[ma])) - 7 as. Since

N,(s,) = [cn®] + 1, it follows from (2.4) that with probability 1,

(2.19)  N(s,) ~ en® ~ EN,(s,) = n(1 — F(s,))(1 - G(s, —)).

Hence by Lemma 3,

(2.20) Fx(s,) — F(s,) =o(n=*/2%%) as, for every 6 > 0.

We shall apply the martingale integral representation [cf. Gill (1980), page 37]

(t) F(¢) 1 - F*(s —) dM,(s)
C1-F(r) / 1-F(s) Ny(s)’
First consider the case F(7) = 1. By (1.22) and (2.19),

(2.22) 1— F(s,) =0(n~0-9/A+A) g5,

Combining (2.20) and (2.22), we obtain that for every 6 >0, F*(s,) > 1+

o(n=*/2*%) as. In view of (1.20), this implies that F*(s,) > 1 — ¢, and there-

fore by (1.21),

(2.23) F = F* for all large n with probability 1.

Let ;> q > B/(B+1)andlet a, , = F~'(1 — n~0~9). By (2.21) and (1.24), for
t<a

(2.21)

t< X,

n,q’

n(Ex(t) - F(1)) - f,xim

. [[1-F*s-)) 1 1
=”(1‘F(s))f_w{( 1= 7(s) )Nn(stNn(s)}dM"(s)’
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recalling that n/EN,(s) = (1 — F(s))"(1 — G(s —))"! and that M, = Yr¢,.
Hence by Lemma 2.9 of Gill (1983),

(2.24) sup |n(E*(t) - F(t)) - ZX(t)

t<a, ,

where U () is defined in Lemma 4. From (2.24) and Lemma 4,

n(EX () - F(t)) - i&(t)

<2 Sup 1U(2),

t<a

(2.25) sup

t<a, ,

=o(n?) as.

Fort>a, ,,

n(Ex(2) - F(t)) - i&(t N

(2.26) <|n{F*(a,,) - Fla,,)} - Zj:Xi(an,q)

n{(l - F(a,,)) V(1 -F*a, ))}

By Lemma 3 and (2.11), with probability 1, 1 — F*(a, d~1-Fa,, =
n~(-9, From (2.25) and (2.26), the desired conclusion (1.25) Tollows.

Now consider the case F(7) < 1. By (2.20), F*(s,) = F(7) as., since F is
continuous and s, — 7 a.s. Since F(r) < 1, it then follows that F*(s,) <1 — ¢,
and therefore F (s) F *(s A s,) by (1.21), for all large n, with probability 1.
Defining U,(¢) and b, as in Lemma 4, it follows from (2.4) that with probability

< b, for all large n. Moreover, by Lemma 2.9 of Gill (1983) and Lemma 4,

@21) s n(Ex(2) - F(1)) - LX,(0)

analogous to (2.24) and (2.25). With probability 1, for all large n and all
s, < t <r,since F(t) = EX(s,),

n(F,(¢) — F(t)) - %:Xi(t As,)

< 2sup|U,(¢t) = o(n?) as.,
t<b,

(2.28) ]
= n(Fn*(sn) _‘F(sn)) - ?Xt(sn)

By (1.9), © > [T  dF(s)/(1 — G(s = )) > (1 — G(s,, — ))"Y(F(r) — F(s,)) and
therefore

(2.29) F(7) — F(s,) = O(1 — G(s,—))

Since 1 — F(s,) = 1 — F(t) > 0, we obtain from (2.19) and (2.29) that n(F(r) —
F(s,)) = O(n®) a.s. and therefore the desired conclusion (1.26) follows from (2.27)
and (2.28). O

n(F(r) - F(s,)).
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Corollaries 1 and 2 are easy consequences of Theorem 1 and the following.

L=MMA 5. Let —oo < a <. Fora <s <, define £,(s) by (1.23) and
Xials) = (U= F@) [ {1 G(u=)( = P() " de(u).

Suppose that (1.9) holds. Then with probability 1, the sequence
{(2n loglog n)~1/2xn X; o} is relatively compact in D(a, ) and its set of limit
points is the unit ball of the reproducing kernel Hilbert space of the covariance
kernel

L(t,¢) = (1= F(8))1 - F(¢)) [

a

AL

(1-G(s =) "'(1 - F(s)) " dF(s),
a<t t <r.

ProoF. Let || X; |l = sup, <, <, |X; 4(s)|. Then by Lemma 2.9 of Gill (1983),

I [ 0= Fu){(t - 6(u =) - Fw)) " dé(w)

i, al

| <2 sup

a<s<rt

Hence by Lemma 1 and martingale inequalities [cf. Métivier (1982), page 128],

E|X, J* < limsup16E{j(‘ ](1 - G(u —))_2I{Xi,\yi2u) dA(u)}

sTT

= 16]:(1 ~ G(u-))""dF(u) < w by (1.9).

Likewise
n 2 n 2
(E ZXi,a ) SE ZXi,a
1 1
< 1imsup16E{f (1-G(u-))"? 2hix vz dA(u)}
sttt (a,s] 1

= 16nj:(1 - G(u-))""dF(x) = O(n).

Hence the desired conclusion follows from Theorem 4.1 of Kuelbs (1977) (see also
his remarks on pages 786, 787, 789 and 790). O

PrOOF OF COROLLARY 1. First consider the case F(7) < 1. Then in view of
Theorem 1(ii) and Lemma 5, it suffices to show that for every ¢ > 0,

S X,(s) - LXi(s,)

(2.30) lim sup { sup
1 1

n- 00 §,<s<rTt

/(2nloglog n)1/2} <2¢ as.

Since s, — 7 a.s., (2.30) will follow if it can be shown that given & > 0, there
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exists a < 1 for which

> X,(s) - ZX(a)

i

(2.31) limsup{ sup

n—oo a<s<rt

/(2nloglog n) /2} <e as.

Deﬁnlng X, , as in Lemma 5, note that X; =X, _,, and that X(s) — X;(a) =

i a(S) + (F(s) — F(a))1 — F(a))~ 1X(a) Moreover,
sup Var(X, a(t))(= sup T,(¢, t))

a<t<rt a<t<rt

< ‘/:(I—G(s—))_ldF(s)eO as a — 7, by (1.9).

Hence by Lemma 5, we can choose a sufficiently near 7 such that (2.31) holds.
The case F(7) =1 can be proved similarly, using Theorem 1(i) instead of
Theorem 1(ii). O

An obvious extension of Lemma 5 and Kuelbs’ (1977) related results to the
sequence {(2n loglog n)~'/2L["") X (s)} of functions on {0 < r < 1,s < 7} also
leads to Corollary 2, in view of (2.30). Note that the reproducing kernel Hilbert
space of Corollary 2 is the direct product H ® H,, where H is the reproducing
kernel Hilbert space of the covariance kernel r A r’ of Brownian motion and H,
is the reproducing kernel Hilbert space of the covariance kernel EZ(t)Z(t') [cf.
Aronszain (1950), Section 8].

We now give a probabilistic proof of the representations (1.30) and (1.31) for
the unit balls K, and K, of H, and H ® H,, respectively. Using here the
convention F~Y(u) = sup{t: F(t) < u} and setting u = F(¢) in (1.11), we can
express Z(F~Y(u)) as

Z(u) £ Z(F Y(u))
(2.32) -@1- u)[ (1-G(F(v) =)} % - v) " dW(v),

u < F(7),
where {W(v), v > 0} is the standard Wiener process. Integration by parts then
gives

Z(u) = {1 - G(FY(u) =)} " W(u)

(=) [ W) d[{1 - 6(F(e) -)} - 0) 7).

Take any 0 <& < F(7) and let Zl, Z2,... be iid. Gaussian processes on
[0, F(7) — €] having the same distribution as Z and let W,,W,,... be
ii.d. Wiener processes on [0,1]. Then by (2.33), the set K, of limit points of
(Z,/2log n)'/?} in C[0, F(7) — €] is given by

R, = {3 3() = (1= 6(F () -)) ™ e(w)
(2.34) (- ) ["g(0)d[ {1~ G(F (o) =) 1~ 0) ]

for0 < u < F(1) —eforsomegelf},

(2.33)
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where K = (g € C[0, F(r) — ¢]: g(0) = 0 and [F™~¢(dg/dx)? < 1} is the set of
limit points of {W,/(2log n)'/?} in C[0, F(r) — &] [cf. Lai (1974), Theorem 1].
Noting that dg(v) = g'(v) dv for g € K, we can use integration by parts to
express ¢ in (2. 34) as

() = (=) [({1 - G(F o) =)} (1 - 0) g (0) do.

Moreover, by Theorem 1 of Lai (1974), K, is the unit ball of the reproducing
kernel Hilbert space of Z. A change of Varlables u = F(t) then gives the desired
representation (1.30) of K, upon letting ¢ — 0 and applying (1.9); see also (2.31).
The representation (1.31) of K, can be proved by a similar argument using the
two-parameter process

Z(u;r)=(1 —u)f {1-G(F'(v) - )}_1/2(1—0)_1dW(v; r),

where W(v; r) is the Brownian sheet with covariance kernel
E{W(v; r)W(v';r)} = (v AV)(rAr).

PRrROOF OF COROLLARY 3. In the case F(7) = 1, the desired conclusions for
E.* follow from Theorem 1 and Corollaries 1 and 2, in view of (2.23). In the case
F(7) < 1, the strong approximation (1.29a) follows from (2.27) and the law of the
iterated logarithm (1.27) follows from (1.29a), (2.31) and Lemma 5. Since
F(s) = F*(s — ) and since F is continuous, laws of the iterated logarithm for
F follow from those for F*.

To prove strong approximations for F), we make use of the inequality
|EX(s) — E*(s)| < 2(1 — EXs))/Nys), due to Cuzick [(1985), Equation (4)],
which in turn implies that

(2.35)  |F(s) = FX(s)l <4(1 = FX(s))/Ny(s) if Ny(s) = 4.

In the case F(r) =1,let > q > B/(B+ 1)andlet a, , = F /(1 — n~*"9), as
in the proof of Theorem 1 Then from (2.35) and Lemma 3, it follows that with
probability 1, for all large n,

(2.36) sup anl(s) —Ex(s) <5 sup (1 -G(s-))7},

noting that ENn(s) = n(l — F(s))1 — G(s —)). By (1.22),
(1-6(a,,-)) " =0({1 - F(a,,)}) ) = 0(nf=9) = o(n7),

since ¢ > B/(B + 1). Hence by (2.36),

(2.37) sup n|F(s) = F*(s)] = o(n?).

s<a,,

Combining (2.37) with (2.25) and (2.26), we obtain the desired conclusion (1.25)
with F! in place of F*.
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We next consider the case F(7) <1 and assume that 1< g < ;. First note
that 7,(q) < 7, for every a < ;. Analogous to (2.36) and (2.37), we now have

(2.38) sup n|FX(s) — F*(s) = O({1 - G(7(q) —)} ) = O(n?).

s<7,(q)

From (2.38) and (1.29a), the desired conclusion (1.29b) follows. O

3. Extensions to random truncation models and mixed censorship-
truncation models. For the product-limit estimator (1.4) based on randomly
truncated data (X2, T?) with X? > T?, i = 1,..., n, Woodroofe (1985) showed
that

(8.1) sup |F0(t) — Fy(¢) =50,
t>1y
where
(3.2) my = inf{s: H(s) >0},  Fy(t) = P(X, < t|X; > 1),

under the assumption that H is continuous with F(7;) < 1. Moreover, assuming
that H is continuous, F(ry) < 1 and

(3.3) / “dF/H < w,

he also showed that n'/?(F° — Fy) converges weakly to a Gaussian process.
Recently Lai and Ying (1989) studied consistency and weak convergence ques-
tions of the product-limit estimator when the T, are independent but need not be
identically distributed. They showed that (3.1) may fail to hold when the T; are
not identically distributed and proposed minor modifications of F? which are
uniformly strongly consistent [i.e., the convergence in probability in (3.1) can be
replaced by a.s. convergence] and, under a condition similar to (3.3), also
asymptotically Gaussian, without assuming F to be continuous and without
assuming the T, to be identically distributed or continuous. Instead of (1.4), they
proposed to define F? by

n
(34) 1 —F:(S) = ]._I (1 _I(#(X,";n)zcn“)/#(Xio; n))’
it XP<s
where ¢ > 0,0 < a < ; and #(s; n) is defined in (1.5). Their analysis also shows
that the following alternative modification of the product-limit estimator, which
we shall use here, is also uniformly strongly consistent and asymptotically
Gaussian:

n

1- Fr?(s) = ].—[ (1 - I(V(Xf’;n)zcn"}/#(Xio; n))

i: XP<s

(3.5) "

where »(s; n) = Y Lipe .oy
i1

In this section we develop functional laws of the iterated logarithm for this
modified version of the product-limit estimator. More generally, we shall con-
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sider the case where censoring variables Y, may also be present. As described in
Section 1, X, X,,..., Y, Y,,..., T}, T,,... are assumed to be independent such
that the X; have a common continuous distribution function F and the Y; and 7,
have possibly defective distributions G and H, respectively. The case G = 0
(corresponding to Y; = o) reduces to the random truncation model considered
by Woodroofe (1985), while the case H = 1 (corresponding to T, = — c0) reduces
to the random censorship model studied in the previous section.

Letting X X, ANY and §,=1 (X, <Y this mixed censorship-truncation
model assumes that (Xl, d,) is observable only when X, > T,. We can regard an
observed sample (X;’, 82, T?) with Xe >TP i=1,...,n,as belng generated by
a larger sample of independent random variables X,, Y,, T, i .., m, where
n = n(m) is given by

(3.6) )Y (XinY,2T) = 1.
i=1

In place of (1.5), we now define

n m
(3.7) #.(s)= X I(X;’Zszn’) =X Lz 25
Jj=1 i=1
(38) Vm(s) = Z I{sz’l}f’) = Z I(T‘SX,-/\S)‘
J=1 i=1

Moreover, combining the ideas behind (1.2) and (3.5), we now define

n

(39) 1- Fm*(t) = n (1 - I(um()?/")zcn“)/#m( XJO))’

Ji87=1and X/ <t

where ¢ > 0 and } < a < ;. Choosing ¢, > 0 such that (1.20) holds, define in
analogy with (1.21), '
F(s)=FX(s A X tonep))s if FX(XC_onep) <1—¢

n’

(3.10)
= FX*(s), otherwise.

Noting that F reduces to F when T, = — o0, we now generalize Theorem 1
and its corollarles to F Recall that F is assumed to be continuous and that H
and G need not be continuous and may be defective.

THEOREM 2. Defining 7, and F, by (3.2), suppose that F(1y) <1 and
G(1y) < 1. Defining 7 as in (1.6), assume that (1.9) holds in the case F(1) < 1
and that the stronger condition (1.22) holds in the case F(1) = 1. Moreover,
assume that (3.3) holds. For s < 1, let A(s) = —log(1 — F(s)) and define

(3.11) $i(s) =Ip _x <Y;As) _[ I{x AYisusTy AA(H).
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For 1y < 0 < s <, define
(812) X(o,s)=(1- FH(S))'/(. ]{H(u)(l - F(u))(1-G(u _))}_1d§i(u)~
Let o, = inf{s: »,(s) > cn®}, s,, = X("n_[cnu]), where n = n(m) is given by (3.6)
and ¢ > 0, 3 < a < ; are the same as in the definition (3.10) of F,..

(i) Suppose that F(t) = 1. Then for every q <3 such that q >
max{1l — 3a/2, B/(B + 1)}, where B is given in (1.22),

su
(3.13) 4rcors
=0(m?'%) a.s.

(ii) Suppose that F(t) < 1. Then for every g € (1 — 3a/2,1),

m(ﬁm(s) - FH(S)) - iXi(om, sAFY(1- m‘(l“”))’

(3.14) . s<usp< m(ﬁm(s) - FH(S)) - i::X,-(om, SAS,)

=o(m?) + O(m®) a.s.

PROOF. Let %(s) be the complete o-field generated by T, Y, I o x Ay
I(T,SuSX,)’ I{T,SX,SU} (u < S, i = 1,2,...). Then

I, _ o = Iy ndA(u) =¢(s

exexnn = [ Tonew dAG) = 5(5)

is a martingale with respect to ¥(s). Letting M, (s) = ™ {(s), it then follows
that {M,(s), 9(s), — o0 < s < o} is a square integrable martingale whose pre-
dictable variation process is

(3.15) (M,)(t) = j_‘w#,,,(s) dA(s).

Note also that T;, Y, and n = n(m) [defined by (3.6)] are measurable with
respect to __ £ NZ.__ %(s). Moreover, the random variables v,,(s) defined in
(3.8) are measurable with respect to ¥_ ..

Following the arguments of the proof of Lemma 2 but replacing Wellner’s
(1978) and van Zuijlen’s (1977) results used in the proof by Alexander [(1985),
Theorem 2.1] (which we apply to the class of sets of the form {X > s, T < s, (or
T < s,),Y < 83 (or Y < s;)}; see also the proof of his Theorem 1.1), it can be
shown that analogous to Lemma 2, for every 1 > § > 0 and ¢ > 0,

(3.16) sup  (E#,(s)) > |E#,(s)/#,(s) -1 >0 as.

s: E#,(s)>m®
Like(\)avise, since v,(8) = Z"(Iir, < %, <5) + Ir <5< %), fOr every 1>8>0 and
e>0,

(3.17) sup  (Ev,(s))"* Ev,(s)/v,(s) —1| >0 as.

s: Ev,(s)=m?®
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By (3.6) and the law of large numbers,
(3.18) lim n/m = f°° (1 - F(s))(1 - G(s —)) dH(s) (>0) as.

Since »,(s) is right continuous and nondecreasing in s, »,(s) > cn® for all
s > o0, and v,(s) < cn® if s < g,. Moreover, o,, is measurable with respect to
9_ - Defining L, (s) = ZIL1 Ii7, < %, <5,8,-1) = Zie1 (T, < X, < v, n s)» it follows from
(3.9) that

(3.19) log(1 — EX(t)) = ), log{l1—AL,(s)/#,(s)}.

0,<s<t

Hence an argument similar to the proof of Lemma 3 can be used to show that for
every 0 < p < 1and ¢ > 0,

(3.20) sup |(1 = EX(t))/(1 — E,(t)) — 1| = o(m™*%*%) as,

t: E#,,(t)>mP

where

(8321) 1-F,(t) = exp{—f[o t]dA(s)} =(1-F(tVa,))/1 - F(a,)).
Define
1-Fx(s—)) 1 1
Um(t) = m'/[‘om,t](l - Fm(s)){( 1— Fm(s) ) #m(s) - E#m(s) } de(S)

for t > g,.

Since Ev,(s) < mH(s) and since »,(0,,) > cn® it follows from (3.17) and (3.18)
that with probability 1,

(3.22) H(o,) = 20m=®~* for all large m,

a

where 0 = c{/_’w(l _ F(s))(1 - G(s -)) dH(s)} .
Note also that
(3.23) E#,(s) =mH(s)(1 — F(s))(1 - G(s —-)).

Take a € (7y4, 7). Then H(a) > 0 and (1 — F(a))1 — G(a)) > 0. An argument
similar to the proof of Lemma 4 can be used to show that sup, _,_,|U.(¢)| =
o(n?) as. for every ¢ € (1 — 3a/2,1). Moreover, as in Lemma 4, we still have
SUpP, < ¢ <s, |Un(8)| = (m7) as. for every g € (1 — 3a/2,1) in the case F(1) <1,
where b,, is defined in Lemma 4(ii) and sup, ;. p-11 - m-a-oy |U,(#)| = o(m?)
a.s. for every q € (B/(B + 1),1) in the case F(7) = 1.
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Since
Ev,(s) 2 mH(s)(1 — F(a))(1 - G(a -))

for s < a and since »,(0,, — ) < ¢n® with ¢,, = 74 a.s., it follows from (3.17) and
(3.18) that with probability 1,

(324) (1 - F(a))(1 - G(a-))H(o,, —) < 20m=4=% for all large m,

where 6 is given in (3.22). By (33), o > [* dF/H > [, ,,dF/H >
(F(o,,) — F(1y4))/H(o,, — ) and therefore

(3.25) m(F(e,) — F(1y)) = O(mH(s,, —)) = O(m*) as.,
by (3.24). By (3.21), for ¢ > o,

Im(F(t) — Fy(£)) < m|{1 = F(o,)} " = {1~ F(r5)} |
= 0(m*) as.by (3.25),
while for ¢ < o,
m(EX () = Fy(0) = mFy(t) < m(F(o,) ~ F(1y))/(1 ~ F(ry))
= 0(m*) as.by (3.25).
Analogous to (2.21), we now have
Fr(t) - F(¢) 1 — FX(s —) dM,(s)
1-F(t) ‘/;om,t] 1-F,(s) #,(s)’

[cf. Gill (1980), Proposition A.4.1, pages 153-155]. The rest of the proof is similar
to that of Theorem 1. O

= 0,

By an argument similar to the proof of Lemma 5 and Corollary 1, together
with representations of unit balls of reproducing kernel Hilbert spaces analogous
to (1.30) and (1.31), we obtain from Theorem 2 the following functional laws of
the iterated logarithm for the modified product-limit estimator in the mixed
censorship—truncation model.

COROLLARY 4. Under the same assumptions as in Theorem 2, with probabil-
ity 1, the sequence {(m/2loglogm)*(F, — Fy)} is relatively compact in
D(7y, ) and its set of limit points is

K= {sb: ¥(w) = (1 = Fy(w)) [ (H(s)1 =~ G(s =) (1~ F(s))}
(326)  ¢(F(s)) dF(s) for 1y < u <, for some ¢ & Ly[F(my), F(r)]

with [M7¢2(0) d8 < 1}.
F(1y)
Define

(3.27) Un(r,s) = r(En(s) — Fy(s)), O0<r<l,s<r.
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Then with probability 1, the sequence {(m/2loglog m)"2U,,} is relatively com-
pact in D([0,1] X (g, 7)) and its set of limit points is

ki = (6w = =B [[ (a6l -))
x(1 = F(s))"'¢(p, F(s)) dp dF(s)

(3:28) for iy <u<rand 0 <r <1, forsome ¢ € Ly([0,1] X [F(ry), F(7)])

such that ff #*(p,0) dp db < 1}.
[O’ I]X[F(TH)’ F(‘l')]

4. Functional laws of the iterated logarithm for time-sequential prod-
uct-limit estimators. In this section we shall assume that X;, Y and T, are
nonnegative random variables and study time-sequential product-limit estima-
tors I:;, » at (times) ¢ > 0, of the data (X,(¢), 8,(t)), i =1,..., n, where

(4.1) X(t) =X, A YA (t- Ti)+1 8,(t) = Iix, <y ne-1)%)

A prototypical example of this kind of censored data is a long-term clinical trial
in which n patients enter the study serially and are followed until they fail or
withdraw from the study. The data are monitored sequentially and analyzed at
various calendar times ¢. Let T, denote the entry time and X, the time to failure
(measured with the entry time as the origin) of the ith subject and let Y, denote
the censoring time (also measured with the entry time as the origin) that the ith
subject is “lost” in follow-up. On the basis of these available data at calendar
time ¢, one can compute the Kaplan—Meier estimator
n

(4.2) Fr(s)=1- I1 {1-1/N, (X()}.

i:8;(2)=1and X,(t)<s

Here and in the sequel we define

n
Nn,t(s) =) I(J?,(t)zs)’
i=1
(4.3) " n
Ln, t(s) = Z I(X,(t)SS,s,(t)=1} = ZI(XissAlfiA(t—Ti)+}'
i=1 1

For the time-sequential Kaplan—Meier estimator F*(s) with s < s,
Jennison and Turnbull (1985) showed that for fixed #(1) < --- < #(k),
nV/2F*q — F,..., F*4 — F) converges weakly to a k-dimensional
Gaussian process on [0, s,], for every s, such that

(1= F(s0))(1 = G(so —))H(£(1) — s,) > 0.
Gu (1987) strengthened this result into weak convergence of the sequence of
two-parameter processes n'/*(F,*(s) — F(s)) to a two-parameter Gaussian pro-
cesson {(£,5): 0 <s <t (1— F(s))1 — G(s — )H(t — s) > ¢}, for every & > 0.
We now modify F*, by using the same ideas as in (1.21) together with a suitable
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discretization of ¢ and show that for the modified estimator, the weak conver-
gence theory can be further developed into a functional law of the iterated
logarithm in which the limit set is the unit ball of the reproducing kernel Hilbert
space associated with the limiting Gaussian process in the weak convergence
theory.

Let 7y = inf{u: H(u) > 0}, as in (3.2). At calendar time ¢, order the observa-
tions X(¢),..., X (t) as X'(l)(t) < .- < X'(n)(t) and note that there is no
information to estimate F(s)if s > t — 74 (> ¢t — T, for all i). Letting a > 7 so
that H(a — ) > 0, we shall estimate F(s) at calendar time ¢ (> a) only for
s < t — a. Throughout the sequel we shall also assume that H is continuous on
[a, o) and that

(4.4) E{(X1 A Yl)s} < oo for some § > 0.

To define the modified product-limit estimator F"n, o first partition the interval
[a, o) by the points a =17, <7, < -++ <m,, <o0=m,, ., such that as
n - o,

(4.5a) max (Ta, ;= Ta, j-1) = 0,

(4.5b) Ta,k, > © suchthat n°=0(r,,) forsomep>1/5,
(4.5¢) k,= O(n") forsomer > p. |
Given ¢ € [a, ), define

(4.6) ty="1,; if7, ;<t<mz ., (j=0,...,k,).
Let ¢ > 0 and ;< a < § and choose ¢, > 0 such that (1.20) holds. For ¢ > a and
0 < s < t — a define, in analogy with (1.21),

ﬁn,t(s) = antn(s A X(n—[cn"‘])(tn))’
(4.7) if B (X opeponep(ta)) < 1 = &,

= F*,(s), otherwise.

We now generalize Theorem 1 and its corollaries to the time-sequential
product-limit estimator F,, ,.

THEOREM 3. Suppose that X,, Y, and T, are nonnegative random variables
with respective distribution functions F (continuous), G ( possibly defective) and
H such that H(a — ) > 0 and H is continuous on [a, ©). Assume that (4.4)
holds; moreover, assume that (1.9) holds in the case F(7) <1 and that the
stronger condition (1.22) is satisfied in the case F(7) =1, where (< ) is
defined in (1.6). For t > a and 0 < s < t — a, define the product-limit estimator
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F, (s) by (4.7). Letting A(u) = —log(1 — F(u)), define
(4-8) fi,t(s) = I(X,sti/\(t—Ti)+/\s) - LSI(X,AY,-A(t—Ti)"'Zu} dA(“)’
Z(t,s)
== Fe) [ (H(E-w)(t = Gu =) - Fw)) ™ db, (w),

A,={(t,s):a<t<a+r,0<s<t—a(<rT)}
u{(¢,s):t>a+71,0<s<rt}.

(4.9)

(4.10)
(i) Suppose that F(t) = 1. Then for every q < 3 such that q >

max{B/(B + 1),1 — p8/(1 + B)}, where 0 < B < 1 is given in (1.22) and & > 0,
p > 1/8 are given in (4.4) and (4.5b),
sup

(4.11) (e, n(E, (s) - F(s)) - };Zi(t,,, s AFY(1 - n_(l_i])))‘

=0(n?%) a.s.
(ii) Suppose that F(7) < 1. Then for every q € (1 — 3a/2, 3),

sup |n(F, ,(s) = F(s)) — X Z(t,, 8 A X _rener(tn
(4.12) (¢t 9)en, (£, (s) = F(s)) - ( ntenp(tn))

=o(n? + O(n*) a.s.

Proor. For (t,s)€ 4, t,=r1,; for some j<k, and s<t—-a<
— a. Therefore

{(tn, s):(t,s) €A, s< Tk, — a}

Tn, j+1

(4.13) kn
c U {(Tn,jrs):ss(Tn,j+1A7n,kn)_a}'
Jj=0

By (4.3), N, (8) = ZT Iix, v, nt-1)* =) = 21 L(x,n ¥, 5 )dy1, < 1 5)- Hence for s <
(Tp, jo1 N Ton,) — @y

EN, , (8)=nH(r, ;—s)(1—-G(s-))(1 - F(s))
(4.14) 2n(l = G(s -))(1 = F(s)) inf H(a—(n,i1- 7))

- n(1 - G(s —))(1 - F(s))H(a -),

as n — o, by (4.5a). Since H(a — ) > 0 and &, = O(n") by (4.5c), we obtain by
a straightforward modification of the proof of Lemma 2 that for every 1 > A > 0
and ¢ > 0,

Sup su E' 1/2—5
( . ) 0_<j$kn se]n,,‘()\)( n, Th,j )

EN,. (s)/N,. (s)—1]

-0 as.,
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where
(4.16) I, ;(\) = {3 s< (s Tn, j+1 Tn,k,,) —-a
(1-G(s-))1—-F(s))H(a ) = %cn‘(l"‘)}.

Let M, (s)=L,, (s)-— fan . (u)dA(u) and define
»J 0 > 'n, )

Uy, () = nf (1 = F(u))

(4.17) - Ep (u-) . .
X{( 1 - F(u) )Nn,fn,,(u) ~ EN,, ()

Summing over j < &, [= O(n")] the exponential inequalities for the martingale
integrals similar to those used in the proofs of Lemmas 3 and 4, we obtain by an
argument similar to those proofs that for every 0 <A < 1 and ¢ > 0;

dM, (u).

sp - sup (1= F, . (s))/(1~F(s)) 1]
(4.18) 0<j<k, s€l, j(A)
=o(n 2% as.;

moreover, in the case F(7) < 1, for every ¢ € (1 — 3a/2,1),

(4.19a) sup  sup |U, ,(s)l =o(n?) as,
0<j<k, s€l, i(a)

while in the case F(7) = 1, for every g € (B/(8 + 1),1),

(4.19b)  sup { sup |Un,j(s)|} =o0(n?) as.

O0<j<k, ‘s<(n, j41AT 1) —a,1-F(s)2n~ "9

With probability 1, (n tene)(&n) = (¢ — 15) A 7, uniformly in ¢ > a (> 7).
If 7 < oo, then for all large n, 7 <7, , — a and therefore (t,5) € A, = s <
T, k, — @. Suppose that 7 = co. Then F(fr) = 1, in which case (1.22) is assumed
We now make use of the assumption (4.4) to show that as n —» o0,

(4.20) Tk, —@>F Y (1-n"0"9) ifg>1-p8/(1+pB).
To prove (4.20), note that by (1.22), as x — oo,
1- F(x) = 0({(1 - F(x))(1 - G(x -))}/***)

= 0(1::1/(1+/B){X1 AY, > x}) = O(x~%/0+R),

by (4.4). Since 1 — g < pd/(1 + B), it follows from (4.5b) and (4.21) that 1 —
F(, , — a)=o(n"""9)and therefore (4.20) holds. Hence, in the case F(r) = 1,
1 - F(s)>n" "9 = s <% forall large n. The rest of the proof is similar to
that of Theorem 1. O

(4.21)
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COROLLARY 5. With the same notation and assumptions as in Theorem 3,
let vvn(t’ S) = F;z,t(s) - F(S), Vn(r’ A S) = r(F[nr],t(s) - F(S)), fO" (t, S) € Aa
and 0 <r<1.

(i) With probability 1, the sequence {(n/2loglogn)/?W,} is relative-
ly compact in D(A,) and its set of limit points is the unit ball
K of the reproducing kernel Hilbert space of the covariance kernel

(4.22)  Ty((¢,5),(¢,5)) = (1 = F(s))(1 - F(s"))g(t v ¢',s A ),

where

gt s) = [[(H(t - w)(1 - 6(u =) - F@)} " dF(w).

(ii) With probability 1, the sequence {(n/2loglog n)/2V,} is relatively com-
pact in D([0,1] X A,) and its set of limits pomts is the unit ball K$ of the
reproducing kernel Hilbert space of the covariance kernel

Ly((7,t,8),(r', ¢, 8) = (r AT)TN((2, ), (¢, 8)),
where T') is defined in (4.22).

PROOF. We first establish functional laws of the iterated logarithm for X7 Z;.
By Lemma 2.9 of Gill (1983),

sup |Zi(t’ S)I
(¢, s)€l,

(4.23) < 2sup { sup

t>a \ 0<s<t—a,s<r7

[, =)= 6w =) 7 b ()

Define z; (s) = i, (1 — G(u — »~! d§; (u) and let £i(s) = Iix <vns) —
o Iix, nv,»uy @A(u), as in (1.23). Then by (4.8),

(424) z2ls)= [ (= G) ().

In view of the representation (4.24), we can use martingale inequalities as in the
proof of Lemma 5 to show that

E[ sup z?’t(s)|Ti] < 4'/:(1 - G(u-)) 'dF(u),

t=>0,0<s<r

(4.25)
E

v T,

sup (ﬁ:;z,., ,(s))2 T,

t>0,0<s<r

< 4n/:(1 — G(u-)) ' dF(u).
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Integration by parts gives that for s < ¢t — a,

[, (HE =0 = 6 =)} dt, (u)

[, = w) e ()

(4.26)

2, d)/H(t=9) = [ 2 (w)d(1/H(t - u))

[o,

<2 sup |z; (u)|l/H(t - s),
O<u<s

recalling that F is continuous. Combining (4.23), (4.25) and (4.26) gives

E{ sup Ziz(t,s)}

(t,s)EA,

< 64(H(a))? [0’(1 ~ G(u-)) " dF(u).
A similar argument also shows that

2 2
< E{ sup
(t,8)€4,

< 64n(H(a))? /0’(1 - G(u ) dF(u).

S Z(t,s)

1

S Z(t,s)

1

E { sup

(t,s)EA,

Hence, as in the proof of Lemma 5, we can apply Theorem 4.1 of Kuelbs (1977)
to conclude that with probability 1, {(2n loglog n)~'/2Y7Z,} is relatively com-
pact in D(A,) and its set of limit points is the unit ball K{ of the covariance
kernel EZ (t, s)Z (¥, s") = T\((¢, s),(t', 8')), noting in this connection that

S
<§i,n§i,t'>(s) = _/(;I{Xi/\Y,/\[(t/\ £)-T:1* > u} dA(u)

[cf. Gu (1987)]. Moreover, with probability 1, the sequence

[nr

{(2n loglog n)~'/* E] Z(t, 3)}

1

of functions on {0 <r <1, (¢,s) € A,} is relatively compact in D([0,1] X A,)
and its set of limit points is K.
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From the continuity of H (on [a, )) and of F, it then follows (as in the proof
of Corollary 1) that given & > 0, there exists § > 0 for which

sup
(t,8)EA,, t=>t'>(t—8)V(s+a)

YZ(t,s) — X Z(t,v— 8)|/(2nloglogn)"* < &
1

1

YZ(t,s) - YZ(t,s)|/(2nloglogn)* < ¢ as.,
1

1

sup
(t,s)EA,, T—8<s<r

as.if 7 < o0,

2n"Zi(t’s) - Xn‘.Zi(t, 1/8)|/(2nloglogn)? < ¢
1

1

sup
s>1/8,t>s+a

as.if 1 = oo.
Moreover, with probability 1, X'(n_[m..])(tn) —= (¢t — 1) A 7 uniformly in ¢t > a
(> 7). Hence the desired conclusion follows from Theorem 1 and the functional
laws of the iterated logarithm for Y7 Z,. O

Suppose that H is continuous everywhere [so H(0) = 0]. Let
{(W(x, ), (x, ¥) € [0,1]%}
be a Brownian sheet with covariance
E{W(x, y)W(x', ¥)} = (x Ax') (¥ A Y).
Then the Gaussian process

Y(t,s) = (1= F) [ [7 (H(t - u)(1 - F@)} "

X(1—-G(u-))""?dW(H(v), F(u)), (t,s)€a,,

has covariance kernel T, given by (4.22). Hence an argument similar to that used
in proving the representation (1.30) can be used to show that

Ko = {¢; W(ts) = (= F&) [*[7HHE- 0 - F))

X(1 = G(u —))"*¢(H(v), F(u)) dH(v) dF(u),
(t,s) € A, for some ¢ € L,([0,1] x [0, F(7)])

Withff ¢*(x, y) dxdy < 1},
[0,1]x[0, F(r)]

(4.27)

K5 = {490t = =) [ [ [0 )1 - F(w))
X(1 = G(u~))""*¢(p, H(v), F(u)) dp dH(v) dF(u),
0<r=<1,(¢s) €A, forsome ¢ € Ly([0,1]* x [0, F(r)])

with 2(p, x, y) dp dx d 51}.
fff[o,1]2x[o,p(f)]¢ (0, %, y)dpdxdy
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