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MOMENTS OF RANDOM VECTORS WHICH BELONG TO
SOME DOMAIN OF NORMAL ATTRACTION

By Marxk M. MEERSCH.AERT
Albion College

Let X be a random vector on R* whose distribution u belongs to the
domain of normal attraction of some operator stable law v. For a given v it
has been shown elsewhere that for certain ranges of « depending on v,
either E|( X, 0)|* is finite for every 6 # 0 or is infinite for every 6 # 0. In
this paper we show that the set of « for which E|(X, 8)|* exists depends,
in general, on both 6 and v, and we obtain a complete description of the
cases in which E|( X, 0)|* can be guaranteed either to exist or to diverge,
just on the basis of 6 and v.

1. Introduction. Let u,v denote probability distributions on R* and
suppose that v is full, i.e., it cannot be supported on any (¥ — 1) dimensional
affine subspace of R*. If B is a linear operator on R* we denote by ¢Z the
operator exp(B log ¢). We say that u belongs to the domain of normal attrac-
tion of v if for a sequence of independent random vectors {X,} with common
distribution u there exists a linear operator B and constants b, € R* such
that
(1.1) nB(X,+--+X,)-b,=Y,
where Y is a random vector with distribution » and = denotes convergence
in distribution. In this case Y (or v») is operator stable with exponent B. That
is to say, equation (1.1) holds with equality replacing weak convergence and

LML=V,

Suppose now that X belongs to the domain of normal attraction of Y. In
this paper we are concerned with the existence of absolute moments E[{ X, 6)|".
Let B be an exponent of Y and define m = min{Re(A)}, M = max{Re(A)},
where A ranges over the eigenvalues of B. Sharpe (1969) showed that m > 1.
The following result was obtained independently by Hudson, Veeh and Weiner
(1988) and Meerschaert (1986).

THEOREM A. For all nonzero 6 € R*, E|<(X, 0)|* is finite for all 0 < a <
1/M and, if m > %, then E|(X,0)|* = « forall @ > 1/m.

This leaves open the existence question for a between 1/m and 1/M. In
this paper we will settle the existence question via an extension of the
approach employed in Meerschaert (1986). We will define an index function
a*(9) based on the spectral properties of B such that the following holds:

THEOREM 1. Suppose that X belongs to the domain of normal attraction of
Y operator stable with exponent B. Define a* as in (2.5). Then for all 8 # 0 in
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R* we have:

(@) If a*(8) # 2, then E|( X, 0)|* is finite for 0 < a < a*(8) and infinite for
a > a*).
(b) If a*(6) = 2, then E|{X,0)|* < © for 0 < a < a*(6).

If a*(0) = 2 and « > 2, then E[(X, 6)|* will be finite for some X attracted
to Y and infinite for others. In connection with Theorem A, we have that 1/m
and 1/M are, respectively, the maximum and minimum values of a*. Since
every eigenvalue of an operator stable exponent has a real part equal to or
exceeding 3, we will always have 0 < a*(8) < 2.

2. Operator stable laws and exponents. Operator stable laws were
characterized by Sharpe (1969). In view of (1.1), an operator stable law v must
be infinitely divisible with Lévy representation (a, @, ¢). If we let v’ denote the
t-fold convolution product of v with itself and if B is an exponent of v, then
for all ¢ > 0,

(2.1) vt =tByx§(b,),

where tBv{dx} = v{t B dx} and 8(a) is the unit mass at a € R*. It follows that
“tQ(x) = Q(tB*x) and t¢ = tB.

The collection of linear operators {¢2: ¢ > 0} is simply a reparametrization of
a one-parameter subgroup of GL(R*). The behavior of orbits {tZx:¢ > 0} can be
obtained easily by reference to standard results from the theory of linear
differential equations in R*. The following characterization of ¢? has been so
adapted from Hirsch and Smale (1974).

There is a basis b, - b, for R* with respect to which the matrix repre-
senting B has a block diagonal form, each block corresponding to either a
single real eigenvalue a or a single complex conjugate pair a + ib. For a real
eigenvalue the corresponding block has a’s along the diagonal, 1’s along the
subdiagonal and zero entries elsewhere. For complex eigenvalues the same is
true if we consider B as a linear operator on a complex vector space and
associate complex numbers with 2 X 2 matrices in the usual way.

Now it is simple to compute ¢Z. Because of the block diagonal form of B we
obtain a direct sum decomposition of R* into B-invariant subspaces V; - - - V,.
Let V denote one of these subspaces. Without loss of generality we have
V = Span{b,; --- b,}. Using the coordinates associated with the basis b; - - - b,,
for x and y in V associated with a real eigenvalue a we have y = t®x where

i—-1

(2.2) y, =ty (logt)qxi_q/q!, i=1,...,n.
wy q=() .

For complex eigenvalues we associate V with a complex vector space z; = x; +
iy;, w; = u; + ;. In this case dim V must be even, so without loss of general-
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ity we can suppose that V = Span{b, --- b,,}. If w = Bz we again have
(2.3) w; =ty (logt)'z,_,/q!, j=1,...,n,
q=0

or in real coordinates,

i-1
u;=t*Y. (log t)q[xi_qcos(b logt) — y,_,sin(b log t)]/q!,
q=0
(2.4) i1
v, =t*Y (log t)q[yi_qcos(b log¢) + x,_,sin(b log t)]/q!.
q=0

We will also be interested in 2" where B* is the transpose of B, i.e.,
(x, Byy = (B*x,y) for all x,y € R*. If we form the dual basis f, - f,
((b;, f;y = 1if i =j and 0 otherwise), then the matrix of B* with respect to
the dual basis is just the transpose (interchange rows and columns) of the
matrix for B with respect to b, --- b,. If b, --- b, span V, then W, =
Span{f, :-- f,} is the dual space for V.. W, is B* invariant and R" =
W, @ --- & W,. The restriction of B* to W, has the same eigenvalue (or
complex conjugate pair) as the restriction of B to V,. Using the dual coordi-
nates (the ones associated with f; ‘- f,) we obtain the same formulas (2.2)
through (2.4) for 2" except that we sum from zero to n — i, where n = dimV
(real eigenvalue) or 2n = dim V (complex conjugate pair).

Let a; denote the real part of the eigenvalue associated with V., W;. For
x# 0 write x =x; + -+ +x, the unique direct sum decomposition with
respect to {V}} and x = xj* + --- +x the same with respect to {W}. Define

a(x) = min{1/a;: x; # 0},
(2.5)
a*(x) = min{1/a;:x}¥ # 0}.

Let U, denote the direct sum of all V; with a; = 3 and U, the direct sum of
the remaining V,. Sharpe (1969) showed that the Lévy measure ¢ of v is
concentrated on U, and cannot be supported on any proper subspace of U,.
Notice that x # 0 is in U] if and only if a(x) = 2.

Now form the dual spaces U* to U, as above. Sharpe also showed that the
quadratic form @ in the Lévy representation for v may be considered as an
extension to R* of a positive definite quadratic form on U *. Notice that x # 0
is in U* if and only if a*(x) = 2.

Now a consideration of the Lévy representation shows that the operator
stable law v may be written as a convolution product of a full normal law on
U, and a full operator stable law on U, having no normal component. Now let
m; denote the natural projection map onto U,. If we write the direct sum
representation x = x; + x, with respect to U,, U,, then 7(x) = x;.

Since 7; commutes with n ™2 for all n we have that 7, X belongs to the
domain of normal attraction of ,Y, which is nondegenerate normal on U,.
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Now for any 6 € Uj* we have (X,0) = (7, X,0). Thus the question of
existence of moments E|( X, 6)|* for 8 € U;* can be reduced to the case of a
normal limit.

3. Regular variation. A real-valued function R(?¢) defined for ¢ > A is
regularly varying if it is positive, Borel measurable and if for all A > 0,

i R(At)
(e R(2)
for some real constant a called the index of R. Our references on regular
variation are Feller (1971) and Seneta (1976).

In order to express the path behavior of #2, it will be convenient to use the
Euclidean norm |jx|| = (x? + -+ +x2)!/? where these are the coordinates
associated with the basis b, ‘- b, chosen in Section 2. Define R(¢) = ||tZx|),
x # 0. It is not hard to check, using (2.2) through (2.4), that R(#) varies
regularly with index 1/a(x). By a result in Seneta (1976), page 21, there exists
an asymptotic inverse function ¢, a regularly varying function with index a(x)
such that R(#(r)) ~t(R(r)) ~r as r > «. In fact we can take #(r) =
inf{¢: R(¢) > r}.

With regard to t2* = exp(B* log ¢) we will use the norm associated with the
dual basis. For x # 0, we have once again that R*(¢) = ||t 5"x|| varies regularly
with index 1/a*(x). The asymptotic inverse function ¢* varies regularly with
index a*(x) > 0 and so t*(r) > © as r — «,

Suppose now that u, v are as in the Introduction, i.e., u is in the domain of
normal attraction of v operator stable. In order to study the tail behavior of u
we will define f(x) = u(H,), where
(3.2) H, = {y € RF:|(x,y)| > 1}.

- We will also define g(x) = ¢(H,), where ¢ is the Lévy measure of v. Notice
that f(8/r) = Pr{|(X,8)| > r}.

Using the standard convergence criteria for triangular arrays of random
vectors we obtain from (1.1) that nu{n® dx} —» ¢{dx} in the sense of Lévy
measures. It follows easily that tu{t? dx} — ¢{dx} and so for all x # 0 for
which ¢(0H,) = 0 we have

(3.3) tlifolotf(t_B*x) =g(x).

A result due to Sharpe (1969) states that ¢ is a mixture of Lévy measures M
concentrated on a single orbit of ¢Z, with M{¢Bx,:¢ > r} = 1/r. From this it is
not hard to show that (3.3) holds for all nonzero x € R* and the convergence
is uniform on relatively compact subsets of R* — {0}. [This same construction
was used in Meerschaert (1986) in a more general context.]

Now, as above, let ¢* denote the asymptotic inverse of R*(¢) = ||¢5"x||. If we
define 6, = t*(r)2"(x/r), then {6,} is sequentially compact and, since |6, | =
R*é*(r))/r, every limit point is a unit vector in R%. If a*(x) < 2, then every
limit point lies in the set Uj*. On the other hand, if a*(x) = 2 (i.e,, if x € U*),
then 6, € U;* and so g(6,) = 0 for all » > 0.

Aa

(3.1)
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Consider the expression
(3.4) t*(r) f(x/r) = t*(r) f(¢*(r)""6,).

For any fixed £ > 0, in view of the uniform convergence in (3.3) we have that
[t*(r) f(x/r) — g(8,)] <e for all large r. If a*(x) =2 this means that
t*(r)f(x/r) — 0. Otherwise if a*(x) < 2, then the fact that ¢ is full on U,
means that g is bounded away from zero and infinity on compact sets in
U — {0} and we have that

(3.5) (e*(r) F(x/r)ir > ry)

is bounded away from zero and infinity. Thus we have tied the tail behavior of

u to the growth rate of a regularly varying function.
Suppose that a*(x) < 2. Since ¢* varies regularly with index a*(x), we have

for all 6 > 0 that

(3.6) ret@=e < px(p) < pat@+e

for r sufficiently large. It follows that for all ¢ > 0 there exists r, > 0 such
that for all r > r,

(3.7 : rr®me < f(x/r) < pret@te

We can go further. Letting a = 1/a*(x) we have that R*(¢) > ct%(log t)’ for
some ¢ > 0 and some j €{0,1,2,...,k — 1}. Since R*(¢) > (¢ — &)t* for ¢
large we must have ¢t*(r) < Kr'/® for r large. Thus we have for some m > 0
that for some r, > 0, for all r > r,,

(3.8) f(x/r) = mr=*®,

We also note that for any A, > 1 sufficiently large we can choose r, > 0 so that
for all r > r, we have

f(x/xor) < l
f(x/r)y — 2°

Specifically we can choose any A, for which A;**® < i(a/b), where a and b
are, respectively, the lower and upper bounds of the quantity in (3.5).

(3.9)

4. The proof of Theorem 1. Suppose that X belongs to the domain of
normal attraction of Y, an operator stable law with exponent B. The consider-
ation of moments E|(X,0)|* divides naturally into the two cases a*(6) = 2
(6 € Uy*) and a*(8) € (0, 2). We will consider each case separately.

Suppose 0 € U;*. We showed in Section 2 that (X, 6) is the marginal of a
random vector in the domain of normal attraction of a full normal law. Now a
result of Klosowksa (1980) states that ( X, 8) belongs to the domain of normal
attraction of the standard normal law on R!. It is well known that any such
law has a finite variance, i.e., E|( X, )| < . Then of course E|(X,0)|* < «
forall 0 < @ < 2. To see that the existence of E|( X, )|* for « > 2 depends on
X, consider a one-dimensional random variable X > 0 with Pr{X > r} = r=%.
Then EX“ is finite if and only if a < B.
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Suppose now that «*(9) < 2. We adapt the notation of Feller for the
truncated moments of (X, 6). Let

Ul(r,0) = [tF,{ds),
(4.1) °
Va(r,0) = [ tPF,{dt),

where Fy(¢) = Pr{|(X, 0)| < t}. Note that Vy(r,0) =f(6/r) =1 — F(r). An
integration by parts in (4.1) yields

(4.2) U(r) = —rVo(r) + [(at*=Vy(t) dt,
0

where for ease of notation we have suppressed 6. [This is a special case of
equation (9.17) in Feller 8.] For each a € (0, a*) we wish to show that each
term on the right-hand side of (4.2) is bounded. But this follows immediately
from the second inequality in (3.7).

If a > a*, we wish to show that
(4.3) E(X,0)|" = U (ry) + [ t*F{dt)

To

is infinite, i.e., the integral diverges. Select r, > 0 large enough to ensure that
both (3.8) and (3.9) hold. Subdivide the domain of integration into disjoint
subintervals o, = [ryA}, roA%*™1) and denote by I the integral over /. Since
t* is monotone we obtain

I, > (Nro) “[Vo(XNare) — Vo(A*irg)]
%Vo( )‘7)"0)(’\7)"0)“ = %m(’\rﬁro)_a*(’\rf)ro)a-

Obviously ¥ I, = « and the theorem is established.

1\

v

5. Remarks. Although the index function a* is defined in (2.5) in terms
of the (not necessarily unique) exponent B of v, it is clear from the statement
of Theorem 1 that «* is the same for every such exponent.

It may be though that the function Vy(r, 6) = f(6/r) is actually a regularly
varying function of r > 0 for all 6. In fact this is true, for example, if B has %
distinct eigenvalues. [In this case B is diagonalizable. See Meerschaert (1987).]
The following example will show that, in general, V, cannot be expected to
vary regularly.

We identify R? with the complex plane C. With this identification each
linear operator on C (i.e., multiplication by a complex constant) corresponds to
a linear operator on R? whose matrix representation with respect to the
standard basis is skew symmetric. Take B = 1 + i s6 that ¢Z = t'** = tR(In ¢)
where R(6) is a rotation in the plane through a counterclockwise angle 6. Let
¢.,be a Lévy measure concentrated on {¢tPe,:¢ > 0} with ¢{¢Be;:t > r}=r-1
Then the infinitely divisible distribution v with Lévy representation (0, 0, ¢) is
operator stable with exponent B. By the arguments in Section 3, in order to
show that V,, does not vary regularly, it will suffice to show that g(@) is not
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constant on ||| = 1. We compute that
(5.1) g(0) = [ ¢721{|¢ cos(log ¢ — 0)] > 1} d.
0

For 6 = e,, the indicator is positive on (1, ¢;), where ¢, is the smallest root of
t cos(logt) = 1, ¢ > 1. Therefore, since ¢, = 3.64, g(e;) > 0.7. But for 6 = e,
the indicator is zero on (0, ¢,), where ¢, is the smallest root of ¢ sin(log ¢) = 1,
¢t > 1. Since ¢, = 1.8, g(e,) < 0.6, which concludes the example.

In the construction of R*(¢) in Section 3 above we use a special Euclidean
norm which depends on the choice of exponent B. We could have used any
Euclidean norm, including the standard norm on R*, since any other set of
basis vectors yields coordinates which can be expressed as linear combinations
of our coordinates. Another norm which played a central role in Hudson, Jurek
and Veeh (1986) is defined by

1
(5.2) Iz (Il = /0 /S ( )ugthnt-lH(dg) dt,

where H denotes Haar measure on the symmetry group S(v) of the operator-
stable law v. It is possible to use this norm as well. The advantage is that
R, R* are monotone and continuous, so that we can take inverses instead of
using asymptotic inverses. The disadvantage is that it becomes more difficult
to establish the necessary growth conditions on R*.
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