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A CHARACTERIZATION OF REVERSIBLE MARKOV CHAINS
BY A ROTATIONAL REPRESENTATION

By P. RoprfGcuEz DEL Tfo AND M. C. VALSERO BLANCO
Universidad de Valladolid

Let P=(p;;), i,j=1,2,...,n be the matrix of a recurrent Markov
chain with stationary vector v > 0 and let R = (r,-j), i,j=12,...,nbea
matrix, where r;; = v;p;;. If R is a symmetric matrix, we improve Alpern’s
rotational representation of P. By this representation we characterize the
reversible Markov chains.

1. Introduction. Let P =(p,;;), i,j =1,2,...,n be a stochastic recur-
rent matrix with stationary vector (v,,...,v,). Let m denote Lebesgue mea-
sure on [0,1) and let f,(x) = (x + t)(imod 1) be the shift transformation on
[0,1). Let S =(S;,i=1,2,...,n) be a partition of the unit interval. We say
that S has type L if every S; can be represented as a union of at most L
intervals. We say that (¢, S) is a rotational representation of P if

pij = (m(f(S:)) n'8;))/m(8;) with m(S;) =v;,i=12,...,n.

Cohen (1981) proved that every 2 X 2 recurrent matrix has a rotational
representation of type 1 and conjectured that every n X n irreducible stochas-
tic matrix has a rotational representation where S has type n — 1. Alpern
(1983) showed that Cohen’s conjecture was false. Haigh (1985) gave a type 2
representation for 3 X 3 recurrent matrices and Alpern gave a representation
for n X n recurrent matrices. The type of this representation is very far from
Cohen’s conjecture.

Cohen suggested such a representation by looking at 2 X 2 recurrent matri-
ces. These matrices have the property of being reversible matrices. We say that
P is reversible if

pij = (v;p;;)/v; i,j=1,...,n.
Define R = (r;;),i,j = 1,...,n, where r;; = v;p;;. P is a reversible matrix iff
R is a symmetric matrix.

We will show that every n X n reversible matrix has a rotational represen-
tation (3, S) of type [n/2] + 1, so this representation improves Cohen’s
conjecture if n > 4. We also use this representation to characterize reversible
matrices.

2. Rotational representation of reversible recurrent matrices. The
construction given by Alpern (1983) is based on the decomposition of the
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matrix R into cycles and on the assignment of labels to each subinterval of a
partition. The type of the partition depends on the order of the cycles and on
the way the labels are assigned to each subinterval. If R is a symmetric
matrix, then it is a convex combination of n cycle matrices of length one and
n(n — 1)/2 cycle matrices of length two, so the rotation can be taken to be ,
that is ¢ = 1. In this case the cycles and the labels can be reordered to get the
labels grouped at least in pairs except, perhaps, one of them. As two or more
contiguous subintervals with the same label can be merged into one, we have
less intervals than labels, therefore the type of the partition decreases.

The following lemma proves that such ordering and labeling can be found.

LEmMMA 1. Let E = E(n) be the set of N = n + n(n — 1)/2 unordered pairs
(i, j) with i, jin {1,...,n). Then the elements of E may be ordered and labeled
as (a(k),b(k)), k=1,..., N, so that in the circular arrangement
a(1),a(2),...,a(N),bQ),...,b(N)i.e., with a(1) adjacent to b(N)] then + 1
occurrences of each label i form at most [n/2] + 1 contiguous sets.

Proor. First assume n is odd. Let G be the graph with vertices 1,...,n
and edges E (the complete graph with loops added at every vertex). At every
vertex there are exactly (n — 1) + 2 =n + 1 incident edges, since a loop
counts as 2. Since this number is even there is an Eulerian cycle
Uy,..., Uy Uns1 = U; in G [Gondran and Minoux (1984), Theorem 1, page 338],
which we may assume has 1 = v; = vy. If & is even, let (a(k), b(k)) = (v, v41)
and if k is odd, let (a(k), b(k)) = (v, ,, vy). In vertical notation, the ordering
of E looks like:

b(k) > 1 wg vy ... U Upyz Upss

a(k) > vy Uy Uy ... Upsr Upir Ukss

Observe that all occurrences of every label i appear in pairs, with the
possible exception of the four 1’s in columns 1, N—1 and N. If n=1
(mod 4), then N is odd and the 1 in column N — 1 is in the top row, so the
pairing holds for all the 1’s, too. Since each label i occurs n + 1 times, it
occurs in (n + 1)/2 contiguous pairs and we are done. If n = 3 (mod 4), then
there is a 1 in the bottom row of column N — 1, so these four 1’s are still in
two contiguous sets and the occurrences of any label i still form at most
(n + 1)/2 contiguous sets, as required.

If n is even, the graph G has odd degree (n + 1) at every vertex. In this
case, define G' to be the multigraph with N’ = N + n/2 edges obtained from
G by adding another copy of each edge (1,2),(3, 4),...,(n — 1,n). Observe
that every vertex has even degree n + 2 in G'. Apply the same argument as
before to obtain N’ columns with all labels (except possibly 1, which is treated
specially, as before) appearing n + 2 times in (n + 2)/2 pairs. Then delete one
appearance each, for the n/2 added columns (edges). Renumber the columns
and in the resulting circular ordering each label appears in at most (n + 2)/2
contiguous sets. O
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ExamMpLE 1(n = 3, N = 6). An Eulerian cyclein G isgivenby 1,2,2,3, 3, 1.
The associated ordering of E, writing pairs vertically, is given by
1 2 2 3 3 1 (twocontiguous sets)
2 2 3 3 1 1 '

ExampLE 2 (n = 4, N =10, N' = 12). An Eulerian cycle in G’ is given by
1,2,2,3,3,4,4,1,3,4,2, 1. If we delete the second occurrence of the additional
edges (1, 2) and (3, 4) (marked x), the ordering works.

1 2 2 3 3 4 4 3 3 2 2 1 (threecontiguoussets)
2 2 3 3 4 411 4 4 11 :
x x

THEOREM 1. If R is a symmetric matrix, then P has a rotational represen-
tation (3, S) where S has type [n/2] + 1.

ProoF. As R is a symmetric matrix, it is a convex combination of n cycle
matrices of length one and n(n — 1)/2 cycle matrices of length two with
coefficients r;; in the (i) cycle and 2r;; in the (i, j) cycle. Let (a(i), b(i)),
i=1,..., N beasin Lemma 1.

Define

ay =0,

a; = (ra(i),b(i))/z if a(i) = b(3),

@ = Toiy iy if @(i) £b(i),i=1,2,..., N.
Let A,;, k= 1,..., N be a partition of [0, ), where

k-1 k
Ap = [Z a;, E ai)'
i=0  i=0
Define A,y =f1,5(As), k=1,..., N,

Si=( U Akl) U( U Akz), S={S}i-1,...n

a(k)=i b(k)=i
Note that

N
R=Y 2a,Clary, bk
k=1

where C, ) sy i the n X n cycle matrix with elements:
if a(k) # b(E), Cahy,bky = oy aky = 35 Cij = 0 otherwise,
if a(k) = b(k), comy, by = 15 ¢;; = 0 otherwise.

Direct calculus proves that (3, S) is a rotational representation of P. The
assignment of labels (a(k), b(k)) shows that S has type [n/2] + 1. O
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In case the matrix R does not contain all possible cycles of length two or all
possible cycles of length one, fewer subintervals in the previous construction
are required and the type of the partition may possibly be less than [n /2] + 1.
For example, if p,; =0, i=1,...,n (i.e., there are not any loops) and n is
even or n = 3 (mod 4), then the matrix P has a rotational representation in
which the partition S has type [n/2].

3. Relations between the rotational representation of a recurrent
stochastic matrix and its reversed matrix. Let P be a n X n recurrent
matrix with v its stationary vector. Let @ = (g;;) be defined q,; = (v;p;,)/v;.
@ is called the reversed matrix of P. It is well known that @ is a stochastic
matrix with a stationary vector v.

LEMMA 2. Let (¢, S) be a rotational representation of P. Then (1 — ¢, S) is
a rotational representation of Q.

Proor. Let f(x)=(x + tXmodl), g(x)=(x+ 1 —¢)Xmod1l) be shift
transformations on [0, 1). It is very easy to show that f, =g;'. As (¢,S) is a
rotational representation of P, then p,; = (m(f(S,) N S;))/m(S;). And g,; =
(v;p;))/v; = m(f(S;) N 8)/m(S;) = m(S; N gt(Si))/m(,Si). So the lemma is
proved. O

THEOREM 2. A recurrent matrix P is reversible if and only if it has a
rotational representation (3, 8S), for some partition S. If so, there is such a
representation where the type of S is [n/2] + 1.

ProoF. Let P be a recurrent reversible matrix, then p,; =gq,;, so R is
symmetric and we apply Theorem 1. Conversely, suppose that P has a
rotational representation (3, S), then by Lemma 2, @ has the same represen-
tation, so P = Q. O
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