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THE ASYMPTOTIC DISTRIBUTION OF EXTREME SUMS

By SANDOR Cs6rGS,! EricH HAEUSLER AND DAviD M. Mason?

University of Szeged, University of Munich and
University of Delaware

Let X; , < '+ <X, , be the order statistics of n independent ran-
dom variables with a common distribution function F and let %, be
positive integers such that k, >« and %,/n > a as n -, where
0 < a < 1. We find necessary and sufficient conditions for the existence of
normalizing and centering constants A, > 0 and C, such that the se-
quence

1

kn
En = 2—{ E Xn+1—i,n - Cn}

n\i=1

converges in distribution along subsequences of the integers {n} to nonde-
generate limits and completely describe the possible subsequential limiting
distributions. We also give a necessary and sufficient condition for the
existence of A, and C, such that E, be asymptotically normal along a
given subsequence, and with suitable A, and C, determine the limiting
distributions of E, along the whole sequence {n} when F is in the domain
of attraction of an extreme value distribution.

1. Introduction and statements of results. Let X, X, X,... be a
sequence of independent nondegenerate random variables with a common
distribution function F(x) = P{X < x}, x € R, and for each integer n > 1, let
X, ,< - <X, , denote the order statistics based on the sample X;,..., X,.

Throughout the paper k, will be a sequence of integers such that
1<k,<n, k,—>» and k,/n—>0 asn— x;
or k,=[na] with0<a<1,

(1.1)

where [-] denotes integer part. (We shall refer to the first case as the case
a = 0.) The study of the asymptotic distribution of the (properly normalized
and centered) sums of extreme values

k. . n
(12) Z Xn+1—i,n = Z Xi,n
i=1 i=n—k,+1

was initiated in [6] for the case when a = 0 in (1.1) and under the restrictive
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assumption that F' belongs to the domain of attraction of a nonnormal stable
law. Later the problem was solved in [7] assuming that F has a regularly
varying upper tail and by Lo [14] for all F which are in the domain of
attraction of a Gumbel distribution in the sense of extreme value theory. When
put together, these results say that whenever F is in the domain of attraction
of any one of the three possible limiting extreme value distributions for the
maximum X, , and a = 0 in (1.1), then the sums in (1.2), with suitable
centering and normalization, have a limiting distribution which is either
nonnormal stable or normal (see Corollary 2 below). The first aim of the
present paper is to give an exhaustive study of the problem of the asymptotic
distribution of the sums in (1.2) for an arbitrary F.

All three papers ([6], [7] and [14]) mentioned employ a direct probabilistic
approach based upon the asymptotic behavior of the uniform empirical distri-
bution function in conjunction with the behavior of the inverse or quantile

function of F defined as
Q(s) =inf{x: F(x) >s}, 0<s<1l, @(0)=@Q0+).

This quantile-transform method for handling the whole sums L7_;X; was
first used in [2] and [3] to obtain probabilistic proofs of the sufficiency parts of
the normal and stable convergence criteria, respectively. In [3], the effect of
trimming off a finite number of the smallest and largest summands is also
considered. A refined version of this method in [5] produces a complete
asymptotlc distribution theory of the finitely trimmed sums T, (m,k) =
rr-k, . X, ,, where m > 0 and k& > 0 are arbitrarily fixed integers. Included in
this paper is a new description in terms of the quantile function of the classical
theory concerning domains of attraction, domains of partial attraction and
stochastic compactness of the whole sum T,(0, 0).

The paper ([6]) also initiated the study of trimmed sums of the form
T.(m,,k,), where k, is as in (1.1) with &« = 0 and m, satisfies the same
condition as %,. This was done in [6] only in the domain of attraction case. A
different refinement of the quantile-transform method in [4] has established
the complete asymptotic distributional theory for the sums T,(m,, k,,).

The second aim of this paper is to completely round off our study of sums of
order statistics by means of the quantile-transform method, so that papers [4],
[5] and the present one together constitute a complete and unified general
theory of the asymptotic distribution of sums of order statistics of indepen-
dent, identically distributed random variables.

We emphasize very strongly that the quantile-transform method itself is by
no means new. It has been in wide use in nonparametric statistics for many
decades and scattered applications of it can be found in probability as well. A
good source for its earlier use is the book by Shorack and Wellner ([20)). It is
the approximation result for the uniform empirical and quantile processes in
Welghted supremum metrics in [2] in combination with Poisson approximation

techniques for extremes that has made this old method especially feasible for
the treatment of problems of the asymptotic distribution of various ordered
portions of the sums of independent, identically distributed random variables.
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The method was augmented in [4] by a general pattern of necessity proofs
which has already been applied in [5] and [16].

There are, of course, several other methods for studying sums of order
statistics. Besides classical approaches, various new methods have been in-
vented recently to deal with a number of different types of trimmed sums and
the influence of extremes on the whole sum. For descriptions of these method-
ologies along with discussions of their advantages and disadvantages, including
ours, see the monograph [12] where extensive lists of references can also be
found.

Now we introduce some notation. The basic function for the present paper
is the left-continuous function

H(s)=-Q((1—-s)-), 0=<s<1.

Notice that if U, , < -+ < U, , are the order statistics of a sample of size n
from the uniform d1str1but10n on (0,1), then for each n > 1 we have the
distributional equality

(1.3) (Xi,nseer Xpn) =0 (H(U, ), ..., —H(Uy,,)).

For 0 < s <t < 1, consider the truncated variance function
o%(s,t) = [ ['(u A v — uv) dH(u) dH(v),
s s

where u A v = min(u,v), and for a given sequence k, satisfying (1.1), set
b, =01/n,k,/n)and

. ={bn, if b, > 0,
" 1, otherwise.

Note that 0%(s, t) is the variance of [/B(u)dH(u), where B(-) is a Brownian
bridge. Such random variables will be seen to enter the picture quite naturally.

Choose and fix any sequence of positive constants 8, such that 6, <1
and nd, - 0 as n - . Then we have P{5, <U, ,<U,, 1-6}—>1 as
n — o, The following two sequences of functlons will govern the asymptotic
behavior:

ky/*(H(k,/n +z(kY?)/n) — H(k,/n)} . k/? ky/?
) , if — <x < ,
n'/?a, : 2 2
k};/z k}/z
‘pn(x)= lﬂn(— ) ), ’ if —o<x< — 5
kl/2 3%
(/In( ; ), if ; <x <o,
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and

H(y/n) - H(1/n)
Vg, ’
o) =\ 18, - H(1/m)

n'/%q ’

if0<y<n-né,,

n

if n —né, <y <o

The crucial (necessary and sufficient) conditions these functions will have to
satisfy are the following three conditions in which {r,} is a subsequence of the
positive integers {n}, {4, } is a sequence of positive constants and {k, } is the
corresponding subsequence of {k,} from (1.1).

ConDITION 1. There exists a nondecreasing, left-continuous function
defined on (—, ) with (0) < 0 and (0 + ) > 0 necessarily holding such
that

%
W) = — (%) > $(x) asny -,

n

at every continuity point x of .

ConDITION 2. There exists a nondecreasing, left-continuous function ¢
defined on (0, ) with ¢(1) < 0 and ¢(1 + ) > 0 necessarily holding such that
Vo
en(y) =~ en(¥) 2 0(y) asn, o

n

at every continuity point y of ¢.

ConpITION 3. There exists a constant 0 < @ < © such that

1/2
nY?b, /A, —>a asn, > .

Conditions 1 and 2 are not directly related to each other. Condition 2
controls the largest extremes while Condition 1 governs the behavior of the
smallest terms in the sum (1.2). Condition 3 will say that there are two
qualitatively different ways to normalize this sum according to the two cases
when a > 0 or a = 0. The exact probabilistic meaning of the conditions along
with equivalent forms expressed through F are discussed in Section 3, where
illustrative examples are also constructed.

" Tt will be shown in Lemma 2.5 in the next section that if Conditions 2 and 3
both hold, then ¢(y) < a, for all ¥ € (0,x). Therefore the finite limit ¢(x) =
lim _,, ¢o(y) < a exists and, as Lemma 2.5 will also show, for the nondecreas-
ing, left-continuous, nonpositive function ¢(-) — ¢(«) defined on (0, »), we
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have
(1.4) jj(go(y) — p(x))?dy < foralle > 0.

Consider now a standard (intensity one) right-continuous Poisson process
N(t), 0 <t < », and two independent standard normal random variables Z,
and Z, such that (Z,, Z,) is also independent of N(-). Given a function ¢ as in
Condition 1, a function ¢ as in Condition 2 satisfying (1.4) and constants
0<b<wand 0 <r <(1 - a)/? where a is the limit in (1.1), consider the
random variable

V(g i, b,r,a) = [f(N(t) ~ 1) de(t) + ['N(1) de()

0
— (1) + bZ, + f_z(r )¢(x) d,

with Z(r,a) = —rZ; + (1 — a — r?)/2Z,, where the first integral exists al-
most surely as an improper Riemann integral by (1.4). Finally, a natural
centering sequence for the extreme sums in (1.2) will be seen to be

ko /n 1
o, = —nfl/n H(u)du —H(;).

Our principle results are contained in the following two theorems, where —,
denotes convergence in distribution.

TueoreM 1. If Conditions 1, 2 and 3 are satisfied for a subsequence {n,} of
{n} and a sequence {A, } of positive constants, then there exist a subsequence
{ng} c{n,} and a sequence of positive numbers 1, satisfying I, — « and
l,,/k,, > 0, as ny > =, such that either 0(l,,/ny,k,,/ny) > 0 forall ny, in
which case for some 0 <b<aand 0 <r <(1 —a)/?

n12/20'(ln2/n2’ kng/nZ)/Anz -b,

(1.5) ( 7, )1/2 1 ky /s s

rn= 7 SdHS =>r asng > o,
’ knz O'(an/nz,knz/nz) ln,/ 1o ( ) 2

ora(l, /nyk,,/ny) =0 forall ny, in which case we put b = r = 0. In either
case

knz .
{ Z Xn2+1—i,n2 “Mn, "9 V(‘Pa ¢, b,r, a)

i=1

A

ng

(1.6)

as ny, - ©, where a is zero or positive according to the two cases in (1.1), ¢
necessarily satisfies (1.4) and  necessarily satisfies

(1.7) ¥(x) = —ar/(1 — a), —0 < x < o,
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Moreover, if a >0 and ¢ =0, then b =a in (1.5), while if a =0, then
o(y) =0, forally > 1.

THEOREM 2. If there exist a subsequence {n;} C {n} and two sequences
A, > 0 and C, along it such that

1 [
(18) A—_ Z Xn1+1—i,n1 - Cnl g V’
ni i=1

where V is a nondegenerate random variable, then there exists a subsequence
{ny} c{n,} such that Conditions 1, 2 and 3 hold along the subsequence {n,}
for A, in (1.8) and for appropriate functions ¢ and ¢ and some constant
0 < a < =, with ¢ satisfying (1.4) and ¢ satisfying (1.7). The random variable
Vin (1.8) is of the form V(p, ¥, b, r, @) + ¢ for appropriate constants 0 < b < a,
0<r<(Q-a)’? and —o <c <x. Moreover, either ¢ 0 or  # 0 or
b>0.

Just as in the case of full sums in [5], the method of proof makes it possible
to see the effect on the limiting distribution of deleting a finite number of the
largest summands from the extreme sums T (n — k,,0) =% X ., , at
each stage n, both in the sufficiency and the necessity directions. Let 2 > 0 be
any fixed integer. Then, replacing %2, X, ., ; , by

k, n—k
Tn(n—knyk) = Z Xn+1—i,n= Z Xi,ﬂ’
i=k+1 i=n—k,+1
K, by
E+1
p (k) = —nfk"/” H(u)du —H( )
(k+1)/n

and V(e, ¢, b, 1, @) by

Vi(e,0,byr@) = [7 (N(2) = £) de(t) = [*tde() + ke(Sy,1)

— ety dt - p(1) +bZ, + [° w(x)dx,
1 —Z(r,a)

where S, ; is the (k£ + 1)st jump-point of the Poisson process N(-), both
Theorem 1 and Theorem 2 remain true word for word. This can be seen by
simple adjustments of the proofs presented in Section 2 for the case £ = 0 (cf.
[5] for details). That the case k£ = 0 formally agrees with the previous theo-
rems, that is, that V(¢, ¢, b, r, a) = V(e, ¢, b, r, a), is easily seen by noting

o] . S
JO(N(t) = t) do(t) - [Ttde(t)
S, 1
(1.9)

= [[(N@) =) de(®) + ['N(2) de(t).
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It is also straightforward to formulate Theorems 1 and 2 (or their general-
ized versions just described) for the sum of the lower extremes X' X, ,,
where m, »> ©and m,/n - 0asn — »,or m, =[Bn]with 0 < < 1. The
limiting random variable is of the form —V(o, ¢, b, r, 8) with appropriate
ingredients. In fact, if at least one of a and B is zero, then the two conver-
gence statements hold jointly with the limiting random variables being inde-
pendent.

Now we come back to the principal results and formulate some conse-
quences of them.

CoRrOLLARY 1. Let {n} be any subsequence of the positive integers. There
exist sequences of constants A",‘Ll >0 and C,, such that
k

ny

A* E Xn1+1—i,n1 - Cnl 9 Z

ny \i=1
holds as n; = « for a nondegenerate normal random variable Z if and only if
Conditions 1 and 2 are satisfied with A, =nY%a,, $ =0 and ¢ =0, in
which case (1.10) is true with the choice A%, = nY?a, and C, =p, with Z
being standard normal.

(1.10)

On heuristic grounds one expects that the existence of normalizing and
centering constants d, > 0 and c,, such that

(1.11) d,"(X, ,—c,) =5 Y with Y nondegenerate

implies that the suitably centered and normalized extreme sums T,(n — k&, 0)
or T (n —k,, k) also converge in distribution to a nondegenerate variable
along the whole sequence {n}. This is the content of Corollary 2.

As was pointed out in [8], results from de Haan [9] imply that (1.11) holds if
and only if

for some —» < ¢ < ™,

. H(xs) —H(ys) x“-y°*
(1.12) ??3 H(vs) — H(ws) v °-w*

for all distinct 0 < x,y,v, w < », where for ¢ = 0, the limit is understood as
(log x — log y)/(log v — log w). (The case ¢ = 0, going back to Mejzler [17], is
explicitly stated as Theorem 2.4.1 in [9].) If (1.12) holds, the constants d, and
c, can be chosen so that when ¢ > 0, then P{Y <y} = exp(—y~'/¢), y > 0;
when ¢ = 0, then P{Y < y} = exp(—exp(—y)), —© <y < ; and when ¢ < 0,
then P{Y <y} = exp(—(—y)~1/¢), y < 0, and by Gnedenko’s classic theorem
these are the only possible limiting types. Whenever (1.12) holds, we write
F € A(e).
For ¢ > %, set

D(c) = c( 2czc )1/2{[1°°( N(¢) — )t~ 1ds + folN(t)t‘”‘l dt}.

According to Corollary 3 in [5], the random variable D(c) is stable with index
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1/c. This fact can also be derived after some calculations from the representa-
tions given by Ferguson and Klass [11] and LePage, Woodroofe and Zinn [13].
For the case when a > 0 in (1.1), consider
0, if x <0,
(1.13) - (%) = {a1/2(H(a 1) - H(a))/o(0,a), ifx>0,
and note that when (1.12) holds, then
<o, ifc<i,
(1.14) 0<a(0,a) _ 2
=, ifec> 3.
If ¢ = £, then 0(0, @) can be finite or infinite. Define (0, 0) = ¢(0,0 + ) and,
finally, put
M _ 0, ifa =0,
(@) =1 19 tba(x) dx, ifa>0,
where Z(a) = —-r,Z, + 1 — a — r2)/?Z,, with
1 - a a
- - * 1 - a)V2.
ra (11/20'(0, (X) _/(‘) SdH(S) =< ( a)
Note that for a > 0,
M(a) = a"?(H(a+) — H(a))min(0, Z(a)) /o (0, a).

Versions of the three subcases ¢ > 4; —© <c <3, ¢ #0; and ¢ = 0 of the
case a = 0 in Corollary 2 were proven in [6], [7] and [14], respectively. The full
form of the corollary follows presently from Theorem 1.

CoroLLARY 2. Let {k,} satisfy (1.1). Whenever F € A(c) for some — <
¢ < o,
D(c), ife> 3,
k . 1
n Z,, ifc =3 and o(0,a) = x,
Z Xn+1—i,n My /(nl/2a") _)9 ! f f 0( )
; Z, +M(a), ifc=jzando(0,a) <x

orc< 3.

If we replace the sum T,(n — k,,0) by T.(n — k,, k) and u, by u,(k) in
Corollary 2, where & > 0 is a fixed integer, then the limits remain exactly the
same in the cases of ¢ < 3, while if ¢ > 1, then D(c) should be replaced by

2c—1 1/2 © I She1 e s
Dy(e) = | — cfs (N(¢) — t)t~°"1dt — cfl t=° dt
k+1

+E(1 - S;¢,) — flkH(l —t7°) dt}.

Again, Dy(c) = D(c).
Of course, if the quantile function @ is continuous at 1 — a, then M(a) =0
also in the case when a > 0. It was Stigler [21] who discovered that such terms



THE ASYMPTOTIC DISTRIBUTION OF EXTREME SUMS 791

generally enter in the limiting distribution of the classical trimmed mean. So
the third subcase of the case @ > 0 in Corollary 2 may be looked upon as a
Stigler phenomenon for sums of extreme values. In this regard we also note
that in the case when a > 0 in (1.1), we could have worked with a sequence &,
more general than %, = [an]. Namely, if %, is a sequence of integers such
that 1 <k, < n and n'/%(k,/n — a) - 0 as n —  with some 0 < a < 1, then
all the results so far stated remain valid without change provided that we
modify the definition of ¢, by replacing k,/n by « in the arguments of H in
its numerator. However, then the proofs would have to be separated for the
cases @ = 0 and a > 0. (For the slight modifications needed for the case a > 0,
we refer to [16].) In order to keep a unified proof for the two cases we have
chosen to work with the special sequence %k, = [an] here. A similar remark
applies to our version of Stigler’s theorem, formulated as Theorem 5 in [4].
Consider now linear combinations of k, extreme values of the form

kn
Ln = Z ci,an+1—i,n’
i=1
where ¢, ,, i=1,...,n,n2>1,is a triangular array of weights. Under the
same regularity conditions as in [16], one can easily formulate and prove the
analogues for L, of the results in [16] on the asymptotic distribution of linear
combinations of the middle order statistics. The proofs consist of a straightfor-
ward technical extension of those in the present paper combined with details
from [16]. To keep, however, the main ideas easily accessible to a wider
audience we decided to only consider sums of extremes in the present paper.
We take this opportunity to correct some minor oversights and misprints in
paper [4]. First, Lemma 2.6 is not correct as stated. The specification that
f(0) = 0 must be changed to f(0) <0 and f(0+ )= 0. For this reason,
whenever in the statements of results or in the proofs a function is specified to
be zero at zero, this must be changed to the requirement that it be nonpositive
on (-, 0] and nonnegative on (0, ). In particular, in Theorem 1, the require-
ment that ¥,(0) = ¥,(0) = 0 should be weakened to read ¥,(0) < 0, ¥;,(0 + ) >
0, i = 1,2, with analogous changes needed for Theorem 2. Also, all integrals of
the form [;*(z + x) dg(x) should be read as

2 0
[ xde(x) +28(~2) = [ g(x)dx,

whenever (z, g) = (Z,,¥),(Z;,¥*),(Z;, ¢;), i =1,2. With these corrections

the proofs proceed as before. Finally, the X, , appearing in Theorems 2, 3 and

5 should be X; ,,, the subscript 1 in formulae (1.12), (1.13) and (1.15) should be

i and the expressions for r; and r, (on page 678) should be divided by o(a, B).

* 2, Proofs. Introducing the empirical distribution function

1 n
(2.1) G, (u) =;ZI(UL.’,,5u), O<ux<l,
i=1
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where I is the indicator function, using (1.3), and integrating by parts yields

k, kn
Z Xn+1—i,n_/‘l’n 9 — Z H(IJL,n) My
i=1 i=1

_ka"’"nH(u) dG,(u) + fkn/nnH(u) du + H(1/n)
0 1/n

~nG (U, ) H(Uy ) + [O YhrnG(w) dH (1)

kn k,/n
+k H —| — " dH
. (n) [ dH ()

/Ol/nnGn(u)dH(u) + fl'“/:/”n(an(u) — u)dH(u)

+Li];:"n(Gn(u) - fnl) dH(u).

Here the sum of the first two terms can be written as

[ (nGy(u) = 1) dH(u) + H(1/n) = H(U,,)

_'_fll//:nn(Gn(u) —u)dH(u) + f:l',':nn(Gn(u) - u)dH(u)
= fl/n(nu —1)dH(u) + H(1/n) — H(U, ,)

Ui ’

[ (G ) = ) a0
= ["(nu - 1) dH(u) + H(1/n) - H(U,,,)

Ui ’

[ () = ) dl ()

+f,,l,"2n(G,,(u) —u)dH(u) + flk;:nn(Gn(u) —u)dH(u),

where, for the time being, m, and [, are any real numbers such that
l1<m,<l, <k,. Hence

1 [k '

A Xn —i,n = Mn( = A(Ili) m, +A(r%) mn’ln
(2'2) An {igl +1-1, 1] } 9 ( ) ( )

+ AD(L,, k),
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where
80ma) = [ (26, ) - o) g ZEC)
+fnlU (-1 dH(”/”)A'nH(l/")
_H(nU,,/n) - H(1/n)
A, ’
AD(m,,1,) = f,,l,(na(%) ~ ] dH(“/”);lH<1/”>
and
KUk = [ 0(G, () = ) a2+ [0, - 22 a2

This distributional equality is of course true without regard to the underlying
probability space where the order statistics U, ,,...,U, , are defined. In the
proof of Theorem 1 we shall be working on a specially constructed space
(Q, &7, P) described in [2], [3] and [5]. It carries two independent sequences
{Y¥), n > 1}, j = 1,2, of independent, exponentially distributed random vari-
ables with mean one and a sequence {B,(¢), 0 <t < 1; n > 1} of Brownian
bridges with the following property: For the G, in (2.1) and the uniform
quantile function U(s) =U, , for G —1)/n<s<i/n,i=1,...,n, U(O) =
Ui, ns determined by the order statistics U, , = Sk(n)/Sn+1(n) k= \n,
given by Sy (n) =Y(n)+ - +Y(n), where Y(n) =Y®forj=1,. [n/2]
and Yi(n) = Y@, , for j=[n/21+1,...,n + 1, we have
A (v) = sup  In'2(G,(s) — s} = B,(s)l/(s(1~8))"*7

(2.3) n~l<s<l-n~!

= 0p(n™)
and
sup  [nV%s — U,(s)} — B(s)l/(s(1 — )"
(2.4) n-l<s<l-n7?
=0p(n7"),

or any fixed 0 < v < 3. Note that it is justified to call the above U, n “‘order

“statistics” since it is well known that (S )8, (n),...,8(n)/S, . (n)
equals in distribution to the vector of order statistics of n independent
random variables uniformly distributed on (0, 1). We will also need the Poisson
process N(-) with jump-points S, = SV =YD + -+ + YD, n > 1, defined to
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be right-continuous by setting

(2.5) N(@)= Y I(S,<t), 0<t<om,
k=1

The behavior of the term A®([,, k,) is described in Lemma 2.4, which
requires three preparatory lemmas, the first of which is crucial at many other
places, too.

LEmMA 2.1. If 0<s<t<1—¢, where 0 <e <1, then
s(H(t) — H(s))?/o%(s,t) < 1/,
where 0/0 := 1.

Proor. If s<u<v<tors<v<u<tthenu Av—uv=es. Hence
o¥(s,t) = [ ["(u A v — uv) dH(u) dH(v) = es(H(t) - H(s))",
s°s

from which the result follows upon noting also that o(s, ) = 0 if and only if
H(s) = H(t), which justifies the definition 0/0 := 1. O

LEmMMA 2.2. Forall B+ and 0<s<t<1—¢, where 0<e <1,

JfuP dH(u) 1 (ptP-1/2 gB-1/2
S iz it .
o(s,t) € B—3 1-28

Proor. Integrating by parts we see that
JuP dH(u) = sP{(H(¢) - H(s)} + B ["(H(t) - H(u)}u?" du.
S S
Thus the lemma follows from Lemma 2.1. O

In the following two lemmas %, is as in (1.1) and [, is any sequence of
positive numbers such that

(2.6) 0<!l,<n, l,>x and k,/l,—> > as n -,
LEMMA 2.3. Suppose there exists a subsequence {n,} C {n} such that

o*(,,/na k,,/ny) >0 for all ny € {n,) and consider the two-dimensional
random vectors

(222,22) = n2

Jtry2B, () dH(s) ( ny )1/2 (k)
,—|—1| B, .
0-(lnz/n2’ knz/n2) k 2

ng
Then there exist a subsequence {nj} C {n,} and a number 0 <r < (1 — a)'/2
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such that, as ng — o,

(20, 22) -5 (2, —12, + (1 - a - )2,
xfoon(1 )

r 11—«

Proor. First notice that (Z(), Z{») is, for each n,, a bivariate normal
random variable with mean vector zero and covariance matrix

1 =T,
—r,, 1- knz/n2 ’
where

1/2 1/2

ng (l_kn /n2) k. /ng ( kn )
0<r, = i " dH(s) < [1- —=2| .
: ( k ) U(an/nzy knz/nz) '/l‘,,z/n2 ( ) ny

Thus by (1.1), there exist a subsequence {ns} C {n,} and a number 0 < r <
(1 — &)"/? such that r, — r as ng — %, which implies the lemma. O

ng

LEMMA 2.4. Suppose that Conditions 1 and 3 hold along some {n} and let
k, and l, be as in (1.1) and (2.6). Then there exist a subsequence {nz} C {n,}
and numbers 0 <b <aand 0 <r <1 — a)"? such that

A(S;(lna’kna) 9 V3(¢,b:r, a) = bZ1 + ]‘0 1//(x) dx,
—-Z(r,a)
where Z(r,a) = —rZ; + (1 — a — r)/?Z,,
Proor. There are two cases.

Cast 1. There exists a subsequence {n,} C {n,} such that
o(l,,/nak,,/ny) >0 forall ny, € {n,}.

Now let {n3} < {n,} be the subsequence given by the proof of Lemma 2.3.
To see the behavior of the first term in AQX7, , %, ) in (2.2), fix any 0 <
v < 1. Then for the random variable Z, deﬁned by the equation

kn3/n H(u) %3/20‘(ln /n3’kn /n3) =
f ‘ng(G,(u) —u)d Yy 3A & Z,,

lng/n3 ng ng

we have by Lemma 2.2 and (2.3),

5 kny/n -
IZna—Z,gg’lsAna(u)[l ) 12~ dH(s) /o (L, /Ny, kyy/Ns)

= Op(na_")O((lnS/n3)—V)
= OP(ZZ:) =o0p(1),
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by (2.6) as n; — ». By Condition 3 we can assume without loss of generality
that {n 3} is chosen in such a way that for some 0 < b < a, we also have

ny?c(l,,/n3 k,,/n3)/A,, > b asng—>w

and hence we have

k,\ H
@T) K (1 ko) =BZE + [ ”na(%u)—-,f)d G+ 0p(1).
3

ng

Note that this step corresponds to Lemma 2.2 in [4].

Let 0 < M < » be fixed. Adapting the proof of (2.6) in Lemma 2.3 in [4] to
the present situation (i.e., replacing the function ¢, , there by the function
of Condition 1 but otherw1se proceeding line by line in exactly the same way),
by (2.3) and (2.4) we obtain

ns(Gn (u) — k—) dEA(—u—)—I
ng

ng

Uk,.3 ng (lZ,(lzs)| < M)

(2.8) Fng/3
- [O TER(Z2@ + x) duk () I(1Z2) < M) + op(1),

as ng — o
Now using Lemma 2.3, we obtain exactly as in the proof of Lemma 2.4 in [4]

that

bZD + /0 IR(Z2@ + x) dy, (x) (122 < M)

(2.9) .
>, bZ, + f_Z( )¢(x) dxI1(1Z(r,a)l < M).

Now (2.7), (2.8), (2.9), the simple little argument finishing the proof of the first
part of Theorem 1 in [4] and Theorem 4.2 in Billingsley [1] give the lemma in
the first case.

Cast 2. For all n, € {n} sufficiently large, o(l, /n, %k, /n,) = 0. Then
the first term of A®(Z,, , &, ) is almost surely zero for all these n,and a = 0in
Condition 3 in this case. Thus, with b =r = 0, a simplified version of the
argument in Case 1 gives

AD(, k) ~o f 2o, )(ﬁ(x)‘dx. O

Now we turn to the behavior of the terms AQ) and A in (2.2). First we
need the following.

LemMa 2.5. Suppose that Conditions 2 and 3 hold along some subse-
quence {n}. Then ¢(y) < a, forall 0 <y < », and (1.4) holds true.
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Proor. Since ¢ > 0 and ¢(y) < 0 for 0 <-y < 1, it is sufficient to consider
y > 1. Then for all sufficiently large n,, whenever o(1/n,,y/n,) > 0,

% n11/26n1 o(1/ny,y/n,) H(y/n,) — H(1/n;)
nl¥) =

b
<(1+e¢ nl/zl
ny U(I/nl,knl/nl) nY?0(1/ny,y/n,) ( )ny A,

by an application of Lemma 2.1, where ¢ > 0 is any preassigned number. [Of
course, when o(1/n,,y/n,) =0, then ¢} () =0.] The first statement is
therefore clear.

Since ¢ is a nondecreasing, the limit () := lim, _,,, ¢(y) < @ exists. Thus
¢(y) = ¢(y) — (=) is a nonpositive, left-continuous, nondecreasing function
on (0, »), and the fact that Conditions 2 and 3 imply

fwfm(u Av)de(u)de(v) <o, foralll <s <,

can be shown exactly as in the proof of Lemma 2.5 in [5]. Since ¢(y) — 0 as
y — o, this is sufficient to conclude that (1.4) indeed follows. O

LEmMMA 2.6. Suppose that Conditions 2 and 3 hold along some subse-
quence {n} and k, is as in (1.1). Then there exist sequences of posi-
tive constants m, and l, such that 1<m, <lI, <k, and m, — %,
lnl/mnl — ®, knl/lnl — ®,

KD(ma) =5 Vile) = [[(N(2) = 1) do(e) - [“tde(t) - o(D),
S, 1

with ¢ satisfying (1.4) and AP(m,, ,1,) —p 0 as n, — . Moreover, if ¢ = 0,
then {1, } can be chosen so that

(2.10) nY?oe(1/ny,1, /n1)/A,, — 0.

Proor. Let 1 <m <! be arbitrarily fixed continuity points of ¢. Then,
noting that in [5] the proofs of Lemmas 2.1, 2.2 and 2.3 require only the
assumption of the weak convergence of functions corresponding to the present

sequence {¢}, }, Condition 2 and these lemmas together with (2.10) in the proof
of Lemma 2.2, all in [5], directly imply that

AD(m) =g fsm(N(t) —t)de(t) + fsl(t ~ 1) de(t) - ¢(S,)

_ fsm(N(t) — t) de(t) - flsltdgo(t) ~ (1)
and

AB(m, 1) g V= [((N() = ) de(t).
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Since we have (1.4) by Lemma 2.5,

limsup EV?2, < hmf f (u Av—uwv)de(u)de(v) =0.

I,m—»,l>m

Thus V,, , »p 0O as m,l > », l > m.

Using these findings, the construction of the sequences {m,} and {l Jis
accomplished by a routine diagonal selection procedure.

Finally, choose any number d > 1 and let ¢, and c, be continuity points of
¢ such that ¢; < 1, d < c¢,. Then, using Condition 2 and a weak convergence
argument, we obtain

limsupn,o®(1/n,,d/n,) /A%

n1—>co

lim ny [ [*"(u A v - uv) dH() dH(v) /A2,

ny—®e c1/ny “ey/ny

IA

J7 (s A ) de(s) do(t),

¢ ‘e
so that if ¢ = 0, then for each number d > 1,
nY2%s(1/n,,d/n,)/A, —»0 asn, > .
From this, the last statement of the lemma also follows. O

Proor oF THEOREM 1. Choose {m,} and {/,} according to Lemma 2.6.
Since o(l, /ny,k, /n,) <b, , by Condition 3 and Lemmas 2.4 and 2.6 there
exists a subsequence {n,} C {n,} such that we have (1.5),

MD(m,) =0 Vi(e),  AD(my,1,) =5 0
and
A(s)(lnz’ knz) _)9 V3(¢’ b: r, 0()

as n, — », where ¢ satisfies (1.4). Moreover, {n,} can clearly be chosen so that
in addltlon either o(l,,_/ny, k,,/ny) > 0 for all ny, or o(l,, /1y, k,,/ny) =
for all n,.

Since I, /m, — =, an elementary argument similar to the one used in the

proof of Theorem 2 of Mason [15] based on Satz 4 of Rossberg [19] shows that
A(m ) and A1, k,,) are asymptotically independent. Therefore, on ac-

count of 2.2) and the above convergence relations, (1.6) follows since by (1.9),
(2.11) V(e,¥,b,r,a) = Vi(e) + Vg(¢,b,1,a).

If ¢ =0 and 0 < a <« in Condition 3, then by Lemma 2.6, the sequence
{l,,} can be chosen so that (2.10) holds. It is easy to see that this implies (1.5)
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with b = a. Also, since ¢(1 +) > 0, if a = 0, then ¢(y) = 0 for all y > 1, by
Lemma 2.5.

It remains to establish the lower bound in (1.7). Since (0 + ) > 0, it is
enough to deal with x < 0. If n, = n is large enough,

by - - (kn)w =
" An n k,/n+xkY?%/n G,
nl2q

v

L (kY2 R, x \\"" hm udH(u
(—) —(1 + —1—2) fk"/ udH(u)
A, n n kY k,/n+zk/2/m G,
n'%q, 1 n\'% pm udH(u)
> p— — e —————————
T A, 1+x/k)?\R ) fz,,/n o(l,/n,k,/n)

n'/%q 1 1

A, 1+x/E 21—k /n'™

where r, is as in the proof of Lemma 2.3 and the formulation of the theorem.
Hence (1.7) follows by (1.1), Condition 3 and the proof of Lemma 2.3. O

Proor oF THEOREM 2. Before starting the proof we note that by Theorem
3(@) in [5] the random variable V(¢) is degenerate if and only if ¢ = 0. Also,
taking into account the bound (1.7), an application of the second part of
Proposition 2 in [4] shows that V,(¢, b, r, @) is degenerate if and only if b =
and ¢ = 0. Since V, and V; are independent, by (2.11) we see that the limiting
random variable V(p, ¢, b, r, a) is degenerate if and only if ¢ = 0, = 0, and
b = 0. Hence if we prove the first two statements of the theorem, the third will
be automatically true.

We distinguish three cases.

Case 1. For all n, large enough b, >0,

lim sup|¢y, (x)] <o forall —o <x < oo,

nl—nx)

limsuple, (y)| <» forall y > 0.

n1—>oo

Then by the Helly-Bray theorem we can select a subsequence {n 2} c{n}

such that ¢, — ¢ weakly and ®n, = ¢ weakly as n, - ®, where ¢ and &
have all the usual inherent propertles By Theorem 1, along a further subse-
quence {n3} C {n,)},

1 kng

(2.12) T,, = ;175&—3 Ean3+1—i,n3 T HFng
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converges in distribution to V := V(g,#,b,7,0),0 <b < 1,0 <r < (1 - )72
If g = 0, then b = 1, so that V is a nondegenerate. Hence by the convergence
of types theorem we have Condition 3 with some a > 0, and thus Conditions 1
and 2 with ¢ = a¢ and ¢ = a@, and V is of the form stated with ¢ being the
limit of (n,,, — C,)/A,, as ng = .

Cast 2. There exists a subsequence {n,} C {n} such that b, , > 0 for all n,
and

(2.13) nlzil_nmlwnz(x)l = o for some —o < x < ®

or

(2.14) lim g, (y)| =~ for some0 <y <.
ng—®

First we note that by the argument at the end of the proof of Theorem 1,
(2.15) lim suply,(x)l < (1 —a) " forall x <0,

n-—>ow

and by the first part of the proof of Lemma 2.5,
(2.16) limsupe,(y) <1 foralll <y <o,

n—>wo

At the beginning of the present section we saw that for T, in (2.12),

1/2
n 1/n
1 2) .
T,=RY + W, + R®:= — A

n

G,(u)dH(u)

1/2
k,/n
+ G (u) —u)dH(u
o J (Ga(w) ~ ) dH(w)
1/2 k
+ U""’"(Gn(u) - —1) dH(u).
an kn/n n
We have
(2.17) lim liminf P{{RY)| <M} >0 fori=1,2.

Moo n—owx
The case i = 1 is trivial because R’ = 0, if U, , > n"", and hence
P{RP| <M} 2 P(nU,,>1} »e™! asn > x,

for all M > 0. The case i = 2 follows exactly as in the proof of Lemma 2.8 in

[4],,using (2.15) and noting only that in the present generality of having a > 0

in (1.1), one has to replace ¢ in the limit in relation (2.24) of [4] by (1 — a)'/%c.
The next step is to derive from Satz 4 of Rossberg [19] that

(2.18) IRD| and |R®| are asymptotically independent.
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Since b,, > 0, we have Var(W,,)) = 1, for each n,, so that W, is obviously
stochastically bounded. Combining this fact, (2.17), (2.18) and the general
Lemma 2.10 in [4], and proceeding exactly as in the proof of Lemma 2.11 in [4],
we see that if the left-hand side of (1.8) is stochastically bounded then

(2.19) ny%a,,RY/(n¥%a,, v A,,) =0x(1), i=12,

where x V y = max(x, y). Thus assumption (1.8) implies (2.19).
Now we claim the following three properties:

(2.20) Jim nif%a,,/A,,= 0,
(2.21) limsuplyy (%)l < forall —» <x <o,
ng—ow
(2.22) lim suple} (y)l <= forall0 <y < oo,
ng—o

Note first that by (2.15) and (2.16), the relations (2.13) and (2.14) can only
occur for some x > 0 and 0 < y < 1, respectively. If (2.13) holds, we first work
on the set

k kL2
Q,(x,8) = {2 + "2 <[ 12
ng\ "™ n2 n2 - knz—'[xkn/zlrnz ’

where ¢ > x. On this, similarly as in the proof of Lemma 2.12 in [4], one has

(2.29) ny%a, RY ny’a,, [xkl/2 o.
. < v, (2
172 S T 7im 172
ny*a,, VA, T aY a,, VA, k7 "

ng

Since ¢, (¢) - », as n, — «, by (2.13) and since, with N(0, 1) standing for a
standard normal variable,
hm P{Q, (x,t)} = P[N(0,1) = (1 — a)/*(¢ + x)} > 0,
we see that (2.19) and (2.23) imply (2.20) and (2.21). To get (2.22), note that on
the set Q, (y) = {n,U, ,, <y}, we have
ny%, RY ny%a

2.24
( ) ny’a, v A,,

ng

CnY%, v A,,

ng

Pnly)-

Since the right-hand side here is —¢;; (y), for all n, large enough and since
P{Q,(y)} >1—-e?>0, as n, > o, we see that (2.19) and (2.24) imply
2. 22)
¢ If (2.14) holds, then we work first on O, (y) to get (2.20) and (2.22), and
afterwards on Q, (x,?) to get (2.21).

Clearly, (2. 20) (2 21) and (2.22) imply Conditions 1, 2 and 3 with a =0
along a further subsequence of {n,}.
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Case 3. There exists a subsequence {n,} C {n;} such that b,, = 0 for all
n,. In this case, the left side of (1.8) is equal in distribution to
Pny, — G,

k
. fU" "Z(G,,(u) - —)dH(u) y

ng n2

1/ng

nz

for all such n,. If we now denote the first two terms here by R$) and R®,
respectively, then of course we still have (2.17) for i = 1. Since H has 1o mass
on (1/ny,k,,/n,), we have RY) = 0,if 1/ny <U, ., <k, /1,y and we see
that

P(R®| <M} = P(1/n, < U, ., <ku/ns}~ 3

as ny, — %, so that (2.17) is also true for j = 2 along {n,}. Since (2.18) is still
obviously true along {n,} in the present case, we obtain as in Case 2 that
R = 0p(1) as n, > o, j=1,2. A simplified form of the corresponding
argument above now y1elds . 21) and (2.22). Thus, again, we obtain Condi-
tions 1, 2 and 3 with a = 0 along a subsequence of {n,}. The theorem is
completely proved. O

In the proof of Corollary 1 we shall require the following.

LEMMA 2.7. Let the functions ¢ and ¢ be as in Conditions 1 and 2 and
consider the constants 0 <b <, 0 <a<1land 0 <r <1 — a)/% Assume
that ¢ satisfies (1.4) and ¢ satisfies (1.7). Then the random variable
V(p, ¥, b,r, a) is a nondegenerate normal if and only if ¢ =0, ¢ =0 and
b > 0, in which case V(p, §, b, r, a) is N(0, b?).

Proor. The sufficiency part is trivial. Suppose that V(e,y,b,r,a) =
V(o) + V4, b, 7, a), where we use (2.11), is nondegenerate normal. Since
Vi(e) and V,(¢, b, r, @) are independent, the Cramér characterization forces
both to be normal. Theorem 3(i) in [5] says that Vi(¢) has an infinitely divisible
distribution without a normal component. Hence the only way it can be
normal is when it is degenerate, which again by Theorem 3 in [5] implies
¢ = 0. Since then in fact Vi(¢) =0, V¢, b,r,a) must be nondegenerate
normal. Using now condition (1.7), Proposition 1 from [4] implies that this can
happen only if 4y =0and b > 0. O

ProOF OF COROLLARY 1. First we prove the “if”’ part. Let {n,} be an
arbitrary subsequence of {r,}. Since Conditions 1, 2 and 3 hold along {n,} with
A,, = ny%a,,»=0,¢=0and a = 1, Theorem 1 and Lemma 2.7 imply the
ex1stence of a subsequence {r;} such that

k

s ng

Z Xn3+1—i,n3 ~ Mg /n13/2an3 g9 N(O’ 1)
i=1

This of course implies that the same is true along the original {r}.
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Now suppose that (1.10) holds. Let again {n,} c {n,} be arbitrary. By
Theorem 2 there exists a further subsequence {r 3} C {n,} such that Conditions
1, 2 and 3 hold along {n} with A, = A} and appropriate functions ¢ and
satisfying conditions (1.4) and (1.7), respectively, and a constant 0 < a < ,
and the distribution of Z is necessarily that of V(e, ¥, b, r, @) + ¢ with some
constant 0 <b <a,0 <r <(1 —a)”?and —» < ¢ < . Thus by Lemma 2.7,
¢=0,¢=0and b > 0. Hence a > 0, yielding that Conditions 1 and 2 hold
along {ng} with A, =n¥%a,, ¢ = 0and ¢ = 0. Since {n,} was arbitrary, the
same must be true along the original sequence {n,}. O

The proof of Corollary 2 requires some preparations concerning the asymp-
totic behavior of the functions ¢, and ¢,. First of all we note that, inverting
the results of Section 2.3 in de Haan ([9]):

F € A(c) with 0 < ¢ < » if and only if —H(s) = s °L(s),

0 <s < 1, for some function L slowly varying at zero.

Fe Ale) with —o<c<0 if and only if —H(s)=A —

(2.26) s °L(s), 0 <s <1, for some function L slowly varying at
zero and some finite constant A.

(2.25)

The following lemma is a slight extension of Lemma 2 in [6].

LEMMA 2.8. Let L be any function defined on (0, 1), bounded on compact
subintervals and slowly varying at zero. Let {k,} be a not-necessarily integer-
valued sequence satisfying (1.1) and {l,} be any sequence of positive numbers
such that k,/l, = © as n = ». Then for any 0 < v < =, we have

k.7 [k, LY " (1,
i (52 <(2))/1) 23]} -
n—o n n n n
Proor. The two cases @ > 0 and a = 0 follow from Properties 1 and 2 of
Corollary 1.2.1. in [9], respectively. O

Lemma 2.9. If F € A(c) for some ¢ + 0 and (1.1) holds, then with the
respective L functions from (2.25) and (2.26), we have the asymptotic equalities

o(1/n,k,/n) ~K,(1/n)"*°L(1/n), ifc> and a > 0;
1/2

o(l/n,k,/n) ~ (/k"/nu_1L2(u) du| , ifc=1landa=0;

1/n

o(1/n,k,/n) ~K,(k,/n)"* °L(k,/n), ifc<%,¢+0and a=0,
as:n — «, where ’

x| @ /(@ =-o- 2¢)))"%, ife<i,c#0,
(2¢/(2¢ — 1)), ife> 1.
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PrOOF. The case ¢ > 3 can be inferred from Lemma 1 in [6] and Lemma
2.8. The cases ¢ = 5 and 0 < ¢ < } are proven in Lemma 6 in [7], and the
same proof given there for 0 < ¢ < 3 also works for ¢ < 0. O

LeEMMA 2.10. Whenever F € A(0) and (1.1) holds with a = 0,
(2.27) linésl/z{H(/\s) — H(s)}/o(0,s) =2"12log A forall 0 <A <o
sl

and
(2.28) o(0,s) =s'2l(s) for some function | slowly varying at zero.

Proor. Assertion (2.27) follows directly from Lemmas 4 and 6, while (2.28)
follows from Lemmas 2 and 6 of Lo [14]. O

LemMA 2.11. Assume F € A(c) for some ¢ and that (1.1) holds. If a > 0,
then with the function , defined in (1.13), for all x € R,

) 0, ifc> 3,0orc=3and d(0,a) = x,
lim ¢,(x) = . L )
n—>o Y (x), ifc<g,orc=3and o(0,a) <x,
while if a = 0, then ¢,(x) = 0 forallx € R as n = », for any c.

Proor. The case a > 0 follows directly from (1.14) and the definition of

Un
Consider now a = 0. In this case we claim that for all 0 < A < «, the
following limiting relations hold which clearly imply the second statement:

. k2{H(Ak,/n) — H(k,/n)}
lim

n—o n1/2a

n

K Y1 - 1"%)sign(c), ifc<3,c+#0,
={2"12]og A, ifc=0,
0, ifc> 1.

Here the cases ¢ < 0 and 0 < ¢ < 1 follow from (2.26) and (2.25) and the third
statement of Lemma 2.9, the case ¢ = 3 follows by (2.25), the second state-
ment of Lemma 2.9 and by an application of Lemma 4 in [7], and the case ¢ > 3
follows from (2.25) and the first statement of Lemma 2.9 via an application of
Lemma 2.8. Finally, the case ¢ = 0 will follow directly from (2.27) of Lemma
2.10 once we can show that when ¢ = 0,

(2.29) o(l/n,k,/n) ~a(0,k,/n) asn — .

But this is immediate from the inequalities 0%(0, k,/n) > o*(1/n,k,/n) >
a0, k,/n) — 0%0,1/n) and (2.28) of Lemma 2.10 via another application of
Lemma 2.8. O
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LemMma 2.12. If F € A(e) for some ¢ and (1.1) holds, then

K;Y(1-y7°) forally >0,ifc> 3,

r}ﬂ%(y) 0 forally > 0, ifc < 3.

Proor. The case ¢ > 3 follows directly from (2.25) and the first statement
of Lemma 2.9 for any 0 < a < 1.

In the case of ¢ < 3, we first consider the subcase & = 0. Then for ¢ = % the
assertion of the lemma follows from (2.25), the second statement of Lemma
2.9 and Lemma 4 in [7]. For ¢ < 3, ¢ # 0, the assertion follows by (2.25),
(2.26), the third statement of Lemma 2.9 and an application of Lemma 2.8.
When ¢ = 0, the assertion follows from (2.29) and the two statements of
Lemma 2.10, via one more application of Lemma 2.8.

The subcase a > 0 of the case ¢ < 3 follows from the former subcase when
a = 0 if we only notice that for a, = 0(1/n, %, /n) in the denominator of ¢,
we have a, > o(1/n,m,/n) for all large enough n for any sequence {m,}
such that m, > wand m,/n - 0asn — . O

ProOF OF COROLLARY 2. The boundary case ¢ = 3 and (0, a) =  follows
directly from Lemmas 2.11 and 2.12 combined with Corollary 1.

Next, when ¢ < 3, or ¢ = 3 and 0(0, a) < », one notes that for r, in the
proof of Lemma 2.3 or in the formulation of Theorem 1 and for r, in the
definition of M(a) we always have r, — r, as n — « along the whole sequence
{n} of the positive integers. Thus by Lemmas 2.11 and 2.12 and Theorem 1,
applied with A, = n'/%a,, ¢ = ¢, where ¢y, =0, ¢ =0 and a = 1, for any
subsequence {n,} C {n}, there exists a further subsequence {r,} c {n;} such
that the statement of Corollary 2 holds along {n,}. Hence it holds along the
whole sequence {n}.

Finally, when ¢ > 3, it can be shown using Lemma 1 in [6] and Lemma 2.8
that for any sequence {/,,} of positive numbers such that [, » »and &, /], - «
as n - », we have o(l,,/n, k,/n) ~ K(l,/n)"/27°L(l,/n) as an extension of
the first statement of Lemma 2.9, which by (2.25) and a final application of
Lemma 2.8 yields

o(l,/n,k,/n)/o(1/n,k,/n) >0, asn — .

Thus by Lemmas 2.11 and 2.12 and Theorem 1, applied with A, = n'/%a,
v =0, o(y) =K, (1 —y°) and b = 0, we obtain that for every subsequence
{n,} c {n}), there exists a further subsequence {n,} C {n} such that the state-
ment of Corollary 2 holds along {n,}. This of course gives the same statement
along the whole sequence {n}. O

" 3. Discussion of the conditions and examples. The next two proposi-
tions provide equivalent forms for Conditions 1 and 2, respectively. The first of
these forms is a probabilistic interpretation of the respective condition. The
second one, following from the first, is a reformulation of the condition in
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terms of the underlying distribution function F. That the latter reformula-
tions might be possible was suggested to us by a referee.
For ease of notation we set

el 2]

v al)lfi-2) )

and for a nondecreasing function % defined on a subset S of the real line R,
we define its left-continuous inverse by

h~'(x) =inf{s € S:h(s) =x}, x€R,

where we agree that the infimum of the empty set is +«. Let Z denote a
standard normal random variable and Y denote an exponential random vari-
able with mean 1 and let {%,} be a sequence of integers satisfying (1.1) with
a=0.

and

ProrosiTION 1. Let ¢ be a nondecreasing, left-continuous function on
(=, ) such that y(0) < 0 and ¢(0 +) = 0. Condition 1 holds along {n,}
with this ¢ if and only if

1/2

(31) Xl {Xn1+1-—knl,n1 - cnl(knl)} g ~ l/’(Z) asn; — «,

n

- which happens if and only if

1
(32) 7 (1 = Flea(k) ~:274,)) k)

>y~ H(x) asny >,
for every continuity point x of the distribution function of —y(Z).
PROPOSITION 2. Let ¢ be a nondecreasing left-continuous function on (0, )

such that ¢(1) < 0 and ¢(1 + ) > 0. Condition 2 holds along {n} with this ¢
if and only if

1
e

ny

3.3 X —c -4 —@(Y asn‘l——)oo,
n, 9

ny,ny
whieh happens if and only if
(3.4) nl{l - F(c,, - xAnl)} - ¢ Y(x) asn, - x,

for every continuity point x of the distribution function of —(Y).



THE ASYMPTOTIC DISTRIBUTION OF EXTREME SUMS 807

Proor. First we consider Proposition 1. For the uniform (0,1) order

statistics U, , < -+ < U, , as in (1.3), we introduce
n k,
W, n= W{Ukmn_ 7}, n>1.
Note that by (1.3),

Xn+1—kn,n =g Q((l - Ukn,n) _) = _H(Ukmn)’

and hence, as n — o,
k12 i/,
A_{Xn+1—kn,n - cn(kn)} =9 — A l/’n(Wkn,n) + OP(]')‘

n

On the other hand,
1/2

n*?a, n'%q,
P{ - An '/jn(Wk,,,n)EB A An wn(Z)EB

< sup|P{W, , € B} - P{Z < B},
B

sup
B

where the supremum is taken over all Borel sets B on the real line, and this
upper bound goes to zero as n — » by Proposition 2.10 of Reiss [18], where
earlier references concerning this result can also be found. Hence (3.1) holds if
and only if

1/2

ny“a,
1(2) = ——(2) - ¥(2)

ny
almost surely as n; — », and it is easily checked that this happens if and only
if Condition 1 holds along {n,}.
The equivalence of (3.1) and (3.2) follows by a standard argument as given
in Watts, Rootzén and Leadbetter ([22], page 654).
The proof of the first statement of Proposition 2 is the same as above upon
noting that

n

1 nl/?
A_n'{Xn,n_cn} 9 ~ A

¢n( nUl,n) + OP(]')

and, with the supremum taken again over all Borel sets B on the line,
sup|P{nU,; ,€B} —P{Y€B}| -0 asn — .
B

n

The latter follows from Theorem 2.6 of Reiss [18].
The equivalence of (8.3) and (8.4) is an easy exercise well known in extreme

value theory. O

We note that since ¢ and ¢ can only be constants if they are zero, the limits
ih (3.1) and (8.3) are nondegenerate if and only if ¢ = 0 and ¢ = 0, respec-
tively. If ¢ = 0, then we have (3.2) with

-1 _ [ =, ifx<O,
4 (x)—{w, x>0
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and if ¢ = 0, then we have (3.4) with
-1 _ 0, ifx <0 )
¢ (%) {oo, if x > 0.
Our first example shows that limiting distributions in Theorem 1 can arise
along subsequences of {n} with ¢ # 0,  # 0 and b > 0.

ExaMpPLE 1. Let 1 <k, < n be integers such that k2, — » and kn/n -0
as n— o let {ny,n,,.. } “be a subsequence of {n} ‘and d,, 721} be
a sequence of arbitrary positive numbers. For j large enough to make

k,;/n; < 3, consider

k2 k

el
Gl
3

H|Z], if <s<22,

n; n; 4nj n;

H ) g g ! k, ki

=(H - — <5< — - —,

(s) n; i’ ! 2n; s n; 4n;
1 1 1
H{— +|-kY%Md,, if <s§ < —
k. Jo njk 2n;
n; njy1 J

Clearly, a quantile function @ with this corresponding H function exists as
long as
< thatis, &} <o Lt

- ) )
N1 n;k, . 2 n;

. for all large enough j. (This is the case, for example, if n; = [2/ log /] and
= [237'€/] ) Noting the asymptotic equality

1k k RL/2 k kL/2)\?
o?| — = |- | g
n;’ n; n; 4n; n; 4n; i
Yo d2? as j — o,

n
n: J
J

it is easy to show that

: 1
-1, if-w<x< -7,

lim ¢, (x) = ¢*(x) = { ’
joow Y O,

) -1, ifo<y<i,
}ggc¢nj(y) =) =1,

w ’

and that
limo(Z, Sk /n; )/o(1/n;, k, /) =

J—)OO
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for any sequence {/ »,} such that l,,»»andl, /k, — 0as j— . Moreover,
r,,— las j — ». Thus we have

k

k% d {Z X, +1-i,n, —un,} —4 V(¢*,¥*,1,1,0), asj— =,
i=1

where V(¢*, ¢*,1,1,0) = N(3) + Z, + min(Z, + $,0) and, by simple compu-

tation, p, = —k, H(k, /n;) +d,(k, —k;/?/4).

We emphasne that the numbers d, >0 determlnlng the jump sizes of the
quantile function @ are arbitrary in the previous example. Therefore, they can
be chosen so that the underlying distribution has moments of arbitrarily high
order.

The second example relates the convergence in distribution of extreme sums
along subsequences to that of the whole sum.

ExamMpLE 2. Suppose that F(0) = 0 and there exist a subsequence
{n,ny, ...} c{n} and constants A, > 0and B, such that

j
(3.5) A;jl{ Y X - an} —g W asj—wx
i=1

where W is an infinitely divisible random variable with a nondegenerate
nonnormal component. It is shown in [5] that we can choose

1-1/n;
B,Lj=njf0 Q(s) ds.

Note that necessarily Var(X) = «, so that we must have
(3.6) im A, /nj/? = .

J—)Oo

By Theorem 5 in [4], for each 0 < 8 < 1,

[Bnl
Z Xi,n _ nj‘[ﬁn]/nQ(s) ds = Op(nl/z) as n — w.
i=1 0

Thus by (3.6), for each 0 < 8 < 1,

nj
1-1
AT X[ Q(s)ds) oo Woas j o .
i=[Bn;l+1 (Br;l/n;

Hence by a simple diagonal selection procedure we can find a sequence (%, }
such that k ~— oand &, /nj—=0 and

_knj/nj

k,
_ g . 1-1/n; .
An;{ L Xoiain, =, [ 77 Q) ds} oW asj - .

Our last example connects Conditions 1, 2 and 3 with the notion of
stochastic compactness for sums and maxima and provides a relatively general
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situation when the scaling factor A, is the same for extreme sums, whole
sums and maxima. We say that F is stochastically compact, written F' € SC, if
there are sequences A, > 0 and B, such that for every subsequence {m ;} C
{n}, there exists a further subsequence {n;} ¢ {m} such that (3.5) holds with a
nondegenerate W. We call {X, ,} stochastlcally compact if there exists
a sequence C, > 0 such that for every subsequence {n} C {n}, there exists a
further subsequence {n"} C {n'} such that X,. ,./C,. converges in distribution
to a nondegenerate random variable as n" — o,

ExampLE 3. Assume that F(0) = 0 and F is not in the domain of partial
attraction of a normal law. Corollary 12 in [5] says that F' € SC if and only if
X, , is stochastically compact. (This was proved earlier by de Haan and
Resnick [10].) In this case one can choose, according to the same corollary,
C,=A,=a(n)=n"%(1/n,1-(1/n)), where o(-, ) is defined following
(1 3). Also for such an F it is readily inferred from Corollary 10 in [5] that

F € SC if and only if

lim sups'/2@Q(1 — As)/a(s 1-s) <o forall0 <A <.
s|0

Combining these two facts with the simple observation that a(n) > n'/%a,,
n > 1, for any sequence {k,)} satisfying (1.1) with @ = 0 or & > 0, we easily see
that whenever such an F is in SC, each subsequence of {n} contains a further
subsequence along which Conditions 1, 2 and 3 are simultaneously satisfied
with A; = a(n) for some ¢, ¢ and 0 < @ < «. In fact the stochastic compact-
ness of the maxima forces ¢ # 0.
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