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THE RANGE OF STABLE RANDOM WALKS

By JEAN-FRANGOIS LE GALL AND JAY ROSEN?!

Université Pierre et Marie Curie and The City University of New York

Limit theorems are proved for the range of d-dimensional random
walks in the domain of attraction of a stable process of index 8. The range
R, is the number of distinct sites of Z? visited by the random walk before
time n. Our results depend on the value of the ratio 8/d. The most
interesting results are obtained for 2/3 < 8/d < 1. The law of large
numbers then holds for R,, that is, the sequence R,/E(R,) converges
toward some constant and we prove the convergence in distribution of the
sequence (var R,)"/%(R, — E(R,)) toward a renormalized self-intersec-
tion local time of the limiting stable process. For B /d < 2/3, a central limit
theorem is also shown to hold for R,, but, in contrast with the previous
case, the limiting law is normal. When B/d > 1, which can only occur if
d = 1, we prove the convergence in distribution of R,/E(R,) toward some
constant times the Lebesgue measure of the range of the limiting stable
process. Some of our results require regularity assumptions on the charac-
teristic function of X.

1. Introduction. Let X =(X,,n > 0) be a random walk on the d-
dimensional integer lattice Z¢,

where x, € Z? and the random variables (Y;,i > 1) are independent identi-
- cally distributed with values in Z¢. We assume for convenience that the law of
Y, is not supported on a proper subgroup of Z¢. In particular, d is the genuine
dimension of the random walk. The range R, of the random walk is the
cardinality of the set {X,, X;,..., X,}, that is, the number of distinct sites
visited by the random walk up to time n. Asymptotic properties of the
sequence (R,) have been investigated by many authors after the pioneering
work of Dvoretzky and Erdos [2]. Following Jain and Pruitt [7], we consider
two specific issues:

1. The law of large numbers: Does R,/E(R,) converge almost surely?
2. The central limit theorem: Does (var R,)~/*(R, — E(R,)) converge in
distribution?
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Two basic results concerning question 1 have been obtained by Kesten,
Spitzer and Whitman (see [21], page 40) and Jain and Pruitt [7]. Kesten,
Spitzer and Whitman proved that the strong law holds for all transient
random walks. More precisely,

(1.a) lim an =gq as.,

now N
where g = P[X, # %y, X5 # %g,...] > 0 if X is transient. Jain and Pruitt
proved that the strong law holds for all recurrent two-dimensional random
walks.

Question 2 was investigated by Jain and Pruitt [6, 8]. They proved the
central limit theorem for R, with a normal limit law for all random walks in
Z°, d > 3. More recently, Le Gall [9] was able to prove the central limit
theorem for R, in the case of two-dimensional random walks with zero mean
and finite second moments. It is remarkable that in this case the limit law is
not normal but is a renormalized self-intersection local time of the planar
Brownian motion.

The goal of the present paper is to study questions 1 and 2 in the case of
stable random walks, meaning that Y, is in the domain of attraction of a
stable law. More precisely, we will assume the existence of a constant 8 € (0, 2]
and a function b(n) of regular variation of index 1/8 such that

(1b) b(n) 'X, -2, U,

n—w

where the symbol —;, means convergence in distribution and U = (U,, ¢ > 0)
is a nondegenerate stable process of index B in R?. Here the world nondegen-
erate means that the law of U, is not supported on a hyperplane. It follows
from (1.b) that U must in fact be strictly stable, in the sense that U,, =4, A'/2U,
forany A > 0, ¢ > 0.

Observe that we do not allow a centering sequence in (1.b). This restriction
is essential to our methods, especially when B > 2d/3. In the case when a
centering sequence is allowed, some partial results may be derived from the
work of Jain and Orey [5] (see also Jain and Pruitt [7]).

Under (1.b), we obtain essentially three types of results, depending on the
value of the ratio B8/d. Some of these results require additional assumptions
on the law of X: see Sections 4, 6 and 7 for more precise statements.

Resurt 1. If B < 2d/3, the random walk is transient and the strong law
holds for R, by (1.a). We prove in Section 4 that the central limit theorem also
holds and that the limiting distribution is normal. To be specific, if g(n) =

r_1 k%b(k)~%¢, we have

Rn—E[Rn] (d)

(1) g

where o is an explicit constant and N denotes a standard normal variable.

oN,
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When B < 2d /38, g(n) increases to a finite limit, so our result can be stated as
Rn - E[ Rn] @)
‘/E n—ow

If B=2d/3 and we introduce the slowly varying function s such that
b(n) = n'Ps(n), we see that

(1.d) oN.

n

g(n) = ¥ k7ls(k) ™™
k=1

In this form, it can easily be proved that g is slowly varying (see Lemma 2.2).

ResuLT 2. If 2d/3 < B < d, the random walk may be either transient (this
is automatic if B < d) or recurrent. We prove that
(l.e) limn~'A(n)R, =1,

n—o
where h(n) is the truncated Green function
n
h(n) = Y P[X, =X,].
k=0

Note that if the random walk is transient A(n) increases to ¢~ so that (1.e)
trivially reduces to (1.a). In any case, A is easily seen to be slowly varying. The
convergence in (1l.e) is proved to hold almost surely, except in certain cases
when B = d = 1, where we only obtain L?-convergence (it is actually plausible
that the almost sure convergence holds in all cases when B =d = 1). The
° central limit theorem also holds for R ,, but the limiting distribution is now a
renormalized self-intersection local time of the process U, denoted by vy,
(1) n=2h(n)%b(n)*(R, - E[R,]) —2% — y,.

n—ow

Again, if X is transient, (1.f) reduces to
@
(1g) n=%(n)"(R, - E[R,]) 352 - a*vu-

A precise definition of vy, is given in Section 6. It is interesting to note that
the condition B > 2d /3 is exactly the one needed to ensure the existence of y,,
(see [14], [15D.

ResuLt 3. If B > d, which implies d = 1, the strong law does not hold for
R,. Instead we prove

(Lh) b(n)‘lé @

n p—oo

m(U(0;1)),

where m denotes the Lebesgue measure on R and U(0;1) = {U,;0 < s < 1}.
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The following table summarizes our main results:

LLN CLT
. 2d 1 R,-E[R]@
< — —R, > qas. —— "0
3 n 1 yng(n)
2d h(n b(n)?h(n)? ()
5 <Bs=d (n)Rn——>1a.s. LZ()(R,,—E[R,L])—’ -y
g>d il (U(0; 1))
= m :
b(n) @

Among these results, (1.d), (1.e) and (1.h) are most satisfactory since they
hold without any other assumption than (1.b). The other results, especially
(1.f), require some regularity of the characteristic function of Y;, which is
discussed in Section 5. When B > 1, this regularity assumption is automati-
cally satisfied (Proposition 5.4). In particular, the results described in the table
are valid for all two-dimensional random walks that satisfy (1.b).

In view of (1.f), we can see that our basic assumption that Y; be in the
domain of attraction of a stable process is very natural. For (1.f) shows that
the limit process U actually appears and it is well known that the only possible
limit processes for random walks are the stable processes.

Let us describe the connection between (1.c),...,(1.h) and the previously
mentioned results in the literature. In high dimensions (d > 3), we are in the
regime B < 2d/3 and both (1.c) and (1.d) are special cases of the results of [8].
However, (1.d) may have some interest even in the case d = 3, since it gives
some more information on var R, than is available in [8]. In lower dimensions
(d = 1,2), (1.c) and (1.d) seem to be new. When d = 2, (1.e) is a special case of
the general result of Jain and Pruitt [7] for two-dimensional recurrent random
walks. Thus the main interest of (1.e) is when d = 1, since not many results
are known for the range of one-dimensional random walks (see the discussion
in [7]. Assertions (1.f) and (1.g) extend the main theorem of [9] concerning
planar random walks with zero mean and finite second moments. The limiting
" result (1.h) extends a theorem proved by Jain and Pruitt [7] in the case of
random walks with zero mean and finite second moments. As a final remark,
one may compare our results (1.f) and (1.g) with the recent work of Dynkin [3].
In the case of planar random walks with zero mean and finite second mo-
ments, Dynkin proves limit theorems for certain functionals of the path
between 0 and n, with convergence towards k-multiple self-intersection func-
tionals of the planar Brownian motion. The limiting variable y; of (1.f) and
(1.g) is a special case of these functionals when & = 2. One may expect that a
more precise asymptotic expansion of R, would also involve functionals
associated with 2 multiple self-intersections of the process U (see [12, 16, 17]
for related results).
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We now sketch the main arguments of the proof of our central limit
theorems for R,. We use the following convenient notation:

X(a,b) ={X,;a<n <b}

and for any random variable V,
{Vv}=V-E[V].
We denote by |A| the cardinality of a finite set A. Take n > 1 and let p > 1 be
an integer which may depend on n. Then
{R,} = {IX(0,n)l}
p
£ |
i=1
» . . .
-y { X(O, ! ln) ﬂX(l 1n,in) }
i=2 p p p
The right-hand side is the difference of two terms that we denote by A(n, p),
B(n, p).

If B < 2d/3, we will be able to choose p = p(n) such that p(n) — « as
n — « and moreover B(n, p) is small in comparison with A(n, p). Note that
A(n, p) is a sum of independent variables. An application of Lindeberg’s
theorem on triangular arrays then shows that the sequence {R,}, suitably
normalized, converges in distribution towards a normal law.

If 2d/3 < B < d, we are in the opposite situation. If we take p large but

fixed with respect to n, we will see that A(n, p) is small in comparison with
B(n, p). Note that B(n, p) is a sum of intersection terms, each of which can
be interpreted as the number of intersection points of two independent ran-
dom walks. By using the results of [18], we can prove that B(n, p), suitably
normalized, is close in distribution to the renormalized intersection local time
Yu:
It is worth noting that these arguments can also be used to study the
asymptotics of the Wiener sausage in R?; see [11, 12]. In fact, it is very
plausible that analogues of (1.c),...;(1.h) hold for sausages associated with
stable processes in R? (see also [17]).

The paper is organized as follows. Sections 2 and 3 contain a number of
preliminary estimates. In particular, we obtain bounds for the moments of the
number of intersection points of two independent walks, which play a major
role throughout this work. Section 4 deals with the case B < 2d /3. Several of
our arguments are here taken from Jain and Pruitt [7]. In Section 5 we derive
precise estimates on Green functions and hitting times of points, to be used in
the last two sections. In Section 6, we treat the case 2d/3 < B < d. The
general outline is the same as in [9], but we use some new ideas which allow us

to simplify certain arguments and to solve some open problems of [9]. Finally,
Section 7 is devoted to the case B > d.
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2. Notation and preliminaries.

2.1. We consider a random walk X = (X,, X;,...) taking values in the
lattice Z¢. For x € Z¢, the notation P,[-] will be used to denote events related
to the random walk starting at x. When x = 0, we will simply use P[-]. Unless
otherwise indicated, we will always assume that the random walk starts at 0.
The transition probabilities of the random walk are denoted by

P(x,y) =P[X,=y]=P[X, =y —x].
We will also use the hitting times
T, = inf{n > 0; X,, = x} (inf @ = ).
Let B € (0; 2]. The following two assumptions play a basic role in this work.

AssuMPTION Al. The random walk X is in the domain of attraction of a
nondegenerate stable process, meaning that there exists a function &(n) of

regular variation of index 1/8 such that

b(n)'X, —, U,

n—oo

where U, is a nondegenerate stable random variable of index 8 in R¢.

AssuMpPTION A2. The random walk X is adapted, meaning that, with P,
probability 1, X does not stay on a proper subgroup of Z¢.

Assumption A2 is not really restrictive. If it is not satisfied, we may consider
the smallest subgroup H of Z¢ on which the random walk takes place and
then find a linear isomorphism ¢ from H onto Z™ for some m < d. Then
¢(X) is an adapted random walk on Z™, which satisfies Assumption Al if X
does.

Assumption Al is fundamental. Without loss of generality (see [4], page
577-580), we may and will assume that the function & is continuous and
monotonically increasing from R, onto R, and that 5(0) = 0. We denote by [
the inverse of b.

2.2. We will first state a few elementary facts about regularly and slowly
varying functions (we refer to [1] for more detailed information on this
subject). By definition of a regularly varying function we have

b(x) =xBs(x), x>0,
where s: (0,0) — (0;») is a slowly varying function, meaning that for any
c>0, )

(2.a)

A basic property of slowly varying functions ([4], page 277) states that the
convergence (2.a) holds uniformly when ¢ varies over the interval [¢, 1] for any
e> 0.

s(ex)

x>0 s(x)
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The function [ is of regular variation of index B and thus
I(x) = xPt(x)
for some slowly varying function ¢. It is easily checked that
(2.b) t(x) =s(l(x)) 7"

The following lemma is a simple consequence of the definitions. We stéte it for
the function [/, but it is clear that a similar result holds for b, with B replaced

by 1/B.

LEmMaA 2.1. For any & > 0, there exist two positive constants C,, C. such
that, for any y, z with 1 <y < z,

(2.0) C.yP~* <l(y) < ClyP™,
(2.d) c (f)ﬁ—e PO C’(i)ﬁﬂ.
\y I(y) = “\y
Note. Throughout this work, C,C’,C"... will denote constants whose

values may vary from line to line. When we wish to emphasize the dependence
of a constant on a parameter ¢, we write C,, C., and so on.

We shall also need the following elementary fact about slowly varying
functions.

LemMa 2.2. Let f: R — (0; %) be a slowly varying function. For x > 1, set

=] £(i)
k(x) = Z PR
i=1 !
where [x] denotes the integer part of x. Then k is slowly varying and f(n) =
o(k(n)) as n — .

Proor. We first prove the second assertion. Take ¢ with 0 < ¢ < 1. Then

n 1 1
sz £ B2 g rom,

i=[en] U

since f is slowly varying. The desired result follows since ¢ can be taken
arbitrarily small. In order to get the first assertion, note that

[x] i 1
s ke = £ L o fog2) ) ok B

i=[cx]+1
REMARK. Since % is increasing it also follows from Lemma 2.2 that for any
0 <a <1, we have f(n)* = o(k(n)).
+ 2.3. We will now obtain an equivalent form of Assumption Al in terms of
the characteristic function of X;:
o(¢) = E[expit - X,] forée T4 = (-m, =%
We first need some information on the characteristic function ® of U,. It is
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well known [13] that for any ¢ € R — {0},
®(£) = Elexpié - Uy] = exp - |§|ﬂs(l—§—|),

where S is a continuous complex-valued function-defined on the sphere S¢-1,
such that

ReS(w) 2a>0, w81,

for some positive constant a. The latter property follows from the fact that we
have assumed U, to be nondegenerate, which implies that its law is not
supported on a hyperplane.

ProPOSITION 2.3. Under Assumption Al we have

- _g[L) s :
o) =1 1118 (E) \ °(l(1/lfl))
as || tends to 0.

Proor. For |£| small enough we may write

¢(£) = exp — ¥(§),

where the function ¢ is defined on a neighbourhood of 0 in R? and takes
values in {z; [2| < 1}. Take £ > 0. By Assumption Al we have for |¢| < 2 and
for n large enough, say n > n,,

e -0 55| - o -t )

The properties of the exponential function then imply the existence for each
pair (n, £) (n > n,, [¢] < 2) of an integer k(n, ¢) such that

<e.

< Ce,

3 3 .
(i) - Psl) - om0

where the constant C does not depend on & (the point is that S is bounded).
We may assume that Ce < 1. Then obviously k(n,0) = 0 [note that ¢(0) = 0].
On the other hand, for (£, |¢'] < 2,

2mlk(n, £) = k(n, &)l < |F(£) — F (8] + 2Ce

for some continuous function F,. It follows that if [¢ — ¢’| is small enough, we
must have k(n, ¢) = k(n, ¢). We conclude that k(n, ¢£) = 0 for any £. Hence,

&) _oeel £ .
'”"’(b(n)) 'g's(lfl) <¢C

for [¢(] < 2, n > n,.
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Now choose & > 0 so small that for any £ with 1 —§ < [¢| <1 + 6,

ers(i5) - (i | <<

Thus, for 1 — 8§ < [£] <1+ 6, n =n,,

*”(H%) (él)

Since b is regularly varying, we have b(n + 1)/b(n) — 1, so that for n € T?,
with |n| small enough, we may find ¢ and n = n(n) > n, such that

< (C+ 1)e.

and 1-8<|é <1+6.

77 b(n)
It follows that

< (C+ 1)e.

n(mu(n) - 8

’(111;18) snm = ’(Ilflll) <l(1_|:-li)‘
Hence, for |n| small,
(e (5
<|n(n)¢(n) - (I I) (%) - n(n)
<(C+ 1)s+C'l(|ll)_1(l(ll;a) _l(llm;lé))’

where C' is a bound for [I(1/[n])¢(n)| [the existence of such a bound follows
from (2.e)]. The desired result follows from (2.f), since ¢ and & can be chosen
arbitrarily small. O

(2.e)

Now note that

(2.f) g ()l

Since Re S is bounded below by some strictly positive constant, the proposi-
tion implies that

'

(2.8) exp l(l/l-fl) < le(O)l = e = 377755

for some positive constants C, C' and for ¢ € T<¢ small enough.
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If we assume that the property of the proposition is satisfied, we have at
once

¢(%) == ®(¢), ¢£eR%

Hence,

- d
b(n) X, 552 U,
so that Assumption Al is satisfied. In fact one can prove more than Al. For
each n > 1, let X = (X, ¢ > 0) be the process

XM =b(n)"X,y (t20).

Then the sequence X converges in distribution, in the sense of Skorokhod’s
J1 topology, toward the process U = (U,,t > 0), defined as the unique in law
stable process in R? whose marginal distribution at time 1 is U,. We refer to
Skorokhod [20] for a proof of this result as well as for the definition of the J1
topology.

2.4. In terms of the characteristic function ¢, Assumption A2 means
exactly that, for £ € T?, ¢(£) = 1 if and only if & = 0. However there may
exist nonzero values of ¢ for which [p(£)| = 1. The random walk is called
aperiodic if and only if |¢(£)] < 1 for all £ € T? — {0}. This is equivalent to the
property that the law of X, is not supported on a set of the form x + H, with
x € Z% and H a proper subgroup of Z¢ (see Spitzer [21]; the terminology in
Spitzer is slightly different from ours: What we call aperiodic is strongly
aperiodic for Spitzer).

Some of the results of the present work are more easily proved for aperiodic
random walks and can then be extended to the adapted case. We will now
describe how this extension can be made. Suppose that X is adapted and set

Z={te T le(é)l = 1}.
Note that for ¢ € &, we have
expié- X, =0 as.

for some w € C such that |o| = 1. Let us identify T¢ with the quotient group
R?¢/(27Z)%. Then # is a finite cyclic subgroup of T¢. Set = |#|. The number
7 is called the period of X. Obviously 7 = 1 if and only if X is aperiodic. Set

H={xez%x - £=002m), Ve L)

Then H is a sublattice of Z¢ and Z¢/H is cyclic of order 7. We may choose a
generator x, such that the law of X, is supported on x, + H. Moreover for
n=mr+r withm=>0,0<r <7 we have

X,€rxy + H as.
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In particular the sets
{X07 X‘r’ X2‘r’ . '}7 {X17 X1-+1’ X21-+17 . '}’ e {X‘r—17 X21-—1’ M }
are disjoint.
Set
Y, =X,. (n=0,1,2,...).
Then Y is a random walk on H and hence is not adapted. However, if ¢ is any
linear isomorphism from H onto Z¢, ¢(Y) is an aperiodic random walk on Z¢.
The same holds for Y/ =X, ., - X;,..., Y, V=X, .., —X,_;. We have
thus reduced the study of the range of X to that of the sum of the ranges of 7
aperiodic random walks.

Let us describe another trick, taken from Spitzer [21], that is sometimes
useful when dealing with the nonaperiodic case. Suppose again that X is
adapted and for A € (0;1) set

P®(x,y) = (1 =A)P(x,y) +AI(x=1y).
Let X™® denote a random walk associated with the transition kernel P®(-, -).
Then X® is aperiodic. Moreover, for any n > 0,
Xr(f) =) Xin, Ay RO ) Riyn,ny
where k(n, A) is a random variable independent of X and such that
Plk(n,A) =m] = (,’:L)(l -A)"a2m form=0,1,...,n.

Note that k(n,A)/n —p, 1 as A — 0, uniformly in 7. It is also clear that X *
satisfies (A1) if X does.

2.5. We now proceed to investigate the asymptotic behaviour of P,(0, 0) as
n — ». We need to introduce the family (p,(x),¢ > 0,x € R?) of transition
densities of the process U.

ProposITION 2.4. Under Assumptions Al and A2, if v denotes the period
of X, we have:

(i P,0,0) = 0 if n is not a multiple of .

(i) lim, _,, b(n7)¢P, (0,0) = 7p,(0).
Moreover, there exists a constant C such that, for any n > 0, x € Z¢,
(2.h) P,(0,x) < Cb(n) "%

Proor. We only treat the case when X is aperiodic (7 = 1). The general
case can then be handled using the remarks of Section 2.4 (it is also possible to
proceed directly). By aperiodicity, we may assume that the upper bound
in (2.8),

C
le(&)l < e"p(‘m)’
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holds for every ¢ € T? and not only for [¢| small. It follows that, for n > 1 and
0<e<B,
Cn

. ¢ \"
@ Jo{5m ) 1(b(n)/1El)
by Lemma 2.1 (write n = I(b(n))). Then

P (0, %) = (2m) [ 7 t0(£)" d¢

( 3
¢ b(n))

< (2m) b(n) ™ [ exp —Ci(16F ™" + 6P77) dg

< exp( - ) < exp —C(Il°P7° + 1£77)

n

< (2m) “b(n) " [ de

b(n)T?

< Cb(n) .

If x = 0, we can use Assumption Al to get

. 4 - f "
'}T:ob(n)dPn(O,O) = ’}1_1330(277) dfb(,,)Tf(b(n)) d¢

= @m) [ @(£) d¢

= p4(0),
where we have used (2.i) to justify dominated convergence. O

REMARK. The method of proof of Proposition 2.4 easily yields stronger
results. For instance in the aperiodic case we have

x
lim sup bndPn 0,x) —p (——)|=O
now ( ) ( ) 1 b(n)

We leave the proof to the reader since we shall not need this result (see, e.g.,
[19D.

" Let G,/(x,y) denote the truncated Green function of X,
G(n)(x’y) = E Py(x,y).
k=0

Suppose that X is recurrent, ie., G,,0,0) - » as n — ». A straightforward
application of Proposition 2.4 shows that

] n 1
(2J) lim ( kglb(k)“”) G (0,0) = P1(0).

n-—oo

Note that the period 7 of X does not appear in (2.j).
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We shall make use of the following simple identity:

(2.k) Gi(%,5) = Jiopx[Ty =j]G(n—j)(0’0)’
When X is transient, we can consider its Green function

G(x,y) = Z Py(x,y).
k=0
It is well known and easy to prove that G(0,0) = g, where

q=P[X,#0foralln > 1].

PropPOSITION 2.5. Under Assumption Al, the random walk X is transient if
and only if

[ 1= e(&) 7t dé <.
T

Proor. Since Re(S(w)) = a > 0 for w € S¢71, it follows from Proposition
2.3 that, for |¢| small,

C !
e <" TGk

for some positive constants C, C'. Therefore the condition of Corollary 2.5 is
equivalent to '

- (¢l <

J 1171y dg < .
Td
Easy transformations show that this condition is in turn equivalent to
(2)) Y b(k) ¢ <w.
k=1

By Proposition 2.4, (2.1) implies that X is transient.

Conversely, suppose that X is transient. Then, either 8 < d, in which case
(2.D holds trivially, or B = d and then it is well known [22] that p,(0) > 0, so
that (2.1) follows from Proposition 2.4. O

REMARK. In general [without (Al)], it is known (see [21]) that X is tran-
sient if and only if .

[ Be((1 = 9(£) ") d < .

3. Bounds on the number of intersection points of two indepen-
dent walks. We now consider two independent random walks X, X' in Z<.
Let I, denote the number of intersection points of the paths of X and X' up
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to time n:
= |X(0,n) N X'(0,n)l,

where X(0,n) = {X,, X;,..., X,}. The following lemma, which holds without
any assumption on the law of X, gives us bounds on the moments of I,,.

LEmMA 3.1.  Suppose that X, X' are two independent random walks in 7¢
with the same distribution and the same starting point. Then for any integer
k>1,

E[(1,)*] < (k1)’E[1,]*.
REMARK. Our notation is different from the one used by other authors.

What we write as E[(I,)*]is often denoted by E(I,)*. What we write as E[I,,]*
would be written as (E[I,]*.

Proor. Since X and X' are independent and identically distributed, we
have

E[(1)']= L [nz(y, € X(0, n))]
yl,...,ykEZd i=1
Let 3, denote the set of permutations of {1,..., k}. Then
k
E[l_lll(yi € X(O,n))] Y P[ o STyp< 0 <T, < n]
1= oE3,

Hence, using the Cauchy-Schwarz inequality,

& 2
Y E il:III(yieX(O,n))J

BATEREEN /3
2
<kl Y X P[ o < T sTya(k)Sn]
Yise- s Yo TEZ,
=(k!) Z P[ - < T, <n]’.

.....

Ye-1’

BATRRER Yr
2
< Y P[Tyl < =<T, < n]zz Pyk—l[Tyk < n]
Y13 V-1 Vi
= Y P[T, < - STyk—lsn]Z E[1,]
Yooy Vk-1
<E[L],

by induction. O
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ReEmaRks. (i) Lemma 3.1 can be easily extended to bound the moments of
the number of intersection points of p independent identically distributed
random walks. It suffices to replace (k!)? by (k!)*. For p = 1 we get

E[(R,)*| <# E[R,]".

Note that E[R,] can be bounded as follows. Writing

Y E[I(y € X(0,n)) %r‘: I(X;,=y)|<2n+1
yez? i=0
and applying the Markov property at T, we get
(3.2) G,(0,0)E[R,] <2n +1,
and it follows that
(3.b) E[(R,)"] <&! (—%—E—)k
ne T G,(0,0)

(ii) Suppose that, for some function f(n), one can prove the convergence of
all moments of f(n)I, towards the corresponding moments of some nonnega-
tive random variable V. It then follows that for each k, E[V*] < c*(&!)?
(c = E[V)). Hence the law of V is determined by its moments and f(n)I,
converges in distribution toward V. This method was used in [9].

COROLLARY 3.2. Suppose that X, X' are two independent random walks
satisfying Assumptions Al, A2 with the same index B and the same function
b(n). For each k > 1, there exists a constant C,, such that for n > 1,

1, ib(i) )k
(£ra0() 7))

REMARK. We allow different limit laws U;, Uj for b(n)~'X,,, b(n)"'X,,, as
well as different starting points X,, X;. This will be important in our
applications.

E[(1,)"] < ¢,

Proor. We may assume that X and X' are identically distributed. Indeed,

k k
E[(1))]- T E l_III(yieX(O,n))]E[l—[lI(yieX'(O,n))]
YooY LET t=

.

5 o\ 1/2
( > E gl(yieX(O,n))] )

IA

X gy 1/2
X( Y E[]_[I(yieX’(O,n))]) .
Y1r-- s Yk i=1

Y
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According to Lemma 3.1, it suffices to treat the case £ = 1. We may also
assume that X is aperiodic. Indeed, with the notation of the end of Section
2.4, a bound on the first moment of

IX™(0,2n) N X'™(0,2n)|

immediately gives a bound on E[I,].

Set
J,= 2 X I(X;=X))
i=0,=0
- ¥ (iz(xﬁy))(}fuxzw)).
yez? \i=0 i=0

The same argument as for (3.a) leads to
Gny(0,0)°E[1,] < E[J3,].
If p,(0) > 0, (2,)) implies
(3.c) G,(0,0) > C( Y b(i)“’)
i=1

for some C > 0. Now p,(0) can only vanish if B < d (see [22]), in which case
36(i)~? <  and (3.c) also holds. We thus obtain

E[J2n]
(E () )
It remains to bound E[J,]. Note that

El]= Y ¥ @ [ o(@) e(-6) de.

i=0,j=0 T

(3.d) E[I,]<C

The arguments of the proof of Proposition 2.4 imply that

de¢(§)i¢(—§)j df < Cb(l +j)—d,

Hence,

E[J,]<C¥ ¥ b(i+j)~*
i=0j=0 '
2n

<CY (i+1)b(i)7?
i=0

2n
<C'Y ib(i)™*
i=1
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and the desired result follows from (3.d), since it is clear that, for n > 1,

%ib(i)‘dscf ib(i) . 0
i=1

i=1

ReEMARK. If X is transient, 36(i)~% < « and we can replace the bound of
Corollary 3.2 by

c, if B <dy2,
n k C _ if =d/2,

el <o o) = "(El is(i)") nemd
i=1 n2k

In particular, if B < d/2, we see that I, < « a.s. The other bounds are also
sharp. For instance, in the case of random walks with zero mean and finite
second moments in 74 (B = 2 = d/2, s(n) = 1), we obtain

E[(1,)"] < Cy(log n)",

which agrees with the results of [10], where it is proved that, for some constant
C independent of Z,

E[(I,)*] ~ C*E[N?](logn)",
 where N denotes a standard normal variable.
4. The case B < 2d / 3.

4.1. Throughout this section we assume that the random walk (X,)
satisfies Assumptions Al and A2, with B < 2d/3. As follows from the esti-
mates of Proposition 2.4, the random walk is then transient and thus the
strong law of large numbers holds for the range R :

R,
lim — =q as,
n—oow N
where g = P[X, #0 for all n > 1] > 0. If ¢ = 1, then R, =n + 1 for each
n. Therefore we will also assume that g < 1. This assumption is automatically
satisfied if B > 1. Indeed, if B >-1, it is well known [22] that p,(0) > 0, which
implies (Proposition 2.4) that P,(0,0) > 0 for infinitely many k. On the other
hand if B < 1, simple examples show that we may have g = 1.
Our goal in this section is to prove the central limit theorem for R,. We
shall follow closely the method used by Jain and Pruitt [6] for random walks in
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high dimensions (d > 3). Note that if 8 < d/2, the random walk is strongly
transient and thus the central limit theorem holds for R, by a theorem of Jain
and Orey [5].

We need to introduce some notation. For x,y € Z¢ we set

H,=inf{n > 1;X, =x}, F(x,y) =PJ[H, <x|.
It is clear that G(x, y) > F(x,y). More precisely, if x # y,
G(x,y) = F(x,y)G(0,0) = ¢"'F(x,y).

Recall the definition of the truncated Green function:
G(n)(x’y) = Z Pk(x’y)
k=0
We also set
P{(x,y) =PJ[X,=y;H, 2 k].

Changing (Y,,...,Y},) into (Y},...,Y;) (where X, = X, + £*Y)), we see that,
for any x, y,

Pi(x,y) = Pi(x,y).

4.2, The following lemmas are straightforward extensions of results in
Jain and Pruitt [6]. The only difference is that we need to replace the bound of
Lemma 1 in [6] by the one of Proposition 2.4:

(4.2) P,(0,x) < Cb(k) ™.
Recall that we assume d/B > 3/2.

LEMMA 4.1. We have

0(1) if B <d/2,

n 1
z Gl 0, 2)(G(u, %) + Glx,w) = O(kgl ks(k)d) TE=d/2,
O(n?(n)™%)  ifp>d/2,
0(1) if B <2d/3,

n 1 . 3
0( > W) if B=2d/3,

k=1

Y Go(0, £)G(u, x)G(x,v) =

uniformly in u,v € Z°,
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Proor. The proof is very similar to that of Lemma 3 in [6]. For & > 1, we

have
Z P,(0,x)(G(u,x) + G(x,u))

- io ZPk(O,x)(Pj(u,x) +Pj(x,u))
j=0 =x

<c|T ¥ oty (B %) + P(~u, )

Jj=0 «x

+ ¥ X P0,x)b(j) "

Jj=k x

< C'Rb(k) ™.
The first assertion of the lemma follows by summing over k£ =0,1,...,n.
Similarly, using Lemma 2.2 if 8 = d/2, we have, for £ > 1,

Y P,(0,x)G(u,x)G(x,v)

fo Y ¥ Py(0,x)Py(u,x) P,(,0)
Z0/-0 =
(ki Y (k) “Py(u,0) + X X b(i)"’Pk+j(o,v))
=0 j=0 i=k j=0
<C (kf; b(E) G+ Db+ 1)+ Y b(z)‘dkb(k)‘d)
i i=k
O(b(k)™%) if B <d/2,
= O(b(k)‘”’ y d) if B = d/2,
i—11s(%)
O(k?(k) ™) if g >d/2,

and the desired result follows by summing over k. O

LeEmMMA 4.2. We have for m,n > 1,
Y. Gy(0,x)P[m <H, < », Hy < ]

O(mb(m)~?) if B <d/2,
noo1
—-d . -
}__1‘, ks (k)° ifp=d/2,
“n?(n)"Y)  ifB>d/2.

= {0 mb(m)

O(mb(m)



THE RANGE OF STABLE RANDOM WALKS 669
Proor. For any y, z, we have

P[m<H,<®]< Y Pyy,2)<Cmb(m) °.

k=m+1
Then, as in [6] (proof of Lemma 4), if x # 0,
P[m <H, <o, Hy < ]

m
<P[m <H, < ©]F(x,0) + Px[? <H,< oo]F(O,x)
m
+ F(x,O)Po[—z— <H, < oo]

< Cmb(m)~%(G(0, x) + G(x,0)).
An application of Lemma 4.1 completes the proof. O

LEMMmA 4.3 (Lemma 5 of [6]). For x # 0, set
a’(x) = Px[HO < oo]Px[Hx = oo] - Px[HO < ®, Hx = OO]

Then
1-F(x,0)
a(x) = Px[HO < Hx < c’O]I)ac[I_IO = OC’] = 1 — F(x O)F(O x) qF(x’O)F(O’x)
4.3.

THEOREM 4.4. Under Assumptions Al and A2, ifq < 1and B < 2d/3, we
have

varR, ~ o°’n,

n—o

where a? is the positive constant defined by

o2=q(1-q)+2q) G(0,x)a(x),

x#0

[a(x) is defined in Lemma 4.3).
REMARK. Lemma 4.1 shows that o2 < .

Proor. Once again we follow closely the arguments of [6] (proof of Theo-
rem 1). Let

Zr=1I[8,+8;.y,...,8,#8,] for0<i<n,Zr=1,
Zi=I[Si=#Si+1,Si¢Si+2,...] fOI‘iZO,
Wr=2"-Z, for0<i<n.
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We note that R, = X7, Z,sothat R, =Y, + W, + 1, where

n—1 n—1
K¢= 2:‘Zh “a:= 2: wqa
i=0 i=0

We have, for i < j, ) A
E[Wi”W}”] =) Pjo_,-(O,x)Px[n —j<Hy<o,n-j<H, <]

x#0

<Y P,_j(0,x)P[n—j<H,<w» Hy< ]
x

and the bound is also valid for i = j. Then, treating separately the three cases
B<d/2, B=d/2, B>d/2, we deduce from Lemma 4.2 that, for 0 <j < n,

O((n —j)b(n —j)~9) if B < d/2,

J J
(4b) ¥ E[W W] = 0((}: d)(n - j)b(n —j)"”) if g =d/2,
i=0 1 ks(k)
0(j%6(j)~*(n = )b(n = j)~) if B> d/2.
Summing on j and using the Cauchy-Schwarz inequality if B > d/2, we
obtain
(4. E[W?] = o(n).
Next we estimate var Y,,:
n-—1
varY,= Y varZ,+2 ), cov(Z;, Z;).
i=0 O<i<j=<n-1
" Clearly var Z; = q(1 — @), whereas it is easily seen that, for i <j,
cov(Z;,Z;) = ), PP ;(0,x)a(x).

i<y

x#0
It follows that
n—1
varY, =nq(1—q) +2 ) a,,
j=1

where

a; = i Y. P°(0,x)a(x).

i=1x+#0

The sequence (a;) increases and its limit

a=Y T PX0,x)a(x) = T F(0,x)a(x)

i=1x#0 x40
is finite by Lemma 4.1. We conclude that
(4.d) varY, ~ (g(1 —q) + 2a)n.

Theorem 4.4 follows from (4.c), (4.d) and the identity R, =Y, + W, + 1. O
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4.4. We are now ready to state and prove the central limit theorem for R,.
Our method of proof is somewhat different from the one in [6]. It will depend
on both Theorem 4.4 and Corollary 3.2.

THEOREM 4.5. Under Assumptions Al and A2, if B < 2d/3,
n"V%(R, - E[R,]) —= oN,

n—o

where N denotes a standard normal variable and o is defined as in Theorem
4.4.

ProOF. For each n > 1, let p = p(n) > 2 be an integer to be fixed later.

We have
P i—1 i i—1 i—-1 i
R,=) |X n,—n X|o, n|nNnX n,—n
i=1 p p p p p
where we use the notation

X(a,b) ={X;a<k<b} fora,beR.

Let i €{2,...,p} be fixed for the moment and set j =[G — 1n/pl. For
k S {0, 1, .o .,j}, set X; = Xj—k - Xj’ Xg = Xj+k - Xj’ Then X,, X" are two
independent random walks, defined on the time interval {0, ..., j} and

i—1 i—-1
X(O, n) OX( n,—n)
b b b
We can apply Corollary 8.2 (or rather, the final remark of Section 3) to get
bounds on the moments of the right-hand side. Notice that X', X" are not
identically distributed, but they both satisfy Assumptions Al and A2 with the

same function b(n).
We then sum over i and use the triangle inequality to get, for any & > 0,

. . . 271/2
P i—1 1 —1 i
Y | X|o, n|lNnX n,—n
i=2 p p p

C,pn%te~4/F if B >d/2,
Cp if B <d/2.

Taking p ~ n® with 8 > 0 sufficiently small (such that 2 + 6 — d/B < 1), we

obtain .

Pl (i-1 i |\

R,— ) -|X n,—n =o(n).

( iz=:1 ( p p ) ) } ()

Set R, ; = IX(G — 1)/p)n,(i/p)n)l, 1 <i < p, and let
{Rn,i} = Rn,i - E[Rn,i]'

p

)»

i=2

)

<|X'(0,4) N X"(0, /)| + 1.

E

A

(4.e) E
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Note that the random variables {R,, ;} are independent and that, by Theorem
44,

2 i
E[{Rn,z} ]n—>w02p .

Taking (4.e) into account, we see that Theorem 4.5 will be proved if we can
apply Lindeberg’s theorem on triangular arrays to the family (R, ;},1 <i <
p(n)). It remains to verify Lindeberg’s condition. This condition is clearly
satisfied if we know that :

(4.f) E[{R,)"] < Cn?

(where again {R,} = R, — E[R,]). In order to prove (4.f), take n > 2 and set
n, = [n/2], where [x] denotes the integral part of x and n, = n — n,. Then

R, =|X(0,n)| +| X(ny, n)| =| X(0,n,) 1 X(ny,n)].
Therefore,
E[(R}]"" < E[{|X(0,n)| +| X(ny,m)[}]

+ E[{|X(0,n,) 0 X(nyym) Y] 7.

Corollary 3.2 implies
E[{1X(0,n,) 0 X(ny,m) )] = o(n172).
On the other hand, by Theorem 4.4,
E[{|X(0,n)| +|X(ny,n)}] < E[(R, )] + E[(R,}] + Cn?
(using the independence of |X(0, n,)| and |X(n,, n)|). It follows that
(48) E[(R,)]

For any & > 1, set

1/4

< (E[{Rnl]"] + E[{Rn2}4] + an)l/4 + o(n'/?).

@, = sup{2"k/2E[{Rn}4] 1/4;2"’ <n< 2’”1}.
(4.g) implies
1/4
apey < (324 +C) 7 +0(1).
Therefore the sequence «, is bounded, which completes the proof of (4.f). O

4.5. We now investigate the case 8 = 2d/3 (d = 1, 2 or 3). We shall need
the asymptotic behaviour of the Green function G(0, x). It will be proved in
the next section that, under a regularity assumption on the characteristic
function of X (see Assumption A3) and if d =1 or 2, one has, with the
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notation /(x) = I(|x]),
(4.h) G(0, x) l(x)n( a )
. ,x) ~ —Ql—|,
el-w |2l \lxl

where Q(¢) = [Ep{¢)dt is the potential kernel of U. Note that Q(:) is
continuous on the unit sphere (indeed, it is so if B > (d — 1)/2; see [13)]).
Hence (4.h) implies

I(x)

lel?

(4.h) G(0,x) < C

THEOREM 4.6. Suppose that X satisfies Assumptions Al and A2 with
B = 2d /3 and that (4.h) holds. If d = 1, suppose in addition that U is not a
subordinator. Set

n

O ™

Then, (i) if g() < =,

var R, ~ o°n,
where 0% = q(1 — q) + 2q% , .o G(0, x)a(x) < =;
(ii) if g(®) = oo,

var R, ~ c®ng(n),

n—o

where ¢ = (3/d)q*se-1 QU w)* W —w)dw > 0.

ProoF. Once again we follow closely [6] (proof of Theorem 2). We first note
that, by Lemma 2.2,

(4.) : - =o0(g(n)) for0<a<2d.
s(n)

With the notation of the proof of Theorem 4.4, we have
R, =Y, +W,+1
and

n-—1
EkaL=Z%EW¢%ﬂ

i,j=

n—1
<2 ) Y P_(0,x)P[n—j<H, < H;< o]
i,j=0
P
n—-1

—o| T j%(j) “(n-j)b(n—i)"¢|,

j=1
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by Lemma 4.2. Next we evaluate

n—1 —d —d

2 J?6(J) " (n = j)b(n —j)

j=1

n—1

. w—1 o —d N —d
<nY j V%(n -j) %)) %s(n —J)
j=1
[n/2] -1/2 —d —d
<2n Y jVA(n - ) %) s(n - )
Jj=1

[n/2] 1 172 n 1 172
< 2n( )y .“_.’ﬁ) ( )y .—.*23)
i=1 Js(J) j=[n/2]JS(J)
= 2ng([n/2])*(g(n) - g([n/2] - 1))"*.
Since g is slowly varying, we get
(44) E[(W,)*] = o(ng(n)).
We now estimate var Y,. As above in the proof of Theorem 4.4, we have
n—1

(4.k) varY, =2} a; +nq(1-gq),
j=1

where
J
a; = Y. 2 P°(0,x)a(x).
i=1x#0

For any j > 0, set p; = Po[j < H, < «]. Then it is easily verified that, for
x+0,

J J J
Y. P(0,x) = } P7(0,x) =Py[H,<jl=} (q¢+ pi—i)P;(0,x)
i=1 i=1 i=1

(consider the last time before j when X visits x). It follows that

J
a;=Y Y (q+p;_;)P(0,x)a(x).

i=1x#0
We first bound the contribution of large values of x. Set
B; = {x € %1 < Ix| < b(j)},
C,={xe Z%; x| > b(j))}-
Then, using (4.h’) and Lemma 4.3,
J J 1(b())? c
£ T POx)a(x) <CY T P05 o)

<
N2d — \2d
i=1x€eC; i=1x€eC; b(J)2 S(J)2
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Hence, by (4.1),

J
(4.1) a;= Y X (q +p;-;)Pi(0,x)a(x) +o(g(J)).

i=1x€B;

Observe that, for j > 1,

p;< L Py(0,0) < G~V%s(j)7Y,
k=j+1

by Proposition 2.4. Using again Proposition 2.4, we bound

Jj-1
Z Z pj—iPi(O’ x)a(x)

i=1 xEBJ»
j-1
<CY i ¥2%(i) % (j-i) V?s(j - i) "¢ L G(0,x)G(x,0)
=1 xEBj

Jj-1 .
<C Y im¥%(i) TN i) T s~ )TN s() Y,
i=1

where we have used (4.h') to get the bound
I(u)?
Y G(0,%)G(x,0) <Cf %

Uu
xE€B; (L<lul<b()  |u
< Cfb(j)r2’3‘d‘1t(r)2dr
1
< Cb(j)*7%(b()))?

< G'%s(5) 7,
by (2.b). We then consider separately

Li/2] c L2
() s—= ¥ i™¥%(i) s(j— i) = 0(s(4) ")
i1 s(J)" i=1
and
Jj—1 j-1
Yo(ys2l X i) - )T s ) T s() T
i=[j/2]1+1 i=[j/2]+1 )

= 0(s(i) 7).
Using (4.i) we conclude that

J
(4.m) 2 Z pj—iPi(O’x)a(x) =0(g(J))-

i=1xeB;
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It remains to study

J
Y X P(0,x)a(x) = ¥ G(0,x)a(x).
i=1x€B; x€B;

A straightforward calculation shows that

Y (G(0,x) — G;(0,x))a(x) < G~ V2(j)® L a(x)

(4n) *<B <<B,
= 0(s(/) ™).

Putting (4.1, (4.m) and (4.n) together, we obtain

(4.0) a;= qerB G(0,x)a(x) +o(g(J)).

From Lemma 4.3, it is clear that

(4.p) a(x)| = q3G(x,0)G(0, x).
Then two possibilities may occur. Either g(«) < «, in which case (4.h’) leads to
odr
Y G(x,0G(0,2)" <C[  dulul™t(u)’ < C'f —s(r) ™ <
x {lul=1} 1 r

[using (2.b) to get from the integral of r~!t(r)® to the integral of r~s(r)~2¢]
and

lima; =a=q}), G(0,x)a(x) <,
Jo® x#0

which implies

varY, ~ n(q(1l-gq) + 2a).

Alternatively, g(») = ©» and then a simple calculation using (4.0), (4.p) and
(4.h) shows that

W(u)® (u\2 (-u 1
0 ity e ol o) 2 2o
( q) Jj—>°°q '/;lslulsb(j)) |U|3d 17 lu| ) joo 2 g(J)

where ¢? = (8¢*/d)[ge-1 Uw)2QU-w) dw.

If d > 2, it is clear that ¢ > 0 [indeed, in this case, 8 > 1, which implies
Aw) > 00on S 1]. If d = 1, this follows from our assumption that U is not a
subordinator. Putting (4), (4.k) and (4.q) together completes the proof of
Theorem 4.6. O

4.6. The central limit theorem for R, follows from our estimates for
var R, exactly as in the case B8 < 2d /3.
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THEOREM 4.7. Under the assumptions and with the notation of Theorem
4.6, we have

(@) if g() < =,

(i) if g(®) = oo,
(ng(n)) /%R, - E[R,]) s cN,

n—o
where N denotes a standard normal variable.

Proor. The proof is essentially the same as that of Theorem 4.5. By (4.1),
we may choose p = p(n) such that

lim p(n) =
and

p(n)*
4.
(4.r) s(n )2d

Arguing as in the proof of Theorem 4.5, we get from Corollary 3.2 that, for
1=2,...,p,

=o(g(n)).

i—1 i-1 i\ n?
El| X]O0, n|nNnX n,—n =
p p p b(n)
Therefore,
1/2
(4.5) E(R ¥ X(i_l i ))2 / o ((ng(n))"®)
.8 w = n,—n < =o((ng(n ,
i1 p 'p ps(n)d &

by (4.r). Thus, if

i—-1 )
R, =X n,—nl|, l1<i<p,
' p p

we have
P N if g(®) <,
ig [{Rn l} ] E[{R } ] {C ng(n) if g(°°) = %o,

by Theorem 4.6. Theorem 4.7 follows from (4.s) and an application of
Lindeberg’s theorem to the family (R, ;}, 1 <i < p(n)). In order to verify
Lindeberg’s condition, we prove that

(4.t) E[{R,)}*] < cn?g(n).
The proof of (4.t) is similar to that of (4.f) and will be left to the reader. O
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REMARK. In the case of random walks with zero mean and finite second
moments in Z3 (d = 3, B = 2), we have g(n) ~ log n and we recover Theorem
5 of Jain and Pruitt [6].

5. Estimates for the Green function and the distribution of hitting
times.

5.1. Our goal in this section is to obtain certain estimates to be used in the
next sections, especially in Section 6 to deal with the case 2d/3 < 8 < d. We
will always assume that the random walk X satisfies Assumptions Al and A2
of Section 2. We will sometimes make the following additional assumption on
the characteristic function ¢ of X.

AssumPTION A3. The function ¢ is continuously differentiable on 7¢ — &,
where &= {¢; |o(&)| = 1}. Moreover, there exists a constant C such that, for
|¢] small,

C
(5.2) IVe(£)| < FIRYEDR

Writing ¢ = exp —¢ as in (2.3) and using Proposition 2.3, we can replace
(5.a) by

C
[

This form of Assumption A3 was used in [18]. Note however that it was
assumed in [18] that (5.b) holds for every £ € T?. Here we restrict this
condition to a neighbourhood of 0 since we are working with adapted not
necessarily aperiodic random walks.

If B> 1, X has first order moments ([4], page 578) and E[X;]=0. It
follows that ¢ is continuously differentiable on T¢ and that Ve(0) = 0. We
shall prove in Section 5.4 that Assumption A3 is always satisfied in this case.

(5.b) Ve (&) < v ().

52. For A >0and x,y € Z% set
G\(x,y) = ), e *P,(x,y) [inparticular Go(x,y) = G(x,y)].
n=0

Following [9] (Section 3), we propose to study the asymptotic law of T./l(|x|)
as |x| tends to infinity. Note that, for A > 0,

G/\/l(|x|)(0, x)
GA/I(|x|)(0’ 0) ’

so that we need to investigate the asymptotic behaviour of G, /;((0, x). For

(5c) El[exp — AT, /I(Ix])] =
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A > 0, we have
- - -1 _ix
Gi(0,x) = (2m) " [ (1 —ePp(§)) e " de
Td
and this formula also holds for A = 0 if the random walk is transient, in which

case |1 — p(¢)| ™! is integrable (Proposition 2.5). After some easy transforma-
tions, we get

G, 10, %) = (2m) “(x)lxl 7"

5.d .
. X [ dt exp(— (1 = e/ O)I(x) ) (x, e/ W),
where

5 r = d i ¢ l

o 0= [ deon| i1 o[ ) Jio)

(see [9], Section 3 for similar computations). Formula (5.d) suggests that
G, /10, x) behaves like I(x)|x| ~¢ when |x| tends to infinity. In order to make
this precise, we need the following technical estimate.

LEmMa 5.1. For each ¢ > 0, there exists a constant C, such that, for all
xeZ%-{0},¢t>0,

(5.) IT(x,t)| < C.(¢5 + t~5)¢7 /B,
Under Assumption A3, we also have -

(5-8) IT(x,t)] < C,(t¢ + t5)t~@-D/8,

ProoF. Proposition 2.3 and Assumption A2 give the bound

(5.h) Re(1 — ¢(£)) = C/U(1/1€l), £e€T4,C>0.
Then, using Lemma 2.1,
IT(x,t) < f. & exp(=Ctl(i=l) /111 /1)

<[ d —CtlglPe d —CelglP
< e ¢ exp(—Cltl¢| )+f|§|>1_§eXP( vt1€P )

< C (t79/B~9 4 ¢=d/B+e)),

In order to get the other bound, we use Assumption A3. Write x = (x4, ..., x;)
and choose j such that |x;| = max|x,|. We integrate by parts in (5.e) in the jth
direction. Observe that, by Assumption A3, ¢ is piecewise continuously differ-
entiable along lines. Since the boundary terms vanish by the periodicity of o,
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we get
_ || I(x) o ( & X €
. |;‘(x,t)| = x—j[xledft Il E(M)exp(—lmf - t(l - go(m))l(x))
i .
I(x) 3 , U(x)
<) 1 V‘”(H)’“"(““l(x/@l))’

by (5.h). Let r > 0 be so small that the bound (5.a) holds for any ¢ € rT¢. Set

W=T¢— | (n+rT9).
neg

We note that, by Assumption A3, |Ve| is bounded on W. Moreover, if £ € |x|W,
we have

I(x)
el

< Celx|[3+e—1 < Ce,,r|§|3+s_1'

It follows that

tf dgﬁ

w |l

¢ CI(x)
V‘”(M)'e"p ATCYED)

< CE,,t[f delelPT e exp — CltlelP*

El=r

< C t~@-D/B-e)=2¢/(B—e)
<C,, .

It remains to bound the integral over [x|T¢ — |x|W = [x|(Uz(n + rT%)).
Note that for ¢ € T? and n € &, we have ¢(£ + 1) = o(£)e(n) and thus
IVo(€ + )| = |[Vp(€)l. Also note that if r is small enough, for ¢ €
lx|(p + rT?), with n # 0, I(x)/l(x/|¢]) is bounded below by Cl(x), for some
C > 0. It easily follows from these observations that we need only consider the
case 1 = 0. In this case, (5.a) leads to the bound

I(x) ¢ ., Ux)
I V‘”(TH) tl(x/lfl))

Scfl d¢ (%) ( o) )

exp(—C

— ———————————————— e —
rrd 18] 1(x/1E) P 1(x/1€l)
L < Cgt[f d¢lglP~o " exp-—CLellP e + f d¢ gl exp —Crel¢lP*
l¢l<1 1€l=1
<C (t—(d—l)/(ﬂ+£)+2€/(ﬁ+s) + t—(d—l)/(B—E)—%/(B—S)),

which completes the proof of Lemma 5.1. O
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5.3. We now apply Lemma 5.1 to study the asymptotic behavior of
G, /10, x). First, Proposition 2.3 implies that

Jm exp ‘t(l - (|§| ))l(") - oxp ‘t'f"’s(é )

Hence, using (5.h) and Lemma 2.1 to justify dominated convergence; for any
{e 8,

i) Jim T(at) = [ geesp(-ic- €~ eS| - @m 'm0
x/lxl—’i

ProprosITION 5.2. Suppose that B > d — 1 and, if B < d, that Assumplion
A3 holds. Then, forany A > 0, { € S¢71,

d
x|

d ® —~At
(5K) lim 75 Gl 0,%) = [ dte™p(0).
x/lxl—¢
If B < d, the above result also holds for A = 0:
x|
(5.1) Jlim 7556(0,2) = f dtp¢),
x/lx|—¢

and we have
5 o) <c

. <
( m) l(x) ( > x) -

for some constant C. If B = d, for any € > 0, there exists a constant C, such
that for A > 0 and for x € 7% — {0},

l|
(5.n) TZCT)'G*/““(O”“) <C (A V1),

Proor. We pass to the limit in (5.d) using (5.j). The use of dominated
convergence is justified by Lemma 5.1 and the trivial bound

exp — (1 — e "™ [(x)t < exp —At/2

for |x| large. Note that if B8 > d, (5.f) suffices to apply dominated convergence,
so that we do not need Assumption A3 in this case. Also, if d — 1 <8 < d,
(5.f) and (5.g) allow us to pass to the limit in (5.d) for A = 0. In this way, we
get (5.k) and (5.1). To prove (5.m) use Lemma 5.1 and notice that if 8 < d,

d
||

(%)

It remains to prove (5.n). Clearly, we may assume A < 1. Then, taking into

G(0,x) = (27)” jml'(x,t) dt.



682 J.-F. LE GALL AND J. ROSEN

account (5.d), it suffices to bound
fwdt exp(—CA¢)|T(x,t)| < CE(I + fmdt exp(—C/\t)t‘“e) <ClA~™°. O
0 1

Proposition 5.2 will immediately give some useful information on the
asymptotic distribution of the hitting times

=inf{n > 0, X, = x}.

Recall that if the random walk is transient, in particular if 8 < d, we have
G(0,0) < » and we set ¢ = G(0,0)~ 1. In case B = d and the random walk is
recurrent, we will use the following notation: For any r > 0,

h(r)= ¥ Py(0,0)  (h(n) = Gu(0,0)).

O<k<r

By (2.)),

1
h(r) ~ p1(0)0<2;.<r ks(k)?

so that & is slowly varying by Lemma 2.2. Notice that when 8 > d, we always
have p,(0) > 0.

CoOROLLARY 5.3. Suppose that X satisfies Assumption A3 if B < d. Then:
(i) Assumethatd — 1 < B < d and that X is transient. Then, foranyt > 0,

Le S
lim " ——P[T, <tl(x)] = qf dsp,({).
e 1) s
In addition, if B < d, there exists a constant C such that for all x # 0,

d
||

(%)

If B =d, for any € > 0, there exists a constant C, such that for all t > 0 and
x # 0,

(5.0) —_P[T, <«] <C.

d
(5.p) l'( al Ty PlTe =80 < 0,0 v .
(i) If B = d and X is recurrent, fort> 0 and { € §4-1
lx|?h(1(x)) ¢
Jm _—l(;)——_P[Tx <d(x)] = fodsps(l)-

x/lx|-¢
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Moreover, for any € > 0, there exists a constant C, such that fort > 1, x # 0,

lcl?R (1
(5.9) fT((x—gi)lP[Tx < t(x)] < Ct°.
i) If B > d,
|llim P[T, <t(x)] = P[o, <],

x/1x|->¢
where o, = inf{t: U, = {}.

ReEMARK. The first assertion of (ii) is also valid in ().
Proor. (i) Combining (5.c) with Proposition 5.2 gives

lim (1x1/1(x)) E[exp —AT,/l(x)] = qfo dtep,({).
x|—> o0
x/|x|—>¢ :

Let v, denote the law of T./I(x) and set u, = |x|*/(x)~'v,. The continuity
theorem of Feller ([4], page 433) implies that, as |x| = », x/|x| = {, u,
converges weakly towards the measure u(dt) = gp,(¢) dt. This gives the first
assertion of (i). The bound (5.0) follows from (5.m). Similarly, (5.p) follows
from (5.n): For ¢ > 1,

(Ix1?/1(x))P[T, < ti(x)] < C(Ixl°/l(x))E[exp —T,/tl(x)] < C,t°.

(ii) The main arguments are the same as in (i). The only difference is that
when applying (5.¢c), we now use

(5.r) GA/l(x)(O’O)lezmh(l(x))'

(5.r) follows easily from Proposition 2.4:
G,(0,0) ~ (Z b(k)‘“’e-*k)pl(O) A O IO
A=0 p—g A0\ 1ck<1/A

(iii) When B > d, which forces d = 1, it is well known that the process U is
recurrent and hits points with probability 1. Furthermore, the strong Markov
property at time o, shows that

Jo dse™*°p (&)

o] Py L R L
(™) = = gsep (0)

We have
G)«/l(x)(O’O) = (27")_1[_1T (1 - e_)'/l(x)q’(f))_ld§

- @m I(x) )lel (l(x)(l _ e—z\/l(x)go(i)))_ldg,

lc| 7 il ||
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By Proposition 2.3,
lim l(x)(l - e-“l<x>¢(i)) e+ m(é).

|x| —> o0 le

It follows that

. ||
lim

-1 [® f -
[P WG,\/I(@(O,O) = (2m) /_m(A * lglﬂs(l—a)) 4

= /mds e *py(0),
0

by Fourier inversion. The use of dominated convergence is here justified by
Proposition 2.3 and the fact that |1 — ¢(¢)| is then bounded by a positive
constant on the set [—7, —8] U [§, w] for any § > 0. Using (5.c) and Proposi-
tion 5.2, we obtain

lim Efexp — AT,/L(x)] = [ dse™*p,(£)/ [ dse™p,(0) = E[e~*%].
|| >0 0 0

x/lxl—¢

We conclude that T, /I(x) converges in distribution towards o,. The desired
result follows since the law of o, has no atoms. O

5.4,
ProrosiTION 5.4. Under Assumption Al, Assumption A3 holds if B > 1.

Proor. We claim that if 8 > 1, for every r € (1, B), there exists a constant
C such that for every n > 1,

(5.5) E[lb(n)'X,I'| <C.

Let us first show that Assumption A3 follows from this bound. The sequence
(b(n)~'X,) is then uniformly integrable, so that

lim b(n) 'E[ X, exp(if-b(n)_an)] = E[U, exp(i£U,)] = —i V®(¢)

n—oo

uniformly when ¢ varies over a compact subset of R?. On the other hand,

b(n) 'E[ X, exp(i¢ - b(n) 'X,)]

nb(n) 'E[Y; exp(i¢ - b(n)‘1Y1)]¢( b(i) )

oo %o g5 el sty

We already know that ¢(b(n)~1¢)"~! converges toward ®(¢) uniformly on the
compact subsets of R¢. It follows that for any compact K c R? for n large
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1 £
V(m)

Assumption A3 follows, taking for instance K = {1 < |¢| < 2}.

It remains to prove (5.s). Clearly, we can deal separately with the different
coordinates of X, and therefore assume that d = 1. We will use the following
estimates from Feller [4] (pages 577-579). There exists a constant ¢ such that
for every a > 1,

enough and for every ¢ € K,

nb(n)” <C.

(5.t) E[(Y)* 1y, )| <01(a)

Furthermore, for every p € [0, B8), there exists a constant C,) € [0,) such
that

(5.u) lim o~ L) E[IY 14y, 5] = Co
(see formulas XVII (5.21) and (5.23) in [4]; when B = 2, we have C.,, =0 for

every p, but we shall not need that).
Since E[Y;] = 0, it follows from (5.u) that for n large,

b(n)

n

(5.v) 'E[Y11<|Y1|sb<n»]| =|E[Y11(|Y1|>b(n»” < 2C,,

Hence,

n 2
E (b(n)_1 ) Yil(wsbm») }
i=1

_ _ 2
=nb(n) 2E[(YI)21(|Y1|sb(n))] +n(n —1)b(n) 2E[Y11(|Y1|sb(n))]

sC(nb(n)_zb(:) + n2b(n)" (b( )))sc',

by (5.t) and (5.v). Thus it is enough to bound

r-1 ,
r
(E 1(|Y|>b(n))) Z |le| 1(|Yi|>b(n)) ’
i=1

n
E||b(n) " X Yy sy
i=1

<b(n) 'E

by the Hélder inequality. Next we condition on

Z Lovii> beny-

i=1
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Observe that the law of A, is dominated by a geometric law of parameter
a,=P[A,>1]=1- (1 - P[Y,| > b(n)])"
~ 1 —exp —nP[lY,| > b(n)]

n—o

(notice that nP[|Y;| > b(n)] < C by (5.u) with p = 0). Then

< E[ A3 E[b(n) 1,17 |1%,] > ()]

(5.w)

E

n
‘b(n)_l Z Yil(|Y,~|>b(n))
i=1

!

<C) k7 k <C,
kgl (@) nP[|Yy] > b(n)]
by (5.w). We have used (5.u) to bound

b(n)"
nP[Yy > b(n)]"

E[Y,"| Yy > b(n)] <C
This completes the proof of (5.s). O

6. The case 2d /3 < B < d.

6.1. We now suppose that 2d/3 < B < d and we shall first assume that
the random walk X is transient (this assumption is automatically satisfied
unless B = d). We propose to show the central limit theorem for R, by
following the approach of [9]. In contrast with the case B < 2d /3, the limiting
variable will not be normal, but will be a self-intersection local time of the
limiting process U.

Let X' denote a random walk independent of X. Assume that both X and
X' are transient and satisfy Assumptions Al and A2 with the same index
B € (2d/3;d] and the same function b(n) (but not necessarily the same
limiting process U). Set

In=|X(0’n) r.\X,(O3n)|’
n n

J, =3 3 I(X; =X;).
Jj=0k=0

According to [18] (Theorem 5) we have

b(n)’ @
(62) —5—n 552 a,u((0:11),

where ay ;; denotes the intersection local time of the two (independent)
limiting processes U, U’, formally defined by

ay,y([0,1]%) = [ [[0 llzdsdt 8oy (U, — UY).
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In fact, (6.a) is only proved in [18] in the special case d = 2, U = U'. However,
it is not hard to see that the arguments of [18] can be extended to our more
general situation. Also it is assumed in [18] that the random walks are
aperiodic. This assumption can be removed using the ideas of the end of

Section 2.4.

Let us briefly recall a rigorous definition of the intersection local time. Let
[a, b] X [c, d] be a rectangle in (R, )?. With probability 1, the random measure
on R,

o~ [(ds[“dt o(U, - U7),

has a continuous density with respect to the d-dimensional Lebesgue measure.
We define ay ([a,b] X [c,d] as the value at O of this density. One may
choose a version of the collection (ay; y([a, b] X [¢, d]) that is jointly continu-
ous in a, b, c, d (see [14]). Then, the mapping [a, b] X [¢, d] = ay y(la, b] X
[¢c, d]) defines a Radon measure on (R )?, which is supported on {(s, ¢), U, = U;}.
Let us now discuss self-intersection local times. The basic idea is to inter-
pret the self-intersections of U as intersections of independent processes
constructed from U. This can be done as follows. For every s € [0, 1], set

Us’ = U1/2—s’ Us” = U1/2+s'

The above discussion allows us to consider
. o((0,317) = dsdt 8,4 (U! — U/
ay U (( 2] ) /_/;0’1/2]2 (0)( t )
(the fact that U’, U" are only defined on [0, 1] is unimportant). We then define

a([O, '21') X ('21_,1]) = aU’,U”((O’% 2)
so that, formally,

a([0,3) x (3,1]) = ff[o s 284 20(Us = T).

Now we would like to define the integral of the right-hand side on the set
{(s,t), 0 < s <t < 1}, in order to take account of all self-intersections on the
time interval [0, 1]. This requires a renormalization procedure. For every
j=1,forl <i<2/7! set
20-2 21 -1 20 -1 2i

2/ 9 ) ( 27" 5]

- |

Notice that {(s,#), 0 < s <t <.1} is the disjoint union of the sets A; Arguing
as previously, we can define

a A%) = /ngdsdt 8oy (U, = U,).
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Then T; ; a(A?) = + a.s. However, simple scaling arguments (see [14]) show
that the renormallzed series L ; ; {a(A‘ )} converges in the L2-norm. We set

so that, formally,

- /’/;(s,t),05s<tsl)ds dt(3(o)(Us a U‘) - E[S(O)(Us - Ut)])

Note that this formal equality can also be made rigorous by replacing the Dirac
measure 3, with a suitable sequence of approximating functions.
We shall need the following strengthening of (6.a), For n > 1, £ > 0, set

XM =b(n) Ky, XI7 =0(n) " Xy
Skorokhod’s extension of Donsker’s theorem ([20]) states that
(6b) (x®, x) L, (g, ),

where convergence holds in distribution in the sense of Skorokhod’s topology.
The proof of (6.a) given in [18] shows that the limiting results (6.a) and (6.b)
hold jointly:

n—o

b(n)?
(6.c) xm, X1, (:2) I n(i)co (U’ ‘U"aU,U’([O’ 1]2))'

In what follows, we shall be mainly concerned by the asymptotic behaviour
of I,. Our first task is to prove that asymptotically I, behaves like some
constant times o/,,.

6.2. Our first lemma is a simple consequence of Corollary 5.3()). For
ueR, u="_(uy...,uy)weset[ul = (u,l,...,[uyD.

LEMMA 6.1. Suppose that X satisfies Assumptions Al, A2 and A3 with
d — 1 < B < d and that X is transient. Then for each u € Re — {0},

b( )

n—o

(6.d) o) S 1) =4 / dsp,(u).

Moreover, for any & > O, there exists a constant C, such that for any n > 1,
u € RY,

b(n)? .
(6.e) (n—)P[T[,,(n)u] <n] < C(ulf™ + ulf777").
ProoF. Set x = x(n) = [I;(n)u]. Then,

1(b(n))
(T[b(n)u] <n)=(T,<n)=|T, < l(x)m
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Since [ is regularly varying of index B we have
L(b(n)) |8

€0 (b(nu]) ==
On the other hand,

xl? |[B(n)u]]” b(n)?
(68) 1(x)  I([b(n)u]) noe ul™? =

(6.d) now follows from (6.f), (6.g) and the first assertion of Corollary 5.3,
noting that

—d v
[Py e ol = ps(v).

Let us prove (6.¢). We first assume that |[[6(n)u]l > 2 and we apply the
bounds of Corollary 5.3() to x = [6(n)u]. It follows that

P[Tyymyy < 1] < C|[b(n)u]| " 1([B(n)u])(lul ™ V 1).
Hence,

b(n)d I[b(n)ull"’l [b(n)u]
P[T[b(n)u] ] = b(n)—d (l(b(n)) )

< C;(lulﬁ—d—Zs + |u|B—d+e),

by the properties of functions of regular variation. If |[[b(n)u]| < 2, we simply
write

(lul™* v 1)

b(n)? b(n)" iep ( n)f

——P[Tipmyy < 1] < <b(n) <Clulf™". O

REMARK. The bound (6.¢€) is far from optimal when |u| is large. As a matter
of fact, we will only use it for |u| < K in our applications. A similar remark
applies to the bounds of Lemma 6.2.

LEMMA 6.2. Under the assumptions of Lemma 6.1, we have, for any
u,veR?—{0), u+uv,

. . (n)d k/n
) ,}1_131, (:‘512 “Piotya| Tiocny < k] = qfo p(v—u)ds|| =0,
: b(n)
im, (:‘j{: [b(n)u][ Y I(X; = [b(n)v])}

(ii)
- k/nps(v —u)ds
0

J-o
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Moreover, for any e > 0, there exists a constant C, such that for all u,v € R,

o b(n)* : —a-
(i) ——Ppy(uyut| Ty < 2] < Collv — ul? - ulf ),

b(n)? k
) B T 10X, = [(n)s])

<C,(v - ulP4%e 4 |p — ulﬁ_d_s).

Proor. All assertions are easy consequences of Lemma 6.1. First, a slight
extension of (6.d) shows that for 0 <« < 1,

_b(n)* a
lim ————P[b(n)u][T[b(n)v] < an] = qfo p(v —u)ds.

n—o n

() follows: The uniformity in % is a consequence of the monotonicity of the
mappings

k/n
k — P[b(n)u][T[b(n)v] < k] and k- j(; ps(v - u) dS.

Assertion (ii) follows from (i) by using (2.k) and the following simple fact. For
any 6 > 0, we may choose N large enough so that

N
q—l - 8 < Eo[ Z I(Xl = 0)] = G(N)(O, 0) < q—l.
i=0
Finally, (iii) follows from (6.e), whereas (iv) is a trivial consequence of (iii). O
6.3. We will now use Lemma 6.2 to prove the main estimate needed in the
proof of the central limit theorem for R,. We use the notation and assump-

tions of Section 6.1. In particular, 2d/3 < B < d.

PropoSITION 6.3. Suppose that X and X' are independent and both satisfy
the assumptions of Lemma 6.1. Then

b(n)* o ®
n2 (In_qun) Tow 0.

Proor. Let K > 0. We shall first prove the statement of Proposition 6.3
with I, and o, replaced by

IX =|X(0,n) N X'(0,n) N {x, || < Kb(n)}],

> ¥ I(X, - X)1(X,) < Kb(n)).

j=0%k=0

JK
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Then
E[(IX - qq U )| = E[(1X)] - 20¢'E[1XIE] + (aa)°E[(JE)].

We investigate separately the asymptotic behaviour of the three terms of the
right-hand side. We have

X |12y

= 4 Z P[yEX(O,n),zeX(O,n)]
(6.h) T yzezd
lyl, |zl <Kb(n)
XPly € X'(0,n),z € X'(0,n)]

3,(u,v)9,(u,v) dudv
nt j;[[b(n)u“SKb(n),|[b(n)v][5Kb(n)} n( ) ) n( s ) ,

where we have set: 9,(u,v) = P[[b(n)u] € X(0, n), [6(n)v] € X(0, n)]. Now
note that, if u # v and n is large enough,
t(u,v) = P[T[b(n)u] =n; P[b(n)u][T[b(n)v] s k]k =n- T[b(n)u]]

+ P[T[b(n),,] < 105 Piyimyon Tipcmout < R ] aon—Tyyy] — En(250),

(6.)

where the error term E,(u, v) involves visiting u both before and after visiting
v, or the same with u replaced by v. Using Lemma 6.2(iii) we obtain, provided
u,v+0,

E c [}
o(u,v) < u,v(m)'

b(n)*
2

Hence

lim

n—o
[note that since X is transient we must have: lim, _, n/b(n)? = 0]. Coming
back to (6.i) and using (i) of Lemma 6.2 we obtain

E,(u,v) =0

_b(m)™ 1
s = ¢ [asn) [ - w
(6.) ‘
1 1-s
+f0dsps(v)j; dtp,(u — v)),
whenever u # v, u,v # 0.
Set

fg(u) — |u|B—d—s + Iulﬁ—d+e-



692 J.-F.LE GALL AND J. ROSEN

Then Lemma 6.2(iii) easily implies

b(n)*
(6.k) ——0u(u,0) < C(fulw) fo(v —u) + f.(v) £l = v))

for all u,v € R?, n > 1. Similar statements hold when 9,(«, v) is replaced by
9 (u,v). (6 .j) and (6.k) can then be used to pass to the limit in (6.h). Note that
(6 k) allows us to apply dominated convergence, since f, is locally square
integrable, provided ¢ is small enough. We finally obtain

li_r)r;b(n) E[(1%)]
n2 1 1-s _
o - (a9 dudol ['dsp, () [ "depi0 )

7+ '[()ldsps(v)j;l_sdtpt(u — v))

( flaspitr [apico - ) + [aspio) [ aeriu - v),

where By = {u;lul < K}. We will now prove that the same result holds when
(I¥)2 is replaced by qq'IXJX or by (gg)*(J¥)?. It will then follow that

b( )2d

(6.m) lim

n—>o

E[(IX - ag'TF)"] = 0.

We first consider

2d
8 gl 1%
n
2d n
S eyexom, k-0
6 WY "
xXE|y€X'(0,n), f I(Xz{ =z)]
i=0
b(n)4d

’ en(u,v)e,(u,v) dudv,
nt j;l[b(n)ullst(n),l[b(n)v]ngb(n» ( w(u,v)

where ¢,(u,v) = E[[b(n)u] € X(0,n); L?_, I(X; = [6(n)v])]. Note that

e,(u,v) = ‘Prlz(u’v) + ¢r21(u’v)’



THE RANGE OF STABLE RANDOM WALKS 693

where

O(1,0) = E| Ty <ns % I(X; = [b(n)0])],

i=Tipnyu
o2 (u,v) = gOE[I(Xi = [6(n)v])I(i < Tppnyuy < 1))

The asymptotic behaviour of ¢l(u,v) is easily obtained by applying the
Markov property at time T';,,,; and using Lemma 6.2: If » # v and u,v # 0,

2d
(60)  lim (n2 eh(u,v) = g dsp,(u) [ dtp (v~ u)
and
b(n)2d 1
7 en(,0) <C.f(u)f(v—u).

In order to study the asymptotic behaviour of ¢2(u,v), we first replace
@3(u,v) by

&(u,v) = Xn‘, E[I(X; = [b(n)v])I([b(n)u] € X(i + 1,n))]

i=0
= L E[1(X, = [6(x)0]) P T < 7 = i]].

Indeed we have
0 < @2(u,v) — ¢2(u,v) <E,(u,v),

where
E (u,v) = _;nOE[I(T[b(n)u] <)I(X; = [b(n)v])I([b(n)u] eX(i+ l,n))]

and, as above for E,(u,v), we have

~b(n)*_
lim —E, (u,v) =0, u+v,u,v*0.
n— o n
On the other hand, Lemma 6.2 implies
b(n)2d 1 1-s
6. li 5 = d dt -
(6.p) lim —5—¢(u,v) qfo sps(v)fOA py(u —v)
and

5 @(u,0) < C,£(0) f(u ~ ).

Putting (6.0) and (6.p) together and applying dominated convergence in (6.n),
we obtain the analogue of (6.1) with E[(IX)?] replaced by qq'E[IXJX] It
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would remain to study E[(JX)?]. This case will be left to the reader since it is
easier than the previous ones. The main tools are again (ii) and (iv) of Lemma
6.2. This completes the proof of (6.m).

It remains to pass from (6.m) to the statement of Proposition 6.3.
Skorokhod’s extension of Donsker’s theorem, recalled in Section 6.1, implies
that

suplX,| > Kb(n) ) = 0.

k<n

(6.9) lim ( lim sup P

— 0 n—o

Putting (6.m) and (6.q) together gives the result of Proposition 6.3. O
Corollary 6.4 follows by combining (6.c) and Proposition 6.3.

COROLLARY 6.4. Suppose that X and X' are transient and both satisfy
Assumptions Al, A2 and A3 with 2d/3 < B < d. Then, with the notation of
Section 6.1,

b(n)! \ @ 2
X(n), X,(n)y n2 In n—ow (U7 U,, qq,aU,U’([O’ 1] ))7

where the convergence of processes is in the sense of Skorokhod’s topology.

6.4. Before proving the central limit theorem for R, we need to get a
bound on var R .

LeEmMA 6.5. Under Assumptions Al and A2, if 2d/3 < B < d, there exists
a constant C such that for any n > 1,
4

n
varR, < C——.
" b(n)*?

REMARK. Lemma 6.5 does not require Assumption A3.

Proor. We use essentially the same method as in the proof of (4.f). We
take n > 2 and n, = [n/2], ny = n — n,. Then

R, =|X(0,n,)| +|X(ny,ny)| —|X(0,n,) N X(ny,n)l.
Hence, with the usual notation {V} =V — E[V],

E[(R,]" < (B[(R,)] + B[{R.F]) " + E[1X(0,n) 0 X(ny,m) ]

1/2 n?

< (E[(R, )] +E[(R.)]) " + O

by Corollary 3.2 (or rather the remark following that corollary). The point is
that, due to the independence of increments, we may interpret |X(0,7n,) N
X(n,,n)l as the number of intersection points of two independent random
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walks both satisfying Assumptions Al and A2. For any & > 1, set

b(2%)?
a, = sup —%—E[{Rn}zlvzﬂk <n <2F1}

We obtain
1 b 2k+1
a,. —(—L "%q, + C' < 24/F=3/2%¢q, + C'
=1 b(2*)*
for any ¢ > 0 and for % large enough (depending on ¢). Since B > 2d/3 we
may take ¢ so small that d/B — 3 + & < 0. It follows that the sequence (a,) is
bounded. O

THEOREM 6.6. Under Assumptions Al, A2 and A3, if 2d/3 < B <d and
if the random walk X is transient, we have

b
(:2) - E[R,]) 222 - v

Proor. For every p > 1, we have

{R,} ={IX(0,n)}
£

i=1

2i-2 2i-1
( 2l Y ”)

-2

21-1 2i
ﬂX(—Tn, ;n

|

s . n —2d
<02 Pnb(-z—;) ,

= A(n,p) — B(n,p).
Lemma 6.5 and the independence of the increments of X give the bound

)

27 2p
where the constant C does not depend on n, p. Notice that for a fixed p,

—2d
b(n)2db(-2’ip) < (1 + £)224p/B

E[A(n,p)’] < 2”supE

for any £ > 0 and n large enough. Hence,
n=4b(n)**E[ A(n, p)?| < C(1 + £)27@4/8-9),

provided n is large enough. Since 2d/B — 3 < 0, it follows that if p is large,
n~2b(n)?A(n, p) is small (in L2norm) uniformly in n. Thus we need only

study B(n, p) for p large.
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For1<j<pandl<ix<2/ ' let A5 and a(A’) be as in Section 6.1. We
claim that
21-2 21-—-1 2i—1 21
X( n; - n) ﬂX( n;——7n) ,

2J 9J 2J 92J
1<j=<p,1 siszj‘l)

b(n)*
n2{

[

@ ) J : . j-1
njw(U,q {a(A))}1<j<p,1<i<2/7h).
Indeed, let us first fix i and j. The same arguments as in the proof of Theorem
4.5 allow us to interpret the quantity
2t -2 2i—-1 2t -1 21

X( YRRy n) ﬂX(————zj n; En)
as the number of intersection points of two independent random walks taken
on the interval [0,27n]. The convergence of this (suitably normalized) quan-
tity then follows from Corollary 6.4 and our construction of a(-) from the
intersection local time of independent processes. Moreover, Corollary 6.4 also
shows that this convergence holds jointly with that of X . The latter fact and
an easy tightness argument imply that the convergence holds jointly for all

pairs (Z, j).
In particular, we get
b(n)? @ o2 ;
— BULM7;?szIZJdAQ}
Jj=1i=

The proof of Theorem 6.6 is now completed by noting that, by the definition of
Yu, the right-hand side in the previous equation is close to g2y, when p is
large. O

6.5. We now turn to the case when B = d and X is recurrent. We keep the
notation introduced in Section 5:

h(n) = Gepy(0,0) = kfoPk(o,O).
We have already noticed that A is slowly va.t;ing and that
Bn) = (@ X 50 pi(0) >0
We first state the analogue of Lem;na 6.5.

. LEMMA 6.7. Under Assumptions Al and A2, if B = d and if X is recurrent,

there exists a constant C such that for n > 1,

n4

R,<C———.
i b(n)h(n)"
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The proof is exactly similar to that of Lemma 6.5 and will thus be left to the
reader. The main tool is the bound
E[|X(0,n/2) N X(n/2 n) | < C——f———
’ ’ = U b(n)*h(n)*’

which follows from Corollary 3.2.

THEOREM 6.8. Under Assumptions Al, A2 and A3, if B = d and if the
random walk X is recurrent, we have
b(r) h(n)’ @
2 R (R, - EIR,) 752~ o
The proof of Theorem 6.8 follows the outline of that of Theorem 6.6. The

analogues of Lemmas 6.1 and 6.2 are easily established. For instance the first
two assertions of Lemma 6.2 are replaced by

. b(n)*h(n) k/n
’}lll}n zup _———_—P[b(n)u][T[b(n)v] = k] - ‘[0 ps(v - u) ds| =0
and
b(n)* L 5
lim :up E[b(n)u][z I(X; = [b(n)v])] - j; p,(v—u)ds|=0.
no®pop i=0

The proof uses (ii) of Corollary 5.3 instead of (i) of this result in the transient
case. In proving the analogue of the second assertion of Lemma 6.2, we also
note that for any ¢, 8 > 0, we have for n large:

Y P(0,0) =(1- 8)G,,(0,0).

l<i<en
This follows from the fact that A is slowly varying.
The analogue of Proposition 6.3 is then established as in the transient case.
It states that
b(n)*

n2

(h(r)’L, - ) 2,0

n—ow

and then (6.c) implies

b(n)h(n)?
X, X, (n) 2( ) I,| -2, (U,U', ap,u(0, 1%)).
_The remaining part of the argument is entirely similar to the transient case.

6.6. dJain and Pruitt [7] have proved the strong law of large numbers for
R, for all recurrent random walks in the plane. We shall recover this result in
our special situation and extend it to certain one-dimensional walks.
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THEOREM 6.9. Under Assumptions Al and A2, if d = B and if the random
walk X is recurrent, we have

6 E[R,] = - +p\(0 a7 * :
6x) BRI =50y PO sy "(h<n)2s(n)")
and

im "M g 1,

n—o n

where convergence holds in the L%-norm, and almost surely if s(n) > 1 for
each n. If we also satisfy Assumption A3 we have

(P1(0) = 7,),

(6) Ry= et ——
A(®) " h(m)s(n)

where the sequence v, is bounded in L? for any p < » and converges in
distribution towards vyy.

Proor. In order to investigate the asymptotic behaviour of E[R,] we need
some more notation. Set

u, =P, 0,0),
r, =P,[Hy,>n], where H,=inf{n >1,X, = 0}.
Then

n
E [ R n] = Z Tis
i=0
and by considering the last zero of X before time 7,
n

(6.t) Yur, ;=1

i=0
Since (r,) is nonincreasing, (6.t) implies

n -1 1
= (Eoui) - h(n)"

We now propose to get a lower bound for r,. Take & > 0. Then, using (6.t)
with n replaced by [(1 + &)n],

[en] [(1+¢&)n] n—1
Z u;|r,=1- Z UiTi A +en]—i = 1- Z Ui +eyn)-iTis
j = i=[en]+1 i=0

(6.u)
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Notice that
n n
h(n) - h([sn]) = . Z u; ~P1(0). Z is(n)d
(6V) i=[en]+1 i=[en]+1

1 -d
~ p(0) log—s(n)

It is easily checked that

n-1 1 1 n—1
(6W) tzo h( ) (1+£)n] i :oo h(n) Z (1+£)n] i

Use the fact that 1/h is slowly varying and observe that for § > 0 small,

5 Ob(m) " E < Cb(n)
—Uu nl—i < n —— < C'b(n s
izo h(%) o] izo h(%) h(én)

where the constant C' does not depend on 8. It follows from (6.u), (6.v) and
(6.w) that

> ! - - h([(1 +&)n]) — h([
™Z fen])  hlenna(y (UG Fenl) = h(len])
(6.x) 1
h(n)%s ()

Notice that (6.v) implies

1 B 1 1 1
WG ) PO, h(n)s(n)? (h(n)zs(n)")'
It then follows from (6.x) and (6.v) that

1 . 1 L1 1te 1
= 7(n) o )h(n)zs(n)d(og; T )+O(h(n)2$(n)d)

1 1
h(n) pl( )Wlog(l+e) +0(

Since ¢ was arbitrary we conclude that

o)
h(n)?s(n)?)

1 1 .
r,=——+o|l——s—|.
" h(n) (h<n)2s(n)“)

"Notice that, by Lemma 2.2, }l(n)s(n)d — o, Then

n n 1 n
ER,)=Xrn=X 3yt °(h(n)2s(n)")
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[note that, if f is slowly varying, X7_, f(i) = O(nf(n))]. On the other hand,
n 1 n+1 n h(n) — h(i)

RO R O0)

and

2 h(n)-h(i) & izl n

i2=:0 h(i) _ngujzeo k() h(J) h( ) (n)*
We finally obtain

n n
ElR.]= h( y PO )h(n)zs(n)d+°(h(n)2s(n)")'
We also have, by Lemma 6.7,

R <C————.
Y e

E (h(nn)Rn - 1)2 <C

It follows that
1
h(n)?s(n)™

This gives the convergence in L2-norm of (h(n)/n)R,,.
We now turn to the proof of the almost sure convergence, when s(n) > 1. It
suffices to prove that for any r > 1, if n;= [r/],

(h(J) _1)2]@

h(n;)

(6.y)

(6.2) 2 E

Indeed, if (6.z) holds, we have

lim R, =1 as,
noe  n; J
hence, by the monotonicity of (R ),
h(n h(n
r~1! < liminf ( )Rnslimsup ( )Rnsr a.s.

Let us prove (6.z). Set m, = O and for every & > 1,
= inf{p; h(p) = k}.
Notice that £ < h(m,) <k + 1. Then :

1 @ 1
Yy ———5=1 ) —
7 h(n)’s(n))* T K21 Gy mysm<mann R(n) s(n;)
‘ ©° 1 1
Z 7z >

2d
1 Usmp<ni<m,,q} s(nj)
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By (6.v), we have, for j large,
s(n;) % <s(n;)” < C(h(n;,1) — h(n})).
It follows that

1 .
r 53 < C(h(my, 1) —h(m,))+1<C".

Usmysnj<mg,,) SU;

We conclude that

1
5 h(n;)*s(n;)*
and together with (6.y), this implies (6.z).
The last assertion of Theorem 6.9 is obtained by combining our expansion
for E[R,] with Theorem 6.8, except for the fact that (y,) is bounded in L”.
This has already been established for p = 2 in Lemma 6.7. The general case
can be handled using arguments similar to those of the proof of (4.f). O

ReEMaRk. If d = 2, we can always assume that s(n) > 1 (see Feller [4],
Theorem 3, page 580) and we recover a special case of Jain and Pruitt’s result.

In the transient case, we know from (l.a) that n 'R, converges almost
surely to q. We have the following analogue of Theorem 6.9. The proof uses
similar arguments and will be left to the reader.

THEOREM 6.10. (i) Under Assumptions Al and A2 and if 2d/3 < B < d,

2 1 1 n’® n’
E[R,]=qn+q Pl(o)(z —d/B " /8- l)b(n)" +O(b(n)")'

If we also satisfy Assumption A3,

2 1 - n2
R,=qgn +gq (pl(O)(z_d/B * d/B—l) _YH)W’

where the sequence v, is bounded in L? for any p < © and converges in

distribution toward .
(ii) Under Assumptions Al and A2, if B = d and if X is transient,

2 - ! 3 -
BlR.]=qn+q pI(O)nkgn ks(k)® +‘0(nkz=:n ks(k)d).

The same expansion is valid for R, the convergence of the error term being in
_ the L%-norm.

6.7. Our asymptotic study of the range R, required information about the
number of intersection points of two independent random walks. Similarly, we
could have considered the number of intersection points of %2 independent
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random walks. For simplicity, we restrict our attention to the case of planar
random walks with zero mean and finite second moments (8 = d = 2, s(n) =
1). Let 2 > 2 and let X%,..., X* be k independent such random walks. Then
Assumption Al is satisfied for each i and the limiting process U’ is, up to
some linear transformation, a Brownian motion in R2. We also assume that
Assumption A2 is satisfied for each i. According to Proposition 2.4, we have

hi(n) ~p o (2m0?)  logn,

where o2 is the square root of the determinant of the covariance matrix of Xj.
Set

I, =|X'(0,n) N - NX*(0,n)],
n

n
J,= ¥ - L I(XL=XZ= - =X}).

i;=0 i,=0
ProposITION 6.11. We have
nY(J, - (2m) For? -+ oy ?(log n)"I ) —2 0.

The proof of Proposition 6.11 is very similar to that of Proposition 6.3 and
will be left to the reader (see also the remarks after Lemma 3.1). Combining
Proposition 6.11 with the Theorem 1 of [18] gives Corollary 6.12.

COROLLARY 6.12. We have
1(logn) I, == (27 ) of -+ ofay, U"([O; 1]k),

k _
ag, . o+([0;1]) = o0 llkdtl “ dty 80Uy — US) -+ 8o(Us — Ui)
is the intersection local time on [0;1]* of the k independent processes

UL,...,U~

ReEMARK. The result of Corollary 6.12 was obtained in [9] but only for
k=2 or 3. In these two cases one can show that the law of the limiting
variable is characterized by its moments (for 2 = 2 this follows from the
remarks after Lemma 3.1). Thus, in order to prove the convergence in distri-
bution of the corollary, it is enough to prove the convergence of all moments of
n~(log n)*I, toward the corresponding moments of the limiting variable (see

[9D.

7. The case B > d. We now consider the case B > d, which can only
occur if d = 1. We suppose that X is a random walk in Z which satisfies
Assumptions Al and A2 for some 8 > 1. We propose to show that the strong
law of large numbers does not hold for R, in this case. Instead we will prove



THE RANGE OF STABLE RANDOM WALKS 703

the convergence in distribution of &(n) 'R, toward a nondegenerate law. This
result has already been obtained by Jain and Pruitt [7] in the case of random
walks with zero mean and finite second moments. The main ingredient of our
proof is part (iii) of Corollary 5.3.

Let U(0;1) = {U,,0 < s < 1} be the set of points that are visited by U
before time 1 and let m denote the Lebesgue measure on R. Then 7 (U(0; 1))
is a nontrivial random variable such that

E[m(U(0;1))] < .
This bound can for instance be derived from the fact that (U;0 <s <1)isa
martingale bounded in L? for any p < B.

THEOREM 7.1. Under Assumptions Al and A2 and if B >d =1,
b(n) 'R, —2, m(U(0;1)).

n np—oo

Proor. The first step is to study the asymptotic behaviour of E[R,]. Let
K > 0 and set

RY =|X(0;n) N [-Kb(n); Kb(n)]|. -
Then
E[RY] = Y  PIT.<n]
x€[—Kb(n); Kb(n)]

= b n duP T, <nl.
( ){uER;l[b(n)ullst(n)} [ [b(r)u] ]

Corollary 5.3(iii) implies that for u # 0,
lim P[Tyyny < 1] = P[0,y < lul™*] = Plo, < 1],

n—o

where o, = inf{¢; U, = u}. It follows that

'}i_r)r;b(n)_lE[R,’f] =E[m(U(0;1) n[-K;K])].
Letting K tend to infinity we obtain
(7.2) lim b(n) 'E[R,] = E[m(U(0; ))].

Here we use the following two arguments: First, the probability P[X(0,n) c
[—Kb(n); Kb(n)]] is close to 1 when K is large,.uniformly in n; second, it
follows from (3.b) and (2.j) that the sequence b(n) 2E[(R,)?] is bounded.

Set

XM =b(n) " Xy,

so that X converges in distribution towards U, in the sense of Skorokhod’s
J1-topology. By Skorokhod’s representation theorem, we may find a sequence
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X™ guch that for each n, X and X are identically distributed and more-
over

(7.b) ‘ XM —— U as.

n—o

in the sense of Skorokhod’s topology.
Let U(0, 1) denote the closure of U(0, 1). Since U(0,1) — U(0,1) is count-
able, we have

m(U(0,1)) = m(U(0,1)) a.s.
For any ¢ > 0, let W, denote the ¢ neighbourhood of U(0, 1). Then
(7.¢) m(W,) | m(U(0,1)).
e—0

Moreover, (7.b) implies that for n large (depending on w), for every ¢ < 1,
XM ew,.

Set X™(0,n) = {X;0 <i <n}and R, = |X®(0,n)l, so that R, and R,
are identically distributed. Taking n larger if necessary, so that b(n)~! <e,
we obtain

1B - [6(n)u] .. .
b(n) 'R, [dz(b() e X™(0,n)

< [dul(u € Wy,) = m(Wy,).

~Using (7.c) it follows that, a.s.,
(7.d) limsupb(n) 'R, < m(U(0,1)).

n-—ow
In particular, we have
lim (b(n) 'R, - m(U(0;1))), =

hence, since the sequence b(n)~'R, is uniformly integrable (we have already
noticed that it is bounded in L?),

lim E[(b(n) 'R, - m(U(0;1))), | =

n—oow

By (7.a) we also have
lim E[b(n) 'R, — m(U(0; 1))] = 0.

n—o

We conclude that
lim E[|b(n) 'R, — m(U(0;1))]] = 0. O
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