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TANAKA FORMULAE AND RENORMALIZATION FOR
TRIPLE INTERSECTIONS OF BROWNIAN MOTION IN THE
PLANE

By Jay Rosen! AND Marc YOr?

College of Staten Island, CUNY, and Université Pierre et Marie Curié, Paris

We develop explicit stochastic integral representations for the renormal-
ized triple intersection local time of planar Brownian motion. Our represen-
tations involve a new type of double stochastic integral, the bilateral
stochastic integral, which is developed in detail.

1. Introduction. It is well known that Brownian motion W, in the plane
has (many) triple intersections. In an effort to study the set

(11) LOé{(r’s’t)lW‘:W;:th}’

we are led naturally to try to give meaning to the formal expression
(1.2) [[F[a(m—m)a(m—m) drdsdt

as a measure on L,. Here 6(-) signifies the Dirac delta ““function.”
A fruitful way to approach (1.2) is via the occupation density of the mapping

(r,s,t) _)(M_VVNVVt_VVS)‘

More precisely, it can be shown that for any bounded Borel set I' ¢ R% =
{(r,s, £)|0 < r <s <t} there exists a measurable function a(x,y,I') such that

(13) [ [ [r(W, =W, W, = W,)drdsdt = [ [ f(x,9)a(x,y,T) d*d’

for all bounded Borel functions f: R* — R [Rosen (1988)]. If we formally take
f(x,y) = 8(x)8(y), we recover (1.2) expressed as 8(0,0,T). For this formal
substitution to make any sense however, we would need to have a(x,y,T)
continuous at x = y = 0. This is not always the case: For general I'’s, this is
only true for a “renormalization” of (1.2), which is the main topic of this
paper.

Let us first recall a few facts from Rosen (1988). For x,y # 0, we can find a
version of a(x,y, - ) which is a measure supported on

(14) Loy = {(ro s, DIW, = W, =2, W, ~W, =3).
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TRIPLE INTERSECTIONS OF BROWNIAN MOTION 143

For this reason, we refer to a(x, y,I') as an intersection local time. Moreover,

(x,9) = a(x,5;-), (%) € (R? - {0})’,

can be chosen to be weakly continuous. This will also hold for x = 0 and y = 0
provided the measures a(x,y; ) are restricted to regions of R% which lie
away from the diagonals.

Let T, ={0 <r<s<t<T}cR%. Then a(x,y, ;) diverges as x or y —
0. The purpose of this paper is to study the asymptotics of a(x,y,I;) as
x,y = 0. We will find that after subtracting off certain explicit ‘‘infinite
parts,” the remainder, y(x,y,T), called the renormalized intersection local
time, can be expressed in terms of stochastic integrals. We will refer to such an
expression as a Tanaka formula. Our Tanaka formulae lead naturally to a
proof of the joint continuity of y(x, y, T'). This continuity has been established
in Rosen (1988). The novelty of this paper lies in the explicit representation for
v(x,y, T)—our Tanaka formulae.

Let a(x,y,T) = a(x,y,I';), write p,(x) for the density of W, and

(15) U(2) = [(p(x)ds, U=,

It is known that for x + 0,

T ¢t
a(x,T) = lim (W, — W, —x)dsdt
(x,7) = lim [ [ p(W, )
exists and that for all x € R?,
(1.6)  a(x,T) = lim([TftpE(Wt—Ws—x) dsdt — TU(x)
e=>0\70 “0

exists and admits a jointly continuous version in (x, T'). a(x, T) [resp. d&(x, T)]
is the intersection local time (resp. the renormalized intersection local time)
for double intersections; see Rosen (1986a), Yor (1986a), Le Gall (1985) and

Dynkin (1988). (These properties follow easily from the techniques of the
present paper.)

THEOREM 1.
Y(x,y,T) éa(x,y,T) - TU(x)U(y) - U(x)&(y’T)
- U(y)a(x,T)

has a jointly continuous extension to all x,y,T.

(1.7)

An easy, but interesting, variant of Theorem 1 'is obtained as follows:
Remark that V(x) = U(x) — (1/7)log(1/|x|), x # 0, can be extended by conti-
nuity to all of R2. Therefore, from the discussion preceding Theorem 1,

T 1
a(x,T) =a(x,T) — ;loglx—l, x#0,
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also admits a jointly continuous extension in (x,7T). We now deduce from
Theorem 1 the following:

COROLLARY.

T 1 1
#(x,5,T) = a(x,5,T) - plog(m)k’g(ly_l)
(1.8)

—l(logi)a'(y,T) - i(log—l—)d(x,T)
7\l T\l

has a jointly continuous extension to all (x,y,T).

Theorem 1 is derived via our Tanaka formulae. In fact, we develop two
distinct versions. One in Section 3 follows Rosen (1986a), while the other in
Section 4 follows Yor (1986b). Either can be used to prove the joint continuity
of y(x,y,T).

Our Tanaka formulae contain a new type of double stochastic integral,
which we refer to as a bilateral stochastic integral. Section 2 is devoted to the
study of this integral.

The renormalization (1.6) is due to Varadhan (1969). For the renormaliza-
tion of higher order multiple points, see Rosen (1986b) and Dynkin (1986). It
remains an open problem to find Tanaka formulae for such renormalized
intersection local times.

See also Le Gall (1987, 1990), where a different renormalization is used.

2. Definition of bilateral stochastic integrals. It will be convenient,
in the sequel of the paper, to express a number of random variables as double
stochastic integrals with respect to Brownian motion, one of which is taken in
the forward direction and the other in the backward direction.

Therefore we need to define precisely these integrals, which we shall denote

by
fotd+B,,_/:d~Bw H(w,v),

where d_ B, stands for the forward It6 differential and d_B,, for the back-
ward Itd differential [cf. McKean (1969), page 35].

For simplicity, we assume in this paragraph that B is real-valued, the
extension to two-dimensional Brownian motion being immediate.

We first recall very briefly the definition of both the forward and backward
stochastic integrals:

['d,B, H(w) and [ d_B, H(w)
0 0

for suitable integrands H. From now on, we fix ¢ > 0.
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If (H(w), w < t) is continuous and adapted to the family of o-fields B =
o{B,; u < w} (resp. &, = o{B, — B,; w < u < t}), we take

[(d.B, H(w) = Plim T (Bygm, — Bum)H(w™)
0 n—o {n

(resp.
[ ‘d_ B, H(w) = Plim ¥ (B — B ) H(wi™,)),
0 n-—o {

where {, = (0 = w{” <w{¥ < -+ < w(") = t) is a sequence of subdivisions
of [0, ¢] such that sup, (wl(ﬁ)1 - w™) - 08 n — .
We note the identity

(+) j:d_B H(w) = —f()td(+Bg)) H(t - w),

where B =B, - B,_,, w<t, is the Brownian motion obtained by time

reversal of B at time ¢.
For both integrals, H satisfying the above hypothesis, we have the isometry

properties

E[(fotdiBw H(w))z] = E[fotdez(w)],

which allows us to extend the definition of [{d . B, H(w) to processes H
belonging to L*([0, ] X Q, &, dw dP), where Z, 1s the o-field generated by
the continuous processes whlch are adapted to the filtration (%4,f, w < ¢).

In a similar manner, we define & | as the o-field on R% XQ which is

~ generated by the processes
H(w, v) = ]~(w<a)h(Bu1 - Ba’ Buz - Bul’ ) Bb - Bun)l(b<u)’

where a <u; < -+ <u, <band h: R"*! - R is a bounded Borel function.
In the sequel, we shall write, for simplicity, 4 , instead of A( B, -B, B, -
B,,—,B,—B,).

We call the above processes H elementary and we then define
t v
(2.1) [ dB, [ d_B, H(w,0) = ~h,B,(B,,, - B,),
0 0
where ¢ V b = max(¢, b).
A justification for this definition and, in particular, for the minus sign in the
right-hand side of formula (2.1) is given by the following remarks: For every v,
we have [¢d_B, H(w,v) = —hB,1,_,, so that

fotd+BU jo"d_Bw H(w,v) = jotd+B.,(Jf0”d_B H(w, v))
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and, likewise, both sides of this identity are equal to

Ltd_Bw(Ed+Bu H(w,v)).

The definition (2.1) may be extended by linearity to linear combinations of
elementary processes and since for such combinations, the isometry identity

E[(f()td+vi()vd_Bw H(w,v))z] - E[/:dv j:dez(w,v)]

still holds, we can again extend the definition of the bilateral stochastic
integral to all processes H in LAR%2(t) X Q, Z_ - dvdw dP) and the above
isometry property is still satisfied. Moreover, if H is such a process, then dv
a.s., one has

E[/Ovdez(w,v)] <o

and therefore the backward It integral [§d_B, H(w,v) is well defined.
Furthermore, there exists a process K, in L%([0,¢] X Q, Z,, dvdP) such that
dv as., K,(v) = [{ d_B, H(w,v) and the identity

(2.2) fotd+Bv K,(v) = fotd+Bv/0td_Bw H(w,v)

is satisfied.
Likewise, there exists a process K_ in L2([0,%] X Q, #_, dw dP) such that
dw as., K_(w) = [} d B, H(w,v) and the identity

(2.3) fotd_B K_(w)=/0td+vi0Ud_B H(w,v)

is satisfied.

Both identities (2.2) and (2.3) are Fubini-type statements and allow us to
compute bilateral stochastic integrals by successively performing a forward
and then a backward stochastic integral, or vice versa.

Bilateral stochastic integrals play an essential role in the following represen-
tation result.

PropPOSITION. Let t > 0. Every r.v. ® in L%(%;") may be represented in a
unique way as

®=c +f0td+Bv¢>(v) +f0td+Buvad_}:3 w(w,v),

where ¢ € R, ¢ € L¥(0, t]; dv) and
g€ L3(RL(¢t) X Q; Z_ ,;dvdwdP).
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Proor. It suffices to show that such a representation holds for
t
b=gf= exp(f f(v)d.B, - %ftfz(v) dv)’
0 0

where fe CX(R,), since the variables (¢/) are total in L2(%,"). From It6’s
formula, we obtain

ef =1+ ['d.B, f(v)e].
0
Then, we have
of = exp| = [ F(w) d By~ 3 [[1*(w) du]
0 0
and
o= 1= = ['d By f(wesp( = ["F(u)d_B, ~ § () du).
0 0 0
The representation we are looking for now is obtained with ¢ = 1, ¢ = f and
b(w,0) = ~(0) fw)exp| - [“F(w) d_B, = }["F(w) du).  ©
REMARK 1. For fixed ¢ > 0, the space of bilateral stochastic integrals

f;d+Bv/0"d_Bw (w,v),

where ¢ € L*(R2 (¢) X Q, Z_ ,, dvdw dP), is precisely the orthogonal comple-
. ment in L%(%;) of the vector space R & G,, where G, is the Gaussian space
generated by (B,,u < t).

REMARK 2. Any bilateral stochastic integral could also be written in the
form of a double forward integral

[Otd+B,,f0"d+Bw J(w,v),

where 4(w, v) is measurable with respect to &, ® #(R,); that is, ¥ is (%))
predictable and jointly Borel in v and satisfies

E[fotdvfovdw ¢72(w,v)] < oo,

However, for a given r.v. ®, the integrand ¢ may be relatively simple while ¢
is much more complicated, or vice versa. This is the reason why, for the
particular examples we are dealing with below, we have preferred the repre-
sentation involving bilateral stochastic integrals instead of double forward
integrals.
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In the following we will often use stochastic Fubini theorems such as

(2.4) f:(/;df(x, t, ) d+B,) dx = /cd(fabf(x,t, ) dx) d.B,,

with an analogous statement for the bilateral stochastic integral.
For our purposes, it is enough to have (2.4) for
Fe A=L1L%[a,b] X[c,d] X Q, Bla,b] X Z,_,dxdtdP).

To see that (2.4) is true for such f, we first note that (2.4) is trivial if f is the
product of a bounded measurable function of x, with a bounded previsible
function of (¢, ). However, such functions are total in A, and it is easy to
check that both sides of (2.4) are continuous from A to L%(Q, dP).

3. First Tanaka formula and joint continuity. We use the notation

f. () = .y — x). By subtracting and adding U,(x) from [5p, (W, — W,)dr
[resp. U(y) from [[p, (W, — W,) dt], we obtain

/frTfps,x(Ws - W,)p.,(W, — W,) drds dt
= [T [P = Wy ([ W, = W) ) s
33) = [( (£, = W) dr = UG [ (W, = W) dt = U(3) | s
+ U@ [ [ (W, = W,) dsdt - TU()|

+ U [ [ 5. (W, = W, drds - TU,(x)| + TU(2)UL).
For x,y # 0,
(32) [ [ Jpes(We = W)p,, (W, — W,) drdsdt

converges, as ¢ — 0, to a(x,y,T). Recalling (1.6) and (1.7) we see that for
x,y # 0,

. T( ¢
ay | TEPD IR ([P, = W) dr = V()

([ (Wi = W) dt = U(3) ) .

w

We will obtain an expression for (3.3), involving stochastic integrals—our
first Tanaka formula—and use this to prove Theorem 1.
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We first apply the forward It6 formula to smooth, nonanticipating
U.,,(- — W) on the interval s < ¢ < T'. This gives

T
U.,(Wp = W,) =U(y) + [ VU, (W, - W,) -d.W,
(3.4) r s
+3 [ AU, (W, - W,) dt.

Since
FAUGR) = [MAp()ds = [1oop,(x) ds = px) ~ p.(),
we find from (8.4) that
[ Pes W, = W) dt = U(3)

T
(3.5) = [ VU (W~ W) -d.W,

T
+fs P, (W, - W,)dt - U, (Wp - W,).

Similarly, applying the backward It6 formula to U, (W, — -)on 0 <r <s,
we find that

[[Pex(W, = W,) dr ~ U(x) = = ['VU, (W, = W,) -d_W,

(3.6) \
+ [ p1, (W, = W,) dr = U, (W,).
0

Let y,(x,y,T) denote the right-hand side of (3.3) before taking the ¢ — 0
. limit. We see that

w5, 1) = = [T[( [ VU LW, = W) VU, (W, - W) ds| d_W, d. W,

_/T(foTVUe,x(Ws - W)p, (W, - W) dsdt) d_W,
0 s ’r
T( rt rS

+j(; (j;)j;pl,x(ws - W‘)Vl]e,y(vvt - W,s)drdS) . d+th
(8.7) +fT(fTVUE,x(Ws—Wr)Ue,y(WT_WS)ds) AW,

0 r

T

- [ ([0 VU (W~ Wy ds) -, w
([poa( = W) dr = 0, (W)

0 .

T
f
0

T
<(["pas (W= W) dt = U, (W = W) .
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We will show that each of the six terms on the right-hand side of (3.7)
converges as ¢ — 0 to a limit which can be chosen to be jointly continuous on
(x,y,T). This will prove Theorem 1 and yield our first Tanaka formula, Theo-

rem 2.
We do this explicitly for the first term in (3.7), the bilateral stochastic
integral
I(e,x,y,T)

3.8
(3.8) éfot ftVUE (W, — W) VU, (W,— W,)ds|d_W,d W,
0 o \’r ’ Y

The other terms can be handled similarly, in fact, more easily.
We will show that

E(I(s,%,y,T) - I(¢',x',y', T"))*"

(3.9) -
<C,|(e,x,y,T) — (e, 2,5, T)| ', &¢ #0

for some y > 0, independent of m.
The multiparameter version of Kolmogorov’s lemma [see Meyer (1980)]
shows then that
|I(e,x,5,T) —I(¢', &', y', T")| < C|(e, 2,5, T) — (', 2,5, T)[

for rational arguments, which allows us to obtain a jointly continuous limit as
e — 0. From (3.8), this limit can be represented, for every (x, y) as the bilateral

stochastic integral
S ([ 000, = Wy VU, (W, = W) ds | 4 W, W,
0 “0\"r
The following lemma will be used to prove (3.9).
Lemma 1. If
F(x) - 8(x)| < —
S T ) < —
| * | Ix - a|1+°‘ glx |x _ b|1+a
and
T rtf rt
1= [ frow - wyew, - w,) ds| d_w, W,
0 “0\"r

then for a = 0 sufficiently small, we have
E(I’™) <¢

uniformly in a, b.
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ProoF. Set
H(r,s,t) = f(W, - W,)g(W, - W,).
Then

E(I?) = E[( OT([rT "H(r,5,1) dsd+Wt) d_W,)zm]

<cE

A

(7[5, 0) dsd W)zdr)'"J
E[ |
ef [(/rTftH(r,syt)d3d+Wt)2m]dr
<< 1f

2 m
H(r,s,t) ds) dt) J dr
where, to get from line 2 to line 3 we used Hoélder’s inequality. (We keep T in
some finite interval, say T < 1.)
We now see that

(3.10)

IA

[ [H(r,s,0) dsd+Wt)2m dr}

r r

I/\

r

E(I*") <k +2I—[|f(xo-x M| F(xo = %2)|8(xr, — 2.
(3.11) "
‘ Xlg(x,;i - x‘rri)lU(O —xg)  U(xg,_1 — %3,),
where 7, 77 and 7 are three complementary injections of {1,...,m} into
{1,...,3m} such that for each i, 7, < #, < .

We bound (3.11) by integrating successively starting from x,,,.
We encounter three types of integrals:

1. i € range(rr). Using Holder’s inequality,

f 1
[x; — X; — a|l+a [x; — x), — b|1+a

Scf
1

<c VTS for a > 0 small.

U(x;_y — x;) dzxi

1 1 2/3

a I(l +a)3/2 |

d%x;

X — 2. — — . — p|Ar3/2
i J k

i
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2. i € range(#). Using Hoélder’s inequality,

/ 1 1
2/3+2a |xi — %y — b'1+a

U(x;_q —%;) dzxi

|x;, —x; — a|
1 , 2/5
f %, — x, — a|5/3+5a U(x;_, —x;)d xi)
1 3/5
% |2, — x4 — b‘5/3(1+“) U(x;—q — x;) dzxi)

< ¢, independent of a, b, x;, x,.

3. i € range(7),
1

_ xo _ bI1+C¥

U(xi_l - xi) dzxi < C,

I

independent of b, x, and, of course, [U(x;) d%; < c.

i

We now apply this to prove (3.9). Note that

c
3.12 VU, (x — < —.
(3.12) V0.2 = <

To handle the ¢ variation we use

VU, .(x —y) = VU, (x =)

< [ Vp(x —y —2)|ds

(3.13) o0 _ 1—vy
<le' - ely(f e *|Vp(x —y — z)ll/1 " ds
0
le" — &l” -
<cle'—¢ R
|x -y - z|1+2y
with y > 0 small. Here we use the fact that
c
(3.14) |Vp,(x)| < 8—37§e-Mx2/8.

The x,y variations are handled similarly, using

—-Mx2/s e—Mx’z/s
(3.15) | Vpy(x) = Vp,(x)| < clx = x'l( KT ) ' ( K% )}

[See Rosen (1987), (2.4f).]
Finally, to handle the T variation, we note that the factors U(x; — x;,) in
(8.11) came from integrating the factors p,(x; — x,, ) [from the expectation in
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(3.10)] with respect to u. We use Hélder’s inequality as in (3.13),

pu(x) du < CITP[ [“ep ()7 du)
510 J; (et )

< |y for x small,

el

with exponential falloff as x — . It is easily checked that (3.11) is uniformly
bounded if the u factors are replaced by (3.16). This completes our proof of
(3.9), hence Theorem 1. These calculations also justify the existence and
regularity of the stochastic integrals appearing in our next theorem. O

THEOREM 2 (First Tanaka formula).

y(x,9,T) = _foffotftvux(Ws - W,) VU(W, - W,) dsd_W, d, W,
_/TfoTVUx(Ws -W)p, (W, - W,)dsdt -d_W,
07s ‘r
T rt S
[ [ [ puo(W, = W) VU(W, ~ W,) drds - d W,
+foTVUx(Ws - W)U, (Wy - W,)ds - d_W,
0 ’r
(317 - [7 [0 VU, — W) ds - d..W,
070
+ffrTfp1,x(Ws - W,)p, (W, - W,)drdsdt
_fT/spl,x(Ws - W)U, (W — W,) drds
070
_fotUx(Ws)pl,y(Wt - W,)dsdt
070
+ [TU(W,) U (W, — W,) ds.
0

4. The second Tanaka formula. Let f(:) be a symmetric C* function
on R? with compact support and [f(x)d?c = I.
We set f.(x) = (1/&%) f(x/e).
We also introduce the basic function, for u > 0,
x

(4.1) q(x,u) = {_'wlxl2

_ 2
el /2 lx| # 0,

0, x=0
and set F (x,u) = f, *(q(-, u))(x).
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If Y is any random variable, we let
(Y} =Y-E(Y).
Writing f = {f} + E(f),

SIS 1o oW = W) £, (W, = W,) drds dt

= [ U oW = WML, (W, = W,)) drds de
(4.2) + [ [ JECx(We = WS, (W, = W)} drds i
[ JUes(W, = WE(L, (W, _ W) drdsdt

+[ [ JEC (W, = W))E(f,, (W, = W,)) drds .

Since, e.g.,
(4.3) E(f, (W, = W,)) =f,*p,_.(x)

it will turn out that the last three terms in (4.2) are close to the renormaliza-

tion terms in y(x,y, T').
We return to this point later, but concentrate now on the first term:

[ [ J s, = WM £, (W, = W,)} drds dt
(4.4) r

= [T A = Wy ar ([ W, = W) ) .
By Yor (1986b) we have
[ (W= W)y dt = [F, (W, ~ WiT ~ ) d.W,
and similarly
[ oW, =~ W)y dr = ['F, (W, = Wir) d_W,
so that (4.4) can be written
sy NI Bl W= W) B (W= Wi — 1) ds| 4 W, W,

=g *J(x,y,T),
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where g.(u,v) = f.(u) f.(v) and
J(x,5,T)

4.6
(46) =f0TfT(fth(Ws—Wr;r)qy(Wt-V"L;T—t)ds)d+v"?d—wr~

The justification for (4.5) will come from proving

(4.7 E(J(x,y,T) — J(x’,y’,T’))zm <c,|(x,y,T) — (x’,y’,T')lmy

for some y > 0, independent of m.

We will then be able to take a jointly continuous version of J(x,y,T), so
that by (4.5), the ¢ — 0 limit of the first term in (4.2) will be precisely the
bilateral stochastic integral J(x,y, T').

The proof of (4.7) is quite similar to that of (3.9). In place of (3.12) we use

(4.8) lg(x,u)| < é

while for the y variation we use

x' c ,
(4.9) |g(x,u) —qg(x',u)|<c E BT + mle—'x'm” — e/,
X X

The first term in (4.9) can be bounded as follows. Identifying R? with C, we
have

x x' lx — x'|

1 1
|x|2 |x,|2 '

X X

(4.10)

|l ']

Assume |x| > |x'|. Then, since |x — x'| < 2|x|, we have

1 1
< 217 7x — x’Iy( + )

|x,|1+y |x|1+'y

’

1
x

By symmetry, this also holds for |x| < |x'|, hence for all couples (x, x').
For the second term we use

"y
|e==*/2u — g=x%/2u| < C|xuv/§ |
Notice that in controlling the y variation, u = T — ¢, and the factor 1/(T —
t;)"/? is controlled as in (3.16). For the x variation, we rewrite ¢/ so that the
outer integral is d W, [which is completely justified since we have already
shown the uniform L2™ bounds for J(x,y,T)] and proceed as above. This
completes the proof of (4.7), hence the analysis of the first term in (4.2).
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We now return to the other terms in (4.2). The second term is

T rt s 3
[ [ U (W, = W) d
T rt
(4.11) =f€*U(x)f0 '/(;{fs’y(vvt ~W,))dsd

= [T [ U (W - W) ds

where U®(x) = [{p,(x) du.
We note that
fOTfOt{fe,y(Wt - W,)}dsdt = [f. (2)a(z,T)d% - fOTfs «U(y) dt
(4.12) )
=f.+a(y,T) + fo f.xU(y) dt,

where a(z,T') is the intersection local time at z for W, — W, on the time
interval 0 <s <¢ < T and 4 is given by (1.6).
Summarizing, the second term in (4.2) is

gs*U(x)(&(y,T) + fTUt(y) dt)
(4.13) 0
_,/;)Tfotf‘:*US(x){fe,y(W’t_ Wfs)}det

Similarly the third term of (4.2) is

2.+ U)ax 1) + [U) ds|
(4.14) 0

[T (W, = W} o2 U () drds.

The fourth term of (4.2) is
[ (Fr U @) £+ U™ () ds
=g+ [ U(2)UT(y) ds
(4.15) =g+ [ (U@) = U()(U() = Up_ () ds
- Tg,+ U)U(y) - £+ U() [ Up_(5) ds

W

£ UO) [ "U,(x) ds +g,* A "U(x)Up_,(y) ds.
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Combining all this we can rewrite (4.2) as

£07(x3.T) =g I(x,.T) = [*['f, s U()(.,,(W. = W)} ds dt
(4.16) ~ [T [ fu (W, = W)} f % Up_(3) drds
) 0“0

T
+g,* fo U,(x)Up_,(y) ds.

By the formulae following (4.4), the second and third terms in (4.16) can be
written as

fOT(fOtfs *U(x)F, (W, - W;T —1t) ds) d.w,
[ ([Fn W= Wir) 4 U (9) s 2,
(4.17) 0 \°r

T t
- g [ [0, (W= T~ ) ds) d.W,

vt ([0~ W)Uy (9) ds ) dW,.

We can now state
THEOREM 3 (Second Tanaka formula).

T /T
V) = 77 [00W, = Wir)a (W, = Wi = 0 ds| 4. W, W,
[ ([o@a, - Wit - 0y ds) a.w
0 0
- T( [(4.(W, = Wir)Ur_,(3) ds ) d_W,

+ fTUs(x)UT—s(y) ds.
0

Proor. For x,y # 0, the conéinuity of y, J and the last term allow us to
take the ¢ — 0 limit. To handle the middle terms we can easily prove an
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analogue of (4.7), for example,
2m
E([[T(["‘Us(x)qy(m - WiT - 1) ds) . )
o \Jo

m

<cE (fOT(fotUs(x)qy(Wt —W,T -0 ds)zdt)

m 1 1 d
Sfcil]ﬂxm— X

Xz, =y %, —xz —y]

X

2m 3m
f l_[l U, (x) qp,i(xi —x;_;)ds dt),
J= i=

where the r;, are successive increments in the ordered set (sq,..., S,
ti,...,t,). We use Holder’s inequality in the dsdt integral as in (3.16), since

Uy(x) < clog(s),

so it is integrable to any power on bounded intervals. O
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