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SOME EXTENSIONS OF THE LIL VIA
SELF-NORMALIZATIONS

By PHiLIP GRIFFIN! AND JAMES KUELBS?

Syracuse University and University of Wisconsin-Madison

We study some generalizations of the LIL when self-normalizations are
used. Two particular results proved are: (1) an extension of the Kol-
mogorov-Erdés test for partial sums of symmetric i.i.d. random variables
having finite second moments; this result eliminates distinctions required
when nonrandom normalizers are used and E(XZ2I(|X| > t)) is not
O((Lyt)™Y), and (2) an extension of a universal bounded LIL of
Marcinkiewicz to nonsymmetric random variables. An interesting corollary
of this work is a short new proof of the classical LIL avoiding truncation
methods.

1. Introduction. The aim of this paper is to provide some extensions of
the law of the iterated logarithm (LIL) for sums of independent random
variables. We will begin by considering the i.i.d. case. Thus let X, X;, X,,...
be a sequence of nondegenerate i.i.d. random variables and set S, =
X, + -+ +X,. The classical law of the iterated logarithm states that

(1.1) limsup————75 =1 iff var(X) =0® <o,

where Lx = max(1,log, x) and L,x = L(Lx). Observe that this is a two-sided
result since replacing X by —X immediately gives a liminf of —1 in (1.1).
The normalizer in (1.1) is intimately related to the normalizer in the central
limit theorem when var(X) < «. However, asymptotic normality holds more
generally than under finite variance, the necessary and sufficient condition
being
(1.2) 345, and vy, such that (S, —34,)y, ! — N(0,1)
if and only if
(1.3 x2P(I1X] > x)
3) aoe BE(XPI(X <x))
Thus it is reasonable to ask whether an analogous result, based on the related
central limit normalizers, holds for the LIL under the assumption (1.3). The

answer in general is no, because the large values of X; cannot be controlled by
these normalizers. There is, however, a generalization of (1.1) to (1.3) with
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THE LIL VIA SELF-NORMALIZATIONS 381

nice central limit normalizers if we allow self-normalization. For this consider
the sample variance

(1.4) 52 = i (X, - X)*/n,

where X = S, /n. By the strong law, if E(X?) < «, then ¢, > o with proba-
bility 1. Thus

S, — nE(X)
and
S, —nE(X)
(1.6) hmsup————— =1 as.

n—o (2 LG)1/2

It is known that (1.5) remains valid under (1.3), and in [8] we showed this is

also the case for (1.6). Thus without having to change the normalizer, both

(1.5) and (1.6) remain valid for all distributions in the domain of attraction of a

Gaussian law. The reason the normalizer in (1.6) works when classical normal-

izers fail is that large values of X, play no role in (1.6) since they appear in

both numerator and denominator which effectively negates their influence.
The actual result proved in [8] uses the normalizer

(1.7) (2V2Lyn)"?,

where V;2 = X? + - -+ +X2. This is technically easier to deal with than &2 and
if, as we assume from now on, E(X) = 0 when E(X?) < «, then no matter
what the distribution of X,
V2/(62n) > 1 as.

‘Thus (1.7) is equivalent to the normalizer in (1.6). In what follows below, we
will also use the normalizer (2V,2L,V,2)!/2, which is easily seen to be equivalent
to (1.7) under the conditions imposed in [8].

The use of self-normalization in the LIL is not new, it goes back to
Marcinkiewicz who observed that for any symmetric distribution

S,
1.8 limsup——— =5 <1 a.s.

(18) ne (2VELV2)

For this result the random variables need not be identically distributed, just
independent and V,2 - « w.p.l. Observe that this result and the strong law
gives the upper bound in (1.1) for i.i.d. variables provided X is symmetric.
Further, the proof of (1.8) is much easier than the classical one which involves
truncation and Kolmogorov’s exponential bounds. Section 2 contains a sketch
of this proof together with a refinement of (1.8) which we present as

THEOREM 1. Let X, X,,... be independent, symmetric random variables
with V2 —» o w.p.1. If ¢ is nondecreasing and positive eventually and J($) <
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where

(1.9) J@#) = T ¢(nn) e 2,
n=1

then

(1.10) P(S,>V,6(V2?)i.0.)=0.

REMARK 1. When (1.10) holds, ¢ is called an upper function relative to V,
and when it fails ¢ is called a lower function.

REMARK 2. Suppose V2 < n!*” eventually with probability 1 for some
v > 0, and the conditions of Theorem 1 hold. Then by the argument given in
Step 1 of the proof of Theorem 2, we have J(¢) < » implying J(f) < », where
Y(t) = ¢(t/A*7). Hence by Theorem 1 we have

P(S, > V,¢(V?)io.) =0.

Now ¢ eventually nondecreasing implies for all n sufficiently large that
$(V2) < 9(n'*?) = ¢(n),

and hence
P(S,>V,¢(n)io.)=0.

Thus when P(V? < n'*” eventually) = 1 for some y > 0, we can replace
¢(V2) by ¢(n) in (1.10). Hence it is easy to see that this more traditional form
of the Kolmogorov-Erdés test for upper functions applies when X, X, X,,...

are i.i.d. and in the Feller class as in [8].

Our next result covers both upper and lower functions for the i.i.d. situation
when self-normalizations are employed, and X is assumed symmetric. The
theorem we prove generalizes some work of Feller on the Kolmogorov-Erdés
test (see [1] and [6] for recent background). It differs from the classical results
in that when E(X?) < , but nothing else is assumed, one need not use
normalizers which differ from the natural one used when higher moments are
given. More precisely, for nonrandom normalizers, ¢ nondecreasing and posi-
tive eventually and J(¢) as in (1.9), the following results are known (see [1]

and [6]).

Resurt A. If X, X,, X,,... areiid.,, E(X) =0, E(X?) =1 and
limsup E(X2I(1X] > ¢)) Lyt < o,

t— oo
then
P(S,>Vn¢(n)io)=0 (=1)
according as ‘

J(¢) <m (=)
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If just E(X?) =1 and E(X) = 0 is assumed, then this result is false. In this
case Vn needs to be replaced by the less natural B, as given below.

Resurr B. If X, X,, X,,... areiid., E(X) =0, E(X?) =1 and
BZ = Y E(X*1(X <j2/(L3j)?)),
j=1

then
P(S,>B,#(n)io)=0 (=1)
according as

J($) <o (=)

What we show, in case X is symmetric, is that Results A and B merge into one
result if the random normalizer V, is used. This makes the situation particu-
larly pleasing when contrasted with the need for replacing vn by B, in the
above. We prove

THEOREM 2. Let X, X, X,,... be i.i.d. symmetric with 0 < E(X?) < . If
& is eventually nondecreasing and positive, then

(1.11) P(S,>V,¢(n)i.n)=0 (=1)
according as
(1.12) J(¢) <o (=),

where J(¢) is as in (1.9).

The proof of Theorem 2 (given in Section 3) involves the general results in
[7] used in a way suggested by [1] and the proof of Lemma 4.2 in [4]. Of course,
a number of Feller’s papers dealt with the extension of the Kolmogorov-Erdos
test to various settings, and interesting references are contained in [1], [6]
and [7]. )

In Section 4 we turn to the problem of determining what happens when the
symmetry assumption in (1.8) is dropped. The only results that we are aware
of are those in [8] which deal with the i.i.d. case. If just independence is
assumed then it seems to be a difficult problem to find anything positive to say.
The natural first step is to try to prove (1.8) under the assumption E(X,) = 0
for all k. This, however, is false as the following example of M. Weiss [12]
shows. Let X, be independent with

1 ‘ k%2 -1
P(Xk=—(k2—1))=? and P(X,=1)= 2

Phen by Borel-Cantelli,
P(X, = 1eventually) = 1.
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Hence S,/n — 1 and V,2/n — 1, from which it is immediate that (1.8) fails.
Thus to obtain a result like (1.8) under these conditions we must change the
normalizer. The following curious mixture of classical and self-normalizers
appeared previously in [2]:

(1.13) w2 = f (X21(X, > 0) + E(X2I(X, < 0))).
k=1

Using this we are able to prove

THEOREM 3. Assume X,, are independent, E(X,) = 0, E(X2I(X,, < 0)) <
for all k and W2 — o, where W2 is given by (1.13). Then

S
(1.14) lim sup iz <1

_— a.s.
now  (2W2L,W?2)

Our proof of (1.14) also does not require truncation or the Kolmogorov
exponential bounds. Further, observe that unlike the results discussed above,
this is a one-sided LIL result. However, in the finite variance case it is
two-sided and gives the upper bound in (1.1). That is, if X, X;, X,,... areii.d.
with E(X) = 0and 0 < E(X?2) = 02 < », then W,2 ~ no? by the strong law of
large numbers, and (1.14) implies

CoroLrLarY 1. IfX, X,, X,,... arei.i.d. with E(X) =0 and 0 < E(X?) =
02 < «, then

S
(1.15) limsup————— <1
now  (202nLyn)"?

The shortest proof of equality in (1.15) is based on a blocking argument and
the central limit theorem. This approach is known to a number of workers in
the area, but does not seem to be anywhere in the literature in its simplest
form, so we give it in Section 5. A more refined, though less elementary
version of this argument, is in [3]. For those just interested in the classical LIL
the paper is written so that Sections 4 and 5 are self-contained. Here the
reader will find a proof of (1.1) when o2 < . Our hope is that these results
will convince the reader that the classical LIL may be presented in a highly

efficient way.

2. Proof of (1.8) and Theorem 1. To establish Marcinkiewicz’s result
(1.8) we assume without loss of generality that X, X,,... are defined on a
probability space (), &, P) which also supports a sequence of independent
Rademacher random variables (¢;: j > 1} independent of the initial sequence

{X;: j = 1}. If ¢ is the minimal (;-ﬁeld generated by {X: j > 1}, then to prove
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(1.8) it suffices to show
yr_.e;X;
P limsup—;J;/2 <las.|Z]| =1.
n (2Vn2L2Vn2)

But by independence this reduces to showing

(2.1) li f fidi 1
. im sup —_— <
n o ic1(242L,A2)"*

for all sequences {a;: i > 1}, where A2 = =7 ,a? > .

LEmMA 2.1. Foralln > 1 and all a > 0,
(2.2) P(T, > aA,) < exp{—a?/2},
where T, = L7_,¢;a;.

Proor. For any u > 0,
P(T, > aA,) < exp{—uaA,}E(exp(uT,))

= exp{—uaA,} []cosh(ua,;)
i1

<exp{—uaA,} []exp(u%?/2)
i-1

= exp{—uaA, + u?A? /2}.

Set u = aA;! to obtain (2.2).
) The proof of (2.1) is now a standard Borel-Cantelli argument. Fix g > 1
and let

n, =sup{n: A, < B*}.
Then n, ~ », since A2 — «. Next we define

E,= {Tn > 32(2A1L2Ai)1/2 for some n € (nk’nk“]}'

Then
P(E,) < P(Tn > [32(2,3sz232’“)1/2 for some n € (n,, nk+1])
< 2P(Tnk+1 > B2(ZBZkL2B2k)1/2) (by Lévy’s inequality)
<2P(T,,., > B(242, L.6*)"").
Thus by (2.2),

Y. P(E,) <2Y exp{—B2L,B?*} < .
k %
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Since B > 1 was arbitrary, this proves (2.1) and the proof of (1.8) is complete.
(]

REMARK. By again conditioning on <, it follows from Kolmogorov’s LIL
that

S
(2.3) limsup —————— =1 aus.
n o (2V2L,V2)"?
if V2 > » a.s. and
1/2

1X,1(LyV;2)
Vv

n

The example of Marcinkiewicz and Zygmund [10] shows that if (2.4) is relaxed,
then (2.3) may fail.

To prove Theorem 1 we assume without loss of generality that ¢ is
nondecreasing and positive, and also that { X;} is defined on a probability space
(Q, &, P) which supports an independent sequence of i.i.d. Rademacher ran-
dom variables {¢;: j > 1}. It is also possible to show by a standard argument
that if J(¢) < = implies (1.11) when ¢ .~ © and

(2.5) Lyn < ¢%(n) < 8L,n,

then Theorem 1 can be proved without the restriction (2.5). Hence (2.5) is
assumed throughout the remainder of the section.
If J(¢) < », we define

(2.4) -0 a.s.

t, = exp{k/Lk},
0,; =sup{n € Z*: V2 < t,}.
Then ¢, » « implies o, # © with probability 1. Further, if
F, ={8,, >V, ¢(V2) for some m € (0}, 0;.,]},

then (1.10) holds if P(F} i.0.) =0
Letting 7, = o3, + 1, I(k) = (0, 0, ,] and denoting the sigma field gener-
ated by {X;: j > 1} by & we have

S
P(F,) =P — 7 _>1
) (mz%a)vavzﬁ)

- '[;) (mseull()k) le V. ¢(V2)

< P( sup ) £, X;> V,qu(V,i)If) dP
{0, <0341}

mel(k) j=1
< 2/
{

0 <041}

> llf) dP

B3

2.6 Op+1
8 P( Y oeX; > Vf,,¢(";2,,)l<%) dP

Jj=1



THE LIL VIA SELF-NORMALIZATIONS 387

(by Lévy’s inequality and the independence of {¢,: j > 1} and { X,: j > 1})

Ok +1

=2 P Z / Tk + 1>V"’1¢¢(V2)/ 0’k+1|j dp

lop<opsdd |\ j=1

< 2A (V.8(V2)/V,,.) "exp(—1V22(V2)/V2, ) dP

{0 <0y 41}

where A is an absolute constant uniform in % provided VTk¢(V2) /V._  >3by

applying Corollary 2 of [5]. But on the set {0}, < 0}, ,}, we have
VT,¢¢(V2)/ opar = (tk/tk+1)1/2¢(tk) >3
for all % sufficiently large, so (2.6) implies for % large that
-1
(2.7)  P(F) <2A((4/ti) *6(84)) exp{—5tx0%(20) /tia}-

Now t,/t,,, = et/LEk—(k+D/Lk+1) o4 for large k (since e * > 1 — 3x for x
small)

Tk+1

¢ 3( (k+1 k 2
k 21——{( ) }21—

thot L(k+1) Lk Lk’
Thus
(2.8) Y P(F,) <
k
if

_ 1 2
L (a(0) " espf - 521 - )| <=
Now ¢2(t,)/Lk is bounded under (2.5) as & — » and hence we need only show
_ 1
(29) L (#(t) "exp{ = 57(1) ) <=
k
Now J(¢) < « implies

o> Y

n=1

d>( n) - #%m)/2

- $(1)
Y Y ——e (n)/

k=1ne(t,_i,t)1]

2 Z _¢2(t")/2(t —th-1))

and since
ty =ty ~ ty/Lk = t,/$%(t}),

the above implies (2.9) (we are using the notation a, = b, to mean a,b;*
bounded above and below by strictly positive constants for large %). Thus (2.8)



388 P. GRIFFIN AND J. KUELBS

holds and P(F, i.0.) = 0 as required. Thus J(¢) < » implies (1.10) and the
theorem is proved.

3. Proof of Theorem 2. We assume without loss of generality that ¢(n)
is nondecreasing and positive and that {X;: j > 1} is defined on a probability
space (Q, &, P) which also supports an independent sequence of i.i.d.

Rademacher random variables {¢;: j > 1}. As before it is a standard argument

to show that if Theorem 2 holds for ¢(n) nondecreasing, positive and such
that

(3.1) Lyn < ¢%(n) <38L,n
for large n, then Theorem 2 holds without the restriction (3.1). Hence we will
assume that (3.1) holds.

STEP 1. Proof that J(¢) < « implies the probability in (1.11) is zero.
Extend ¢ to be continuous on [0, ©) by setting ¢(0) = ¢(1) and then linearly
interpolating between the integers. Since J(¢) < ® iff [(H(2)/t)e™¢" /2 dt <
o, a simple change of variables yields that

J(P) <o iff J() < o,
where
u(t) = d(¢/20%), 0<t<oo.
Hence J(¢) < « implies J(¢) < «, and by Theorem 1,
P(S,>V,y(V?)io.) =0.
By the strong law of large numbers V,> ~ ¢®n, and thus ¢ eventually nonde-
creasing implies ¥(V,2) < ¢(20%n), so
“ P(S, > V,4(20%n)io0.) = 0.
\ Now #(202n) = ¢(n) and hence J(¢) < » implies the probability in (1.11) is

zero.
Now we turn to the proof that J(¢) =  implies

P(S, > V,é(n)io0.) = 1.

STEP 2. Setting the problem up. Write
S,=T,+U,, n>1,

where

T, - ¥ X,I(X, <j7?),
j=1

n

U,= ¥ XI(X,| >j'?).
it

Now P(IXjI > j1/2 i.0.) = 0, by Borel-Cantelli since E(X?) < »; thus U, =

O(1). Further, by the strong law of large numbers, lim , _,,,V.2/n = E(X?), and
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hence
|U,| C

< 7N b
V. #(n)
eventually for every C > 0. Thus for each C > 0,

C
(3.2) {S,>V,¢(n)i.o.} 2 {Tn > Vn(¢(n) + +(7) ) i.o.}.

Next let B2 = r XJ-ZI(IXJI <j'/?); then as above E(X?2) < « implies
VZ-B2=0(1).
Hence for any C > 0,
(8.3) {T,>V,(¢(n) +C/¢p(n))io.} 2{T,> B, (d(n) +2C/¢$(n))i.o.}.
To see this we only need show
(V. = B,)(¢(n) + C/é(n)) < CB,/¢(n)

for large n. Since V2 ~ nE(X?) and V, — B, = O(1), this follows from the

bounds on ¢(n) in (3.1).
Combining (3.2) and (3.3) we have J(¢) = », implying

(3.4) P(S,>V,¢(n)io.) =1,
provided we show J(¢) =  implies
(8.5) P(T,> B,(¢(n) +d/¢d(n))io.) =1

for arbitrary d > 0.

STEP 3. Proof that J(¢) = » implies (8.5) holds. Letting & denote the
» minimal o-field generated by {X > 1}, we have (3.5) if

n

(3.6) P| Y Y;>B,(¢(n) +d/¢(n))iolg| =1 as,

J=1
where
Y, =&, X,1(X;l <j%), Jj=1.

To prove (3.6), we apply a result of Feller [7] to the sequence {Y}: j > 1}
conditionally, i.e., for X;, X,, ... fixed. That is, for X;, X,,... fixed, {Y;: j > 1}
then consists of independent symmetric random variables with respect to
P(-|#) such that

E((Y,+ -+ +Y,)*|#) = B2,
Using Feller’s notation we define '
a,=¢(n) and B,=1/¢(n)
with
a,=B,4(n) and b,=B,/d(n).
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Then {a,} increases and Condition A of Feller ([7], page 403) is easily satisfied.
Condition B of Feller also holds since both B, and ¢(n) are nondecreasing.
We omit the details as verification is elementary in this setting.

Hence Feller’s assumptions are satisfied (conditionally) and Theorem 1(b) of
[7] applies.

Now (3.6) holds if

X

3.7 B 1 d 4d io.|lZ]| =1
( . ) Z S ¢(n)( + 4)2( ) m) i.o.| =
and by Theorem 1(b) of [7], (3.7) follows if

( ¥ Y, - an)b,jl = (2d,3d)|f) =
j=1

38 ¥ min(l, M)P
n=1 bn

with probability 1.
Now

(2 Y, - an)b,jl e (2d,3d)
=1

j=
2d 3d

#*(n)’ W)’

and by applying the Berry-Esseen result in Petrov ([11], page 132), the

divergence of (3.8) follows if

s +1 = Yn 3d
Y mln( Gnt170n b, a )(Cb((ﬁ(n) + ¢(n))

2d
( Bn) + s ))) ,

where ® is the distribution function of a standard Gaussian random variable
and

iff Zn: Y.€B ¢(n)(1+

(3.9)

(3.10) ¥ min(l, 3’31—:—91) > E(YPIZ)(B,(1 + ¢(n))) " <o
j=1

n=1 bn

with probability 1. Since B, = Vn and ¢*(n) = Lyn as n — w, it suffices to
show (3.9) and :

b

n

= a —-a id
(8.11) Y min(l, L“—b) Y E(YP1#)(nLon) "2 < o,
) n=1 Jj=1

with probability 1.
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Now
d . Qpi1 — @y Z 3 -38/2
Y min|1, — Yy E(|Y}| L%)(ann)
n=1 n Jj=1
2 (@, —0a,) & 3 12 -3/2
s ¥ " IXPI(X,) <) (nLyn)
n=1 n Jj=1
o 2k+l (an _ an) 2k+l
ED VD —*Z— IX,°I(1X; <j'2)(nLyn) %2
k=0 p=2ky1 n Jj=1

By (3.1), 2 = n(L,n)~! and a2 = nL,n; hence (3.11) converges if
n 2 n 2

o gk+l

(3.12) Y T IXPI(X,) <j1/2)273%/2(L,2%)
k=1 j=1

converges with probability 1. The series (3.12) converges with probability 1 if it
has finite expectation and taking expectations

w 9k+1
E Z E |Xj|3I(|Xj| Sj1/2)2—31«/2(1;22k)—1/2

(3.13) \k=tJ=1

< ¥ 2*E(XPI(1X] < 2(k+1)/2))2—3k/2(L22k)-1/2 <o,
k=1

where the last inequality follows from an argument in Bai ([1], page 390).

Hence (3.11) holds. ‘
Thus it suffices to prove (3.9) when J(¢) = © and ¢(n) » . Now with

- probability 1, eventually for all n,
(@ns1— an) Brzz+1¢2(n +1) - Br2¢¢2(n)
b - bn(an+1 + an)
1 (B},19%(n + 1) - B2¢*(n))
> —
4 (nE(X?))
1 (B?,, - B2)$*(n)
> —
4 (nE(X?))
1 X2 I(IX,,4) < (n+1)%)¢%(n)
%1 n E(X?)" ‘

n

[since ¢(n) ~]

Hence by (3.1), for each C > 0 and all » sufficiently large,
’ an+1 - an) > 1 X3+1 I(IXn+1| =< C)¢2(n)

b 4 E(X?)

n

min(l,
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Further, given any M > 0, there exists a constant ¢ > 0 such thatif 0 <a < b
and b2 — a? < M, then

d(b) — ®(a) = ce"*/2(b2 — a2) /(2bV27).
Hence the series in (3.9) diverges with probability 1 if for some C > 0,

2d + 5d”
#(n)

hd 2

n+1 ( ) 2 ) )

I(X,,.,<C o= ($%n)/2(A+2d /$%(n)
AR )2¢( )

diverges with probability 1 for each d > 0.
Now the last series diverges with probability 1 for d > 0 and ¢(n) » « if

(3.14) i X2 10X, < C)ﬁl Hmy/2
n=1

diverges with probability 1. If (3.14) converges with positive probability, it
converges with probability 1 (recall the X;’s are independent), and by
Kolmogorov’s three series theorem,

(8.15) f (X21(|X|_C))¢( n) ~¢(n)/2

must also converge for each C > 0. However, by choosing C such that
E(X?I(X| < C)) > 0, the series (3.15) diverges because J(¢) = ©. Thus the
series in (3.9) diverges and Step 3 is proved.

4. Proof of Theorem 3. Throughout this section we assume X, are
independent, EX,, = 0, E(X?2I(X, < 0)) < = for all k£, and W,2 - » a.s. where
W2 is as in (1.13). For y € R, let y*=yI(y > 0) and y = (—y)*. The follow-
ing two lemmas are proved in a more general setting in [2]. Since the proofs
are so much simpler in our situation they are given below.

LemMma 4.1. For any 6 > 0,
(4.1) M; = exp{6S, — 0°W2/2}, n=>1,
is a supermartingale.

Proor. The key observation is that for all y,

exply — 3(y)°} < 1+y+ 3(y7)"
Thus for all &, ‘
E(exp{0X, — 02(X;)"/2}) < 1 + (62/2) E((X;)?)
< exp{(02/2)E((X;)2)}.
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Hence by independence, M is integrable, and letting %, = o{X;: 1 <i < n},
E(M!,,|%,) = MIE(exp{0X, ., — 6*((X}.))" + E((X;.1)%)/2})
<M¢,
so the lemma is proved. O

LemMma 4.2. If o is a positive integer valued random variable possibly
taking the value ©» and x > 0, y > 0, then

1 2
(42) P(Sa.>x,Wa<y,0'<oo)Sexp{—g(f) }

Proor. For any 6 > 0,
P(S,>x,W,<y,o <o) <P(M? > exp{6x — 6%y%/2}, 0 < ®)
< P(supM" > exp{6x — 02y2/2})
n
< E(M{)exp{6%y?/2 — 6x},

by Doob’s inequality. Since E(M{) < 1, the result is established by setting
0=xy 20O

Proor or THEOREM 3. Fix 8 > 1 and define
o, = sup{n: W, < p*},
E, = {Sn > B2(2W2L,W;2)"? for some n € (o, 0'k+1]>-
Since g* < W, < g**lif g, <n <0y, ,
P(E,) < P(S, > B*(2B*L,p*)""
Now let

and W, < B**! for some n)

1/2

o= inf{n: S, > B%(2B%*L,B%*)"" and W, < Bkﬂ}‘

Then
P(E,) < P(o0 <)
— P(SU > 32(232kL232k)
< exp{—p%L,B%},

by (4.2). Hence T, P(E,) < o, and (1.14) follows by Borel-Cantelli since 8 > 1
was arbitrary. O

1/2
W, < Bt 0 < o)

5. Proof of equality in (1.15). We assume without loss of generality
that EX = 0 and E(X2) = 1. To prove equality in (1.15) we fix « € (0, 1) and
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choose n > 0 sufficiently large that
(5.1) P(G>n) >e /2%

where G is N(0,1).

This is possible since P(G > 1) ~ e "/2/(27rn2) /2 as n > o and 0 < a <
1. Now let @ = n?/(2a?) and define b, = jlan/L,n] for j = 0,..., j,, where
Jn =[Lyn/al and [-] is the greatest integer function. Then ‘

{S, > a(2nLyn)"?} 2 {S,,J_ - S, , > a(2nLyn)?a(Lyn) 7Y,
J=1dns 8y =8y > 0}.
By the central limit theorem,
inf P(S, >0) z¢ >0
and
P(Sian z,nf(an/Lyn) "% > a(20) %) = (1 - £) P(G > 1),

for any ¢ > 0 provided n is sufficiently large (depending on &). Now choose
£ > 0 small enough that 6 = @ — a1 log(1 — ¢) satisfies 8 < 1. Then by inde-
pendence of increments and (5.1) for large n,

P(S, > a(2nLyn)"?) 2 (1 — &) P(G > n)) “*"/*
> cexp{—Lyn(a —a 'log(l - ¢))}
= cexp{—6Lyn}.
Now let n, = k*. Then Nge1/n, = @ andif B < a, for large &,
P(S,,., = Sn, > B2y 1Lony 1))
Z P(Sn“,—nk > a(2(ngyg —ny)Loy(ngyy - nk))1/2)
> exp{ —6Ly(n, 1 — ny)}-

Since § < 1, this gives a divergent series, and hence

S
lim sup
koo (2n4,1Lang.q)

Ng+1 ny

i3 > B.

But

IS, |
lim sup Rk 75 =0
koo (214, 1Lon,. )

by the upper bound result in (1.15) (applied to X and —X)when n, ,/n, — .
Since B < a < 1 are arbitrary, this completes the proof of equality in (1.15).

Xcknowledgments. It is a pleasure to thank the referee for his sugges-
tion regarding Step 1 of the proof of Theorem 2. Our original proof of this
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result applied Theorem 1(a) of [7], and was much more lengthy. A similar
simplification was also suggested to us by Uwe Einmahl, and is applied in
Remark 2 following the statement of Theorem 1.
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