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ON THE CENTRAL LIMIT THEOREM FOR MARKOV CHAINS
IN RANDOM ENVIRONMENTS

By RoBERT COGBURN

University of New Mexico

A functional central limit theorem is established for Markov chains in
random environments under the assumption of existence of a finite invari-
ant, ergodic measure and a mixing condition. These conditions are always
satisfied when the state space is finite.

1. Introduction and basic results. Let {P(6),0 € O} be a family of
stochastic matrices acting on a finite or denumerable space 2". We call © the
set of environments and the (x,y) entry of P(6), P(0;x,y), denotes the
probability of moving from x to y in one step in environment 6. Let & be a
o-field in ® such that P(-;x,y) is # measurable for each x,y € " Let
6 = 0% be the product space of doubly infinite sequences {0 }and Z = &2 be
its product o-field, T be the sequence shift operator on ® and 7 be a shift
invariant probability on (@ Z). Now let Xy, X;,... be a sequence in Z” such
that

(1.1)  P(X,=y1X,=2,X,1,...,X0;0 ) =P(6,;%,) as.

for all x,y € 2 and n > 0. This two-level stochastic sequence is called a
Markov chain in_a random environment (MCRE).

Let S = 2% 0, o-field F= 97X %, where &/= 2%, and measure u = k X
7, where k is counting measure on . Define a transition probability P on S
by

(1.2) P((x,g),(y,Ta)) =P(0y;x,y).

This formulation allows the L, approach to Markov processes of Hopf (see
Foguel [7] for a general introduction) to be applied. We let %, denote the
o-field of invariant sets in S: F € &; if P(Iy) = Iy a.e. Of course, F is closed
if P(Iz) > I a.e. For F c S, (F), and (F)° denote the sections of F at x and
g, respectively.

Given the sequence g, the {X,} sequence evolves as a nonhomogeneous
Markov chain and we will call these sequences the f-chains. The transition
probability from time m to n > m for the 6-chain is P@,,) - P(,_,) and
we will write P(6,, - -- 6,_;) for this product. The most interesting results in
the theory of MCREs are those for the 6-chains; these are results for nonho-
mogeneous Markov chains in which the one-step transition probabilities are
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588 R. COGBURN

selected by a stochastic process. The assumption that this process is stationary
is the stochastic analog of the time homogeneous assumption in the classical
theory.

Let P, 5 (P, 5) denote the distribution of the f-chain {X,)*_, when X, = x
(X, has d1str1but10n v) and 6 is the environmental sequence. Also P, denotes
the distribution on the Markovian sequence {(X T 8) in S when (X,, )
has initial density ¢. Expectations on these spaces are denoted by E with the
corresponding subscript.

We assume the existence of an invariant probability density ¢ on S:

(1.3) Y (v, T"0)P(0_, *+* 0_155,%) = ¢(x,6).

yexr
An invariant distribution always exists when 2 is finite (see [3]). The distribu-
tion P, is ergodic if and only if its support F, = {(x, 9): ¢(x,8)> 0} is an
atom of %, and in any case %, is atomic prov1ded 7 is ergodic (see [3]). To

avoid unnecessary complications we also assume m and P, are ergodic.
Let || - || be total variation norm and given two distributions A,» on &, let

(14) 8n(A’V’0) =”(A _V)P(OO on—l)"
When Mx) = 1, write §,(x, v, 6), and if v(y) = 1 as well, then write 6(x, y, 9).
The 8, are nonincreasing and we let 6 = lim, _,_, §,,.

Let M denote the maximal support of a finite invariant measure on Z.
Note that M is a well- deﬁned closed set in 9” (see [3]). We say that (x, 0)
meets (y,0), denoted (x,8) o (y,0), if 8(x,y,8) < 2. It is established in [4]
that < 1is an equlvalence relation on M and we let [(x, g )] denote the
equivalence class of all (y,8) that meet (x,8). The _number of equivalence
classes in (F, )" is a finite constant ¢ (not depending on 8 ) and if (x, 8 ) < (y,8),
then 8(x, y, ) = 0, for m-a.e. 6, as is shown i in [4]. We exclude the null set of
8’s such that the above properties fail for any 9,T9,. . from further consider-
ation. It is also established in [4] that for the process started at (x, 0 ) ), with

probability 1 the process will be in an equivalence class D, = [(X T"6)lin n
steps. Let D, = [(«x, 6 )] and for n > O set

(1.5) ea(y) = co(y, T8 ) Ip (7).

Invariance of ¢ implies (pOP(00 «++0,_,) = ¢, for each n. Moreover it is

shown in [4] that 8(x, ¢, 8)=0. We let Px 7 be the distribution of {X,}_

when X, has distribution ¢,(y) = ce(y, ] M, 5y(y) and let Ex 5 be the
correspondlng expectation.
Now let o7 be the o-field generated by X,,, X, ,,... and note that

sup IPxe(A) P, i(A)| = 8,(x,,6)/2.
' Aewzy
Let
18 pu@) = smpswp [P(A) ~Bs(A)].
x,ye(F, ¥:(x,8)0(y,8) Acoty
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Consider the hypothesis
(V) p(6) =0 asn—wform—ae.b.

Note the convergence of 8,(x,y, 9) to 0 does not imply the uniform conver-
gence required by (U) in general, but it does imply (U) when £ is finite.
By a standard argument (e.g., see [12]),

(1.7) Pmsn(8) < Pu(8)pn(T™0).

It follows that, if lim,, _, pn((7 ) =0 for a m-positive set of @’s, then the
convergence holds for m-a.e. g when 7 is ergodic.

Under condition (U), we can pick a set I' with #I" > 0 and an n, such that
supoerpn(o)—p <1l Letty=0and ¢, =1¢ (0)betheﬁrstt1me t after ¢,_,
that T'6 € T for n > 1. Then it is easy to see that (1.7) implies

(1.8) ptn((i ) < pr/moml = qp™,

where p =p/" and a = . Since the ergodic theorem implies t, /n —
1/7(T) for a.e. 6, we have that for any ¢ > 0 there exists a finite n(6) such
that £, (ry1-ey+1 <1 for n > n(6). But then

(1.9) pa(6) < ap”™ ™9 for n > n(6).

Note that, while the ¢ (0 ) are random times in general when the distribution
on sequence space is P, 5 or Px 3> g is fixed so the t,’s are constants, though
they are irregularly spaced

Define a distribution for the MCRE started on X T’ by W(F) = ®(F N
(ZxT)/w(), F e ¥, and let P, and E, be the corresponding probability
and expectation on sequences in S. The blocks (X, ,..., X,  _,) are Marko-
vian and under the distribution P, they are stationary and ergodic since P, is
ergodic (e.g., see Petersen [18] on recurrence and ergodicity) and this property
will be key to ensuing discussion.

The principle results are stated next; proofs are given in Section 2.

Let f be a real valued measurable function of (S, &) and let

tn+1_1
f(x,6)=f(x,0) - E,5(f(x,6)) and Y, = ¥ F(X,,T").
k=t,
PropPosITION 1. Suppose E,(Y§) < w. Let
(1.10) o2 =E,(Y2) +2Y E,(Y,¥,).

n=1
Then the series defining a® converges absolutely and

- n p-o0

lim E

n—w
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In the following results, interpret .#1(0, 0) as the law degenerate at 0.

TuoreMm 1. Let (U) hold and let E,(Y3) < . Then for ®-a.e. (x,6) and
the distribution P, ; on sequence space,

1 t,—1 N .
(1.11) s k‘éo(f(Xk,Tko ) = E. if(X:, T"6 )) -4 H(0,0?)

as n — », where o2 is given by (1.10) and 0 < 0% < .

We will need to refer to the following moment conditions:

[ /6,-1 2
(M1) E, (Z F(X,, T*6) ‘<oo,
k=0
t-1 . 2
(M2) E, kz_:0|f(Xk,Tk0)|) ] <o,
-1 _ )\
(M3) E,| max (Z f( X, T*6 )) ] < w,
<l<ty kE=0

TuEOREM 2. Let (U) hold and any of (ML), (M2) or (M3) hold. Then for
®-a.e. (x,0) and the distribution P, j on sequence space,

n—1

1 - -
— k — R kg 2
(1.12) I k§=0(f(Xk,T 0) Ex,of(Xk,T 6 )) -4 H(0,0%m(T))
as n — o, where a2 is given by (1.10) and 0 < 02 < o,

The variance o2m(I") evidently is a property of the function f and must be
the same for any I' such that one of the moment conditions is satisfied.
Therefore we introduce the notation o 2( f) for this limit variance. The follow-
ing results provide more direct information on the value of a?(f).

TugoreM 3. Let (U) hold. If E,(YZ) < , then for ¥-a.e. (x,8)
[ 1 t,—1 . N 2]
(1.13) E,; ;( Y (f(Xk,Tko ) = E, if (X T*6 ))) - a?(f)
k=0
as n — ., If (M1) holds, then for ®-a.e. (x, 9),

n— 27
(1.14) Ex’g %( Zl(f(Xk’Tka)) —Ex’@'f(Xk,Tka))) —)o'2(f)
k=0

as n - » and if (M2) or (M3) holds, then (1.14) holds for ¥-a.e. (x, 9).
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THEOREM 4. Let (U) hold, [t, dm < » and f be bounded. Then condition
(M2) is satisfied,

(1.15) o2(f) = E¢(f(X0,(7)2) +2 zoj,lEd,[ F(X0,8) F(X,, T8 )]
and

1(n-1 N o 2
(1.16) E,; ;(kgo(f(xk,wo )~ E,if( X, T*0 ))) } - o2(f)

as n > » for ®-a.e. (x,6). Moreover, (1.16) remains valid when E, ; is
replaced by E, or E,,.

Let f® = ﬁ[lflsb]'

CoroLLArY 1. Let (U) hold, [t dm < » and f be unbounded but satisfy
(M2) and E(f(X,,0)?) < . Then

(1.17) o2(f) = E¢( f(Xo,eT)z) +2lim f E,(f®(X,,6)f®(X,,T"F)).
“®n=1

The study of the central limit theorem for nonhomogeneous Markov chains
began with A. A. Markov in 1910. A review and refinement of the work on this
problem over the ensuing half century is provided in the classic papers of
Dobrushin [5]. Quite general results are obtained in that study, but at the
price of very strong mixing conditions.

There has been much further work on the central limit theorem for Markov
chains. Of those treatments that use a uniform strong mixing condition
(¢-mixing), see Ibragimov and Linnik [10] and Nagaev [13], [14]. Studies
mostly using weaker (a-type) mixing include [8], [9], [11], [15], [16], [17], [19],
[20], [21].

Our condition (U) is essentially a ¢-mixing condition and it is to be hoped
that further work will find a way to weaken this hypothesis. Previous studies
suggest trying to break the chain into blocks between returns to a state x or
set G, but this approach has the problem that the resulting blocks are not
independent and it appears difficult to get a mixing coefficient. What makes the
approach used here work is that the blocks determined by returns to I' have
nonrandom duration in time for the P, j distributions.

2. Proofs. We will need 'the standard inequalities.

LEmMMmA 1. Let U,V be real or complex valued random variables with U a
function of (X,, ..., X,,;0) and Va function of (X,, ., Xpins1s---30). Then
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forr,s>1with 1/r+1/s =1,
(21) B, 5(UV) - B, UE, V1 < 2,(T"F) " EY7(UI)EX; (V)

and
> 1/r s
(22) E,GIE, 5(VIX,) - E, VI <2p,(T"6)  EY;(V - E, V).

Moreover, these inequalities remain valid when E, ; is replaced by E A
throughout.

The first inequality is essentially Lemma 7.1, Chapter V of Doob [6] and the
second follows from the first upon replacing V by V- E, ;V and U by
sign(E, ;(VIX,) - E, V).

LeEMMA 2. Let f be a real valued measurable function on (S, ¥) such that
[F(x,6)? dd(x, 0) < . Then for ®-a.e. (x,0),

(2.3) z‘, |E, ;f(X,,T"6) - E,;f(X,,Tr8)| <
n=0
Proor. With ¢, defined by (1.5), since ¢, = ¢oP(8, - - 0,_,), we have
E,;f(X,,T"8) = L 0.()f(y,T"0) =0
yexr

. T"6)=E, ;(f(X,,T"6)|X, = x) so by (2.2) with E, ; and
)

=0
© 1/2
52( Y (n+ 1)%,,(6’)) ( Y E, ( F(X,,T"8) )/ ) (n + 1)2) .
n=0
The inequality in (1.10) implies the ﬁrst series is finite, while

f(z) E”( (X T"o)) (n+1;2)d¢(x,§>)

= [f(=, §) dcbZ e +1) <.

Thus the series in (2.4) is finite for P-ae. (x, ] ) The assertion follows since
@o(x) = co(x,8) > 0 for any given (x,0) € F, O
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Of course, P,(A) = [P, 5(A)d¥(x, 9) and using the result that
Y e(y0)=1/
¥:(9,6)(x,6)
for ®-a.e. (x, 0 ) (see formula (2.5) of [4D, it is also true that

fﬁx,;(A) d¥(x,0)

[ Tec T o(50)Pi(Ae(8)dn@)

W(F) Trea y:(y,8)0(x,8)

(2.5) o
- wm A h E e iIBa@e  E e d)dn@)
=w<r)f L o )P,5(4) dm(8) = Py(4).

Proor oF ProprosiTioN 1. By Lemma 1 and formula (1.8), noting that
a>1,
|E, 35(YoY,)| < 200" ?E,F(Y3) E.(Y.)).
Using (2.5) and this inequality, then applying Schwarz’s inequality,

1/2

(2.6) < 2ap"/2(fEx,5(Y02) d¥(x, 5)) 1/2(fEx’5(Yn2) P 5))

= 2ozp”/2E¢,(Y02),
since the Y, ’s are stationary under P,. The first assertion follows from this

estimate and the second follows from the first as in the proof of Lemma 7.3,
Chapter V of Doob [6]. O

Let Z,=X}21Y,, Z2,,=2,-Z2,, and x,, (u) =E, ;(e"““m») be the
characteristic function of Z,, ,

Lemma 3. For any positive integers L,l, m and real u,

XL, Lami(U) — k[IIXL+(k—1)z,L+kl(u)

m—1 . 172
(2.7 SBu2( Y Ex,é(zz+(k—1)l,L+kz))
k=1

me1 1/2
X( Y ij/zEx,é(YL2+kz+j)) )

k=1 j=0
where B = 2a(L5_, p’/?)'/2.
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594
Proor. For 1l <k <m,let J=(m — k). Then
|XL+(k—1)z,L+mz(u) - XL+(k—1)l,L+kl(u)XL+kl,L+ml(u)|
J—-1
= (Ex 6[(eiuZL+(k—l)l,L+kl — 1)(eiuYL+kz+j — l)eiuZL+kz+j+1,L+mz]
j=0
_Ex a[eiuZL+(k—1)l,L+kl — ]_]
(2.8) XE, g[(eiuY"““kuj - ]_)eiuZL+kz+j+1,L+mz])
ot ; 1/2 1/2
= E zapj/2u2Ex,§(Z12,+(k—1)l,L+kl)Ex,5 (YL2+kz+j)
j=0

2 S
= 2au2Ei,/§(Z12,+(k—1)l,L+kl) > pJ/ZE;,/Eg(YL?+kl+j),

j=0

where the first inequality uses Lemma 1 and |e?** — 1| < |ux|.
Using the convention that I19_, a; = 1 and (2.8),

m
XL,L+ml(u) - kUIXL+(k—1)l,L+kl( u)

m-—1
kZl (XL+(k—1)z,L+mz(u) - XL+(k—1)l,L+kl(u)XL+kl, L+mi( u))

k-1
X _l—[1XL+(j—1)z,L+jl(u)
j=

" 1/2

m-—1 172 ;-1 2
= 2au2( kzl Ex,é'(Z12,+(k—1)l,L+kl)) ( kE ( PI/ZE:,/;(YI?+kl+j)) )
= =1 \j=0

1/2 ) m_1 1/2
i /2 2
P’/) (E Ex,E(ZL+(k—1)z,L+kz))
k=1

™

< 2au2(

j=0

me1 o 1/2
X( )IEDM PJ/ZEx,é'(YI?+kl+j)) ’
k=1 j=0

applying Schwarz’s inequality to the sum over j at the last step. O

We need the following result which holds for any stationary Markov se-
quence. It is necessary since the dominated convergence theorem for condi-
tional expectations does not apply in general if domination of the convergent
sequence by an integrable variable is replaced by uniform integrability.
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LEMMA 4. Let Wy, W,,... be a stationary Markov sequence on a measur-
able state space (¥#,¢). Let h be a real valued measurable function of the
sequence (W,, W,,...) and be integrable. Then

1 n-1
(2.9) r}im - Y E(h(W,,Wy,q,...) I Wy) = E(h(Wy,Wy,...) | 7).
— 00 E=0
a.s. and in L, where .7 is the o-field of shift invariant sets on the (W, Wy, ...)
sequence.
Moreover, if, for somer > 0, E(h(Wy, W,,...)|") < «, then
(2.10) 11m II;nax(—|E(h(Wk,Wk+1, D) 1W)| a.s.

Proor. 1. Let U, = E(h(W,,W,_,,...) | W), U, = E(h(Wy, W,,...) | 2).
The L, convergence holds since by Jensen’s inequality,

n—1 n—1
Z Uk—U E h(Wk’Wk-f—l"“)_Uw _)0
Ly ) nr-o 1

as n — » by the ergodic theorem.

2. Let A be the distribution of W, on (¥, ¢) and for g € L, = L (¥, €, ),
set Qg(w) = E(g(W,)| W, = w). Note that g(W,) = E(g(W,,,|W,)) by sta-
tionarity and

R*g(w) = E(E(g(Wz) | W1)|Wo) =E(g(W,) | W, = w)

by the Markov property. Similarly, Q"g(w) = E(g(W,)| W, = w). Now
(#,€,A,Q) is an L, Markov process and A is invariant for @. The L, ergodic
theorem for Markov processes then asserts that

1 r-1 1n- 1
lim — E E(g(Wk)IWo) = hm — E ng(WO)
noe N op_g np—o

exists a.s. and in L, (see [7]).

Let g(w) = E(h(Wy, W,,...)| W, = w). Since A is integrable, g € L,. By
stationarity, g(w) = E(h(W,,W,,,,...)| W, = w) and using the Markov de-
pendence,

17— 1 1nrn-— 1
lim — ) U, = hm -y E(E(h(Wk,Wk+1,...)IWk)IWO)
noe g noo N op_g
1 n—1
= lim — ) E(g(W,) W)
noel g_g

exists a.s. and in L. The value of the limit is then given by part 1 of the proof.
3. For the second assertion, suppose first that r = 1. By (2.9), we have

1 n+1 1 n 171

~U, = XU ——ZUk—>0

n n n+1k=0 n .o




596 R. COGBURN
a.s.andin L, as n — «. Then for any fixed m,
1 1
n k<n n k<m m<k<n

as n — o, then m — oo.
For any r > 0, use the fact that E*/"(|V|") is an increasing function of r for
any random variable V to get

1 ro 1 1
;(glg:lUkl) = ;?gIUkI <  max E(R(Wy, W, q, .. OI" W),
then apply the above argument with % replaced by |A|". O

Proor oF THEOREM 1. 1. For each fixed I, the sequence W =
(X,,,T™0), k=0,1,... is stationary Markov under P,. Moreover (W% _o
is ergodic under P, since P, is ergodic, but {W®} may have sets of period [, so
{W¥;_, is not ergodic when ! > 1. Let F, be the support of V. If there is a
nontrivial period [ set, then there is a partition Fy,..., F;_, of F, such that
P(W® € Fy, 1moa | WP € F) = 1. Then the invariant o-field for {W"} is
7, the o-field generated by the events [W; € Fyl,...,[W, € F;_;] in F,.

Let

h,= hl(Wé’)) =E,(Z}] Wél)).
Note that W» = (X,,6) so hy(x,6) = E, 5(Z?) and
E,(h,(W")) = E,(Z7) < I’E,(Y() <=,

by hypothesis. Applying Lemma 4,

1n-1
n E Ex,a(zfz,(kn)z)
k=0
1 n—1 N
(2.11) - OEw(E¢(z§l,(k+1), |WO) W = (x,8))
n
B % Y Ey(h (W) | WD = (2,6)) - E,(2F1.7)

_
I
-

as n — ©as.-P,.

Now set V,(F)=I¥(FNF,, k=0,...,1—1 and let P,, E, be the
corresponding probability and expectation. Then on atom F, of .7,
E (h(Wy)|.#) = E,(h(W,)). Now if W, has distribution ¥, then W® has
distribution ¥y , jmea 1) It follows that the distribution of (Yy, ..., Y;_;) has the
same distribution under P, as (Y;_,,Yq,...,Y;_,) hasunder P, . hence
E,(Z})=E, (X 121Y,)?) is the same for all  and the limit in (2.11) is E,(Z?)
for ¥-a.e. (x,0). ’ .

Similarly, letting H = £%_, p//?Y? and h(x,6) = E, ;(H), stationarity of
the Y; and the monotone convergence theorem yield

E,(h(W§")) = E,(H) = E,(Y7)/(1 = p'/%) <.
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By Lemma 4 and the monotone convergence theorem,

_kzl E pl/zEx O(Ykl+J) ~E (HIVJZ)
j=0

as n — » a.s.-P,. In this case we cannot argue that E (H |.#) is constant, but
since E,(H)=(1/DL7E,(H), there exists an I - L(l) with 0 <L <1
such that E,(H) < E.,(H)

. Since E (Y@ < , we have max, _,|Y,l/ Vn - 0 as.-P,. Now let m =

[n/l]andO <L<l. Then(Z -7, Lems)/ VN > 0 a.s.-P, as n — = since the
difference involves at most 2(/ — 1) terms of Y,’s. Hence

bl el

as n — o for every real u.
3. Now apply Lemma 3:

u m u
XL,L+ml _‘/; - kUIXL+(k—1)z,L+kz —\/rT
u? 1 m-1 , 172
<B—m|— E :(Z _
n m = x,e( L+(k l)l,L+kl)

- 1/2
E J/2E (YL+kl+J))
1/2

u2 1 m-1 1/2 1 - ©
sB—l—(— > Ex,é(zg+(k—1)z,L+kz)) (— Y Y E, i(Yiiny)
m p-1 m ,Z1 jo

Choose 0 < L < I, based on the initial (x, 6 ), to minimize the limit of the
last square root expression in the above bound. Letting n — o, by part 1 of the
proof the lim sup of this bound is at most

2

(2.13) B (B,(2}))"(E,H)""

for ¥-a.e. (x,0). Letting I > , E,(Z?) = O(l) by Proposition 1 so (2.13) is
0(11/2). 1t follows that

u m u
XO,n(_ﬁ) - UXL+(k—1)l,L+kl(_‘/7) - 0.

The characteristic function on the right is that of the sum of m 1ndependent
random variables and by Lindeberg’s theorem it converges to e —u*o®/2 if ag
n — o, then [ - oo,

(l) Ex,g(ZL,L+ml)/ ‘/E_) O’
(i) (1/n)Z7-, Ex,E(ZLZ,+(k—1)l,L+k1) - o?
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(iii) for each £ > 0,

1 m

— Z? dP,.;— 0
L+(k—1),L+kl x,0 .

N1 0Ze vy, Lrnal> /]

Now (i) holds by Lemma 2 and (ii) holds by part 1 of the proof and the
proposition, both for ®-a.e. (x, 6). Finally, for the Lindeberg condition (iii),
note first that for any fixed integer N, applying the arguments of part 1 of the
proof,

1
- 2
'}1_)11100 m kZIEx d (ZL+(k i, L+klI[|ZL+(k L, L+k,|>N]) E-//(Zl I[|Z,|>N])

and this holds for all N for ¥-ae. (x,8). As N — «, the right-hand side
converges to 0, and since eVn > N for all n sufficiently large and any ¢ > 0, it
follows that (iii) holds for ¥-a.e. (x,6).
This proves the theorem for ¥-ae. (x,0). If g T, then Z,/Vn — 0 so
Z./Vn and (Z, — Z,)/ Vn have the same limiting distribution. But then

lim P Zn
il 7= <
n_lgo x,0 ‘/; 2

i (Zn -Z ) z
B '}I_I}LE’:’E(PXQ’T&;[——‘/E—_I <z - _J—'sz_ooe_xz/zdx

as n — o for ®-ae. (x,0). O

ProoF oF THEOREM 2. 1. For a given n, let ¢t,, <n <t,,,,. If (M1) holds,
then consider the decomposition

1 n—1
I kZ;,o(f(Xk) —E, 51(X,))

1 1 tm+1—1

(2.14) = 7 Zp1~ s E F(X4)

1 n-l _
- =T (Beif (%) ~ Eif(X).
k=0

If n = t,,,, then interpret the middle term to be 0. The third term is O(1/ vn Vn)
by Lemma 2. For the first term note that, since ¢, /m — 1 /m(T) for P-a.e.
(x,0), it follows that ¢, ,/t,, — 1and t,,,,/n — 1 for n in the above range,
S0

m + 1 m+1
\/_ m+1 /_'— m+1 n

as m — », hence as n — ». Let », be the first k£ such that £, > n and set
= 22";;1 f(X,). The V, are stationary under P, and (M1) states that

2 40, o?m(T))
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E(V}) < «, hence for any £ > 0,
E, Y P ;[lVil>evn] = ¥ PVl > m/r?]) <
n=0 n=0
It follows that
Px,a[lv,,l >efn] = E( x I[,Vn.nm) <w

for all (x,0) outs1de a ®-null set N.. Letting N = U5, ko1 N, ), it follows by
Cantelli’s lemma that V,/Vn — 0 a.s. -P, 5 for all (x, ) & N. The theorem
follows in this case.

2. Suppose now that (M2) or (M3) holds and note that (M2) implies (M3).
Again take ¢,, <n < ¢, ,, and consider the decomposition

"f 2:‘4 (f(Xk) _Ex éf(Xk))

(2.15) ) n-1 _
=ﬁzm Z f(Xk) Z ( x,af(Xk) —Ex,gf(Xk))'
k=0

The first and third terms converge to 0 as in part 1 of the proof. Letting
vV, = max, _;., X4, f(X,)I, condition (M3) implies that E.,,(VO) < o,
The middle term of 2 15) is bounded by V,_/Vm and this converges to 0
a.s.-P, 5 for Y-ae. (x, 9) by an argument that parallels that given in part 1.
Flnally, an argument like that at the end of the proof of theorem 1 extends the
result to ®-a.e. (x,6). O

Proor or THEOREM 3. 1. Let h;(x, )= E, ;(Y,Y;)) and g,(x, 9)=
E, (Z7_,, p*/?Y}?). Then as in the proof of Theorem 1, Lemma 4 yields

17— 1
(2.16) - Z E,(Y4Y.;) —» Ei(YLY)),
n—1
(2.17) S 5 (Y1) = Ey(Y3) Z Y
Nop—0i=m

for all j, m and V-a.e. (x, 9). Let ¢; = E,(Y,Y;) and cons1der the decomposi-
tion

1 (-1 2 n—1
E.; ;( Z Yk) - - Z Ex,ﬁ(Yk) Co
k=0 k=0
2 m—-1n—-1—j )
(2.18) to EI = {E.s(YiY)r) — ¢
9 n—1n-1-j 9 m-1 )
+; Z E, 5(YiY,.) — w Z Je; — 2 Z C;
j=m k=0 Jj=1 Jj=m
=I+II+II+IV+V
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For fixed m, I and II converge to 0 as n — « by (2.16), while V' converges to 0
by Proposition 1 and in any case IV converges to 0. Finally by Lemma 1,

4 n— 1 o
ms<—Y Yo /2E1/2(Y£)E”2(13+k)
o= oJ m
<= Z B.a(d) e 2% B (%) -

k=0 j=m
as n — », then m — « by (2.16) and (2.17). Thus E, ;(Z723 Y,)?/n - o2
Now

1 71 > g
W,E (1(X0T47) - B (X0, 7'0)

lnl lt-—l

E Yk ‘/_ E (Ex,af(Xk’Tka)) - Ex’é'f(Xk, Tké’))

For a given (x, 6 ), the second term is nonrandom and converges to 0 as n — ®
and the first assertion in Theorem 3 follows.

2. Suppose (M1) holds, let v, be as in the proof of Theorem 2 and consider
the decomposition (2.14). For given (x, 6), the third term is nonrandom and
converges to 0, the second term is —V,/ vn \/_ and it follows by the second part
of Lemma 4 that E, ;(V;2)/n —» 0 as n > « for ®-ae. (x, 9). For the first
term, by part 1 of this proof,

sm+1 1

tm
2B (Zhi) = o o B (Znn) = o*n(T) = ().

The second assertion follows from these relations.
3. If (M3) holds, then consider the decomposition (2.15). The middle term is

bounded by V,,/ Vm \/_ and E, ;(V3)/m — 0 as n > » for Y-ae. (x, 9) by the
second part of Lemma 4. O

The next result generalizes an equality established in [2] which in turn is a
generalization of Kac’s formula: [, 7, d7= = 1, where A is an arbitrary set in %
with 7(A) > 0 and 7, denotes the first return time to A. Let 7, = 0 and 7, be
the first time after 7,_, that T"6 € A. Also let g(n) be a nondecreasmg
function of integers n > 1 and let Ag(n) = g(n + 1) — g(n).

LEMMA 5. For any set A € # with w(A) > 0 and any integer n > 1,
(2.19) [g(r,) dm = [(8(r,-1) + Ag(r,_1))dm % [ Ag(r,)dm.
A A 6-A
In particular, taking g(n) = n?,
2f7ndW=A(73_73—1)d7+ 1

(2.20)
= f’r,,_l(rn —T,_1)dm+ frf dm+1
A A
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and
(2.21) f(fm—T,,)dwsjAT%dw=2frldw— 1.

Proor. 1. Let A, ,={6: 6 € A,7,=n} and A},=1{6: 6 & A, 7, =n}.
Then using stationarity,

m[r,=n]= wA, , + TAY ,
= ‘n'[Tge A1, = n] + ‘n-[Tﬁeé A7 = n]

— *
= ’"'Ak—1,n—1 + '"'Ak,n—l-

Hence
TrAk,n = ’n-Ak—l,n—l + WAz,n—l - TrAz,n
and
(> o
— *
h TAL = Py TAy_1,m T TAL
m=Il+1 m=1

since the A} , are disjoint so mA} , — 0as m — «. Now setting g(0) = 0, we
have

®© o m-—1
[&(r)dm= ¥ g(m)rA, = L 7h,n L Ag(l)
m=n m=n =0
= L as() S A,
=0 m=1Il+1
- T ag()mA,+ £ ag() T whA, .,
=0 =0 m=l+1

+ Z Ag(l)mA7
1=0

=Y Ag()mwA,_,, + L g(m)mA, |+ Y Ag(l)mA%
=0 m=1 =0

I
N

(8(7a-1) + Ag(7, ) dm + [ Ag(r,)dm.
The interchanges of order of summation are valid since all the quantities
except possible Ag(0) are nonnegative.

2. If g(n) = n? then Ag(n) = 2n + 1 and (2.19) gives

j;\'rf dm = [\(73_1 + 27, ,)dm + zf@_[" dm+1

=};\Tf_1d~rr+2ffnd'rr—1,

since [y7,dm = [,7,_;dm + 1 by Kac’s formula. Using stationarity, this
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leads to

Z/Tnd'n'=fA(Tf—Tf_1)d'n'+l

=2[ 7, (7, —Tu)dm+ [rPdw + 1.
A A

Hence

f(7n+1 —T1,)dT = fA("n(Tnn 1) = Taoi(Tn = To_y)) dr
= fA(Tn(Tn+1 - ‘T,,) - (T,, - 7'1)(7'n+1 - 7'n))d'"'

= le(Tn+l - Tn) d‘lT
A

using stationarity again at the second equality. Finally, by Schwarz’s inequal-
ity, stationarity and (2.20) with n = 1,

f(’rnﬂ—rn)dvsfrfdw=2]rld'n'—1. m]
A
LEmMMA 6. If [t,dm < o, then for any r > 0,
[T 0u(F) dm <.
n=1

ProoF. Since pn(g ) < ap® for n > t, by formula (1.8), Lemma 5 implies
that

@ ar=[£ "L 56 dn
<fZap "(tpyr —tp)dm < i k’(thld*n'—l)<°°

0

ProOF OF THEOREM 4. To simplify notatlon let f, =f(X,, T*§). By hy-
pothesis, IfI < b < s0 |f,l < 2b. Since (X4= Ifkl)2 < 4b%%, (M2) holds pro-
vided [;¢?d7 < © and by Lemma 5 this holds since (¢, dm < co.

We have Ex i, =0and f, < 4b2 so by Lemma 1,

B, s(Fofi)| < 20,8) “EX(72)EX3(7?) < 86%,(8)
and ’
|E¢(f0f-n)l = fEx,g(f-Of-n)dq)(x’g)‘ < 8b2fpn(§)1/2d77-

Then Lemma 6 implies the series in (1.15) converges absolutely. That
E (Xi2 & fo/ Vn)? converges to this limit follows by an argument similar to




CENTRAL LIMIT THEOREM FOR MCRES 603

that in the proof of Lemma 7.3, Chapter V of Doob [6]. To establish (1.16) for
E, 5 let

hj(x’ﬁ) =E,;(fo fk),
5u(:8) = B3 3 £ 0i®)”)

- o . 1/2 -
gr,n(x’o) =Ex,5( Z pl(o) flz)'
l=m

These functions are all P, integrable, as follows easily from Lemma 6 since f
is bounded. As in the proof of Theorem 1, Lemma 4 then yields

1n—1 o o
=T E,i(fifurs) = Eo(Fofi),
k=0
E, ;(f?) —>E¢(fo Y o8 )”2)

—Z L (5’)1 o(fk+l)eE¢(Zpl(e)/2')

for all j, m and ®-a.e. (x, 6). Letting E( f0 f ) replace c; and f, replace Y,
we can make the same decomposition- as in (2 18). Terms LI, IVand V
converge to 0 as before. For the middle term,

n—1n-1 n—1 o 41
I < 16b2 Y ¥ o (T4) " < 16b2 Y ¥ o148
nj=m k=0 Np0j=m

By the ergodic theorem this converges to 166°L%_,, | pj(0 Y2dm as n > o,
then this limit converges to 0 as m — « by Lemma 6. The assertion follows. O

ProOF OF COROLLARY 1. By Theorem 4, f® satisfies (M2), hence by
Theorem 2,

1 - -
— ¥ F® >, #(0,0%(F®))
n k=0

as n — », where f® = f®(X,, T*8). Similarly, f— f® satisfies (M2) since
f does by hypothesis and by Theorem 2,

n—1
i Z (fk ‘flgb)) g /(0,02(f—f(b)))'

But by Lemma 1, Propos1tlon 1 and Theorem 1, letting o;? be the quantity in
(1.10) when f is replaced by f — f®,

t,—1

02(f— f(b)) = fn-(I‘)o-,,z < Ed/( Y (fk — flgb))Z(l + 4 i pn/Z)).
k=0 n=1
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This quantity converges to 0 as b — « by the dominated convergence theorem.
It follows that o®(f®) — ¢%(f) and from the definition it is clear that
a?(f) = 0%(f) and (1.17) follows directly from this. O
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