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LARGE DEVIATIONS FOR DIFFUSION PROCESSES WITH
HOMOGENIZATION AND APPLICATIONS!

By PaorLo BALDI

University of Catania and Laboratoire de Probabilités

We consider a family of periodic diffusion processes in R™ with homoge-
nization and a small parameter multiplying the diffusion coefficient. We
establish a large deviations principle and as an application we derive an
iterated logarithm law for periodic diffusions.

1. Introduction. Let o be a periodic matrix field on R? and &, g:
R*— R* functions such that lim,_ A(a) =lim___, g(a) = +. It is well
known ([4], Section 3.4) that if 5 is the solution of the stochastic differential
equation (SDE),

dgf = o(h(a)§;) dw,, 5§ ==,
then 5% converges in law as @ — « to the Gaussian process z which is the
solution of
dz, = \q dw,, 2y =X,
where ¢ is a suitable (constant) matrix. Now let y* be the solution of

1
dy = ——o(h(a)y?) dw,, y8 = x.
t g(a) ( ( ) t) t 0
In this paper we study the large deviations for y* and prove that if
lim, _, (h(a)/g(a)?) = +ox, then

1
lim sup 5 log P{y* € F} < —A(F),
ase  g(a)

1
lim inf (@) log P{y* € G} > —A,(G)
a

for every F and G, respectively, closed and open sets of paths, where

(1.1) A,(A) = inf L (y)
yEA

and

(1.2) L.(y) = %fol<q”17;,vs’>ds

if y is absolutely continuous and y(0) = x, L (y) = + otherwise.
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510 P. BALDI

In the last section we give the following application of the above estimates
(Strassen law for periodic diffusions). Let z be the diffusion process which is
the solution of

dz, = o(2,) dw,,

where ¢ is periodic as above; for every a > 0, let £, be the r.v. taking values in
€ = £(0, 1], R?%) defined by

zat
1.3 =\t > ——].
(13) fa(@) - a loglog a
Then the limit set of {, as @ — » is given by
K={y e €;Ly(y) <1}.

The idea is that ¢“ is a solution of
1
d{ta = WO’(\/(X loglog a {ta) dwt,
so that the previous large deviations estimates can be applied to {“.

2. The main statements. Throughout this paper o will denote a d X d
matrix-valued field on R¢ and we shall suppose:

AssumpTiON A. (i) o is Lipschitz continuous.

(i) {(o(x)E &) = AlEl? for every x,& € R, where A, is some positive
constant.

(iii) o is periodic in each of its coordinates.

If we denote by V the lattice of the periods of o, then o is well defined on
the torus T = R?/V. Let us denote by 7: R? —» T the canonical projection; if z
is a solution of the SDE on R?,

dz, = 0(z,) dw,, zZ, = x,
then it is easy to check that z, = m(z,) is a solution of
(2.1) dz,=o(z,)dw,, Z,=mw(x)=X
on T. Under the previous assumptions, Z has a unique invariant probability m
on T such that

lim £[ £(2)] = [ fdm

for every continuous function f: T — R and for every s;tarting point ¥ € T. Of
course this implies that also

lim E[ f(2,)] = [ fdm

for every continuous function f: R? - R which is periodic and has the same
periods as o and for every starting point x € R4,
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Now let &, g: R*— R* be functions such that
lim A(a) = lim g(a) = +».
Then it is well known that the solution of
(2.2) dy? = o(h(a)yy) dw,,  J§ ==,
converges in law to the solution of
dz, = Va dw,, Yo =X,
where q is the matrix defined by
(2.3) q = [a(x)m(dz)
T

and @ = oo * [beware: the matrix g in (2.3) is not the same as in [4], (4.7), page
485; it differs by a factor V2 1. It is clear that q is invertible and that

-1 1 2
(2.4) (@7, &) = —léI%.
ol
Let us consider now the family of SDE’s
1
(2.5) dyf = ma(h(a)yt“) dw,,  y§ =%,

and denote by € = ([0, 1], R%) the space of ail continuous paths y: [0,1] -» R?
endowed with the uniform norm | |l.. €, will denote the set of all paths such
that y(0) = x; for every ¢ > 0, X, will be the mapping X,: € — R defined by
X,(y) = v(®).

Let P** be the law of the solution y* of (2.5). P** is a probability law on
# which lives in €; E** will denote the expectation with respect to P**.

Throughout this paper, w will be a Brownian motion (not always the same)
on a suitable probability space (Q, &, {%),, P); E will be the expectation with
respect to P. For every Borel subset A C ¢, let A,(A) be the set function
defined in (1.1). Our main result is the following.

TaeoreM 2.1. If o satisfies Assumption A and lim,_ (h(a)/g(a)?) = =,
then

1
lim sup — log P**(F) < — A, (F),
a— o g(a)

1
lim sup 5 log P**(G) 2 —A,(G)
g(a)

a—>x

for every closed F C € and for'every open G C €.

In order to prove Theorem 2.1 we make use of the following general large
deviations result (Theorem 1.1 of [3]), which is an infinite dimensional exten-
sion of a theorem of Gértner [8].
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Let {u,}, - o be a family of probability laws on the topological vector space X
and define for £ € X' their Laplace transforms

al€) = [ expCE 2IRo(d).

AssumpTiON B. The family {u,),., is said to satisfy this assumption if
there exists a function A: R*— R™* such that:

@) lim,_, AMa) = +x.
(i) lim,_,.(1/M(a)log i (Ma)§) = H(§), where H: X' > RU {+x} is
lower semicontinuous and finite in a neighborhood of the origin.
(iii) The Legendre transform L of H, defined by

L(x) = sup ({¢,x) — H(§)),
¢éeX’

is strictly convex at each point x € X such that L(x) < +oo.
(iv) For every R > 0, there exists a compact set Kp C X such that

1
lim sup + 2y

log no(KS) < —R.

TuEOREM 2.2 (See [2]). Under Assumption B, for every Borel subset A C X,

1
1 li
M) (08 Ha(A) = limsup o

where A(A) = inf, . , L(x).

—A(A) < liminf log u (A) < —A(A),

© Theorem 2.1 will follow from Theorem 2.2 applied to u, = P**, X =72,

Ma) = g(a)? In this case the topological dual X' coincides with the space ¢” of
all v =(vy,...,v,), each v; being a signed measure on ([0, 1], Z((0, 1)) with
finite variation.

In the next section we check that Assumption B is satisfied and compute H
and L. The main points to look at are (ii) and (iv), (i) being obvious and the
strict convexity of L being immediate once L is explicitly given.

It might be interesting to compare this approach with previous large
deviation results for the occupation time of Freidlin and Gértner (see, for

instance, [7]).

3. Proof of the main result. We start by proving (iv) of Assumption B.
Let ¢ = {c,}, be a sequence of positive real numbers decreasing to 0 and
K c RY; let us define

. 1
A, = {y € ¢, w,(c) < 'I;,‘Y(O) = K}’

4o
A = n Ac,k
k=N
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for some positive integer N, w, being the modulus of continuity of y defined
by
w,(s) = sup ly(¢) — y(ta)l.

0<t; <ty<1
to—t<s

Then, by the Ascoli-Arzela theorem, A is a compact subset of <. We shall now
prove that for every R > 0 there exist ¢ = {c,}, and N such that

1
(3.1) lim sup 5 log P**(A°) < —R.
a— o g(a)

Indeed, P**(A€) < %5 _nyP**(A%) and if we set
1
Bt = {'y e¢; sup |y(t) —y(s)l > ﬁ}’
t<s<t+cy
then by the triangle inequality
c k
A5 c U_lBick'

i<cy

By the exponential inequality (see, e.g., [9], Theorem 1.18),
1
prs(el) - P o 1oz 551> 57

0<s<c,
1 g(a)z]

< 2d e"p[_ 18dM k%,

where M = ||o||2; also by the Markov property,

. 1 g 2
P**(Bf,) = E**[P~X¢»(B})] < 2d exp[_ 18 dM k(;i ]

Thus

2d 1 g(a)’
a,x C —_—
Pr(4%) < 3, e"p[ 18dM k%, |

Choosing ¢, = 1/k3,

a,x c 3 _ 2
P**(A%) < 2dk exp[ 18deg(az)]

and for & larger than some N,
1 1
Pex( AC . _ 2
. (Af) < e exp[ 36 deg(a) ]
and for N possibly larger,

1
P**(Af) < o5 exp| —Rg(a)’|
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so that
1
Px*(A%) < exp[ —Rg(a)2] kZNP < const. exp[ —Rg(a)2]

and (3.1) holds. This proves (iv) of Assumption B already. We wish, however,
to point out that a straightforward extension of the previous arguments gives
the following more precise result.

PRrOPOSITION 3.1. Let x° be the solution of the SDE on R,
dxf = b(xf) dt + eo(xf) dw,,

and suppose b and o to be locally Lipschitz continuous and bounded in the
uniform norm by a constant M. Let us denote by P>~ the law of x° starting at
x € R?. Then for every compact set K ¢ R? and R > 0, there exists a universal
compact set ¥ = K ¢ C ¢ (depending on M but not on b and o) such that

limsupe?log P>*(%¥ ) < —R

-0

for every x € K.

We turn now to the proof of (11) of Assumption B, that is, to the computa-
tion of the limit

Jim 5 log E"”‘[exp(g(a)2f01<X3,dv(s)))]
= (}l_l)l;lo 2 (a)? log E[exp(g(a)2f01<y;’, dv(s)))],

We begin with some preliminary results.

LEMMA 3.2. Let z be the solution of the SDE,
(3.2) dz, = o(z,)dw,, 2z,=rx,

on the torus T and P* its law on €(R*,T) and m € .#(T) its invariant
probability. Then for every continuous function f: T — R and n > 0, there
exists 8 > 0 such that

supP"{ -}j:f(zs) ds — fodm > n} <e™?,

xeT

Proor. Let L,=(1/8)fs8, ds € .#(T) be the occupation time of z. By

the ergodic theorem L, - m, P* as. for every x € T and by the

Dongker-Varadhan large dev1at10ns estimates ([5] or [10]), for every closed set
Fc.#(T),

1
lim sup — logsupP*{L, € F} < —A(F),

t—o xeT
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where A(F) = inf,_  I(v), the functional I being defined in [5], (1.12). The
only properties that we need to know are that I is lower semicontinuous,
I(v) > 0 and I(v) = 0 only if v = m (see [5], Lemma 2.5 and the corollary to
Lemma 4.2). This implies that A(F') = 2§ > 0 for every closed set F c.#(T)
not containing m. In particular, this is true for

F= {v; [deu - fodm‘ > n},

which ends the proof. O
The same argument and the Markov property give the following.

COROLLARY 3.3. With the notation of Lemma 3.2, there exists & > 0 such
that for every 1 > B> a > 0,

supP{|5 [*(2,) ds = (8 - a [ fam| >} < expl- (8 - ) o1].

Let us remark now that if » is an element in the topological dual €’ of &,
that is, v = (v, ..., v;) where the »,’s are signed measures of finite variation
on [0, 1] and we set v, = (v,(s, 1), ..., v,(s, 1]), then

1 1 1 s
[0<yg, v(ds)) = [0 <x + —gmfoa(h(a)y;‘)dwu,v(ds)>
1 1 1
(3.3) = (x,»([0,1])) + M'l;) <a(h(a)yg)azws,[s V(du)>
1

= (x,v([0,1])) +

o o o (h@)y2)) du,

(recall that x is the starting point of y<).

LEMMA 3.4. For every ¢ > 0, there exist 6 > 0 and ay > 0 such that

sup P{'/:I(Vs,a(h(a)y:)>l2 ds - %j:(qu,vs> ds

> 8} < e~ 3(h(e)? /8(@)?)
xeR?

for every a > a,,.

Proor. Let v =X, B;1, , ,bea piecewise constant function : [0, 1] —
R< such that |lv — 7ll, < n for some n > 0 to be specified later. Then it is easy
to obtain that for every s € [0, 1],

|I(vs,a(h(a)y:)>|é — K7,, o (h(a)y2)I?] < (2wl + 1)lloliZn,

Kgw,, ve) = (g7, 7)1 < (2lvlle + D)lloliZn.
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Thus for small 1 and for every starting point x,
[ Kv o (h(@)y2))P ds = [Kaw,,v,) ds

2l )

= P{‘folw” o(h(a)ys)»* ds - f01<qu,rxs> ds

€
> —
3

j:iHKﬁi,a(h(a)y:‘))lz ds — (£, — £,){aBs, Bs)

€
> —
2

>8
2m |’

j:ml(ﬁ'i, o‘(h(a:)yg‘))l2 ds — (t; — t;,1)<aB;, B;)

If we now set

g(a)’
h(a)”)’
it is easily checked by time change and It6’s formula that z* solves

dzf = o(2f) dw,, 2§ = h(a)x.

@) [
<Bi,0‘(z ( g(a)z))>

2
g(a) i+ h( )2 )2)
= S0 [ B (g o (22)) P ds.
h(@)” th@?/g(@®
>a}

Thus for a large there exists § > 0 such that
<Y exp[—(ti+1 — )8 Ea; ] < mexp[—b‘lﬂ‘}’
i=1

2f = h(a)y“(t

Thus

ds

fti+1I<Bi’a(h(a)y:)>|2 d8=/‘ti+l
t; t

i

d {‘fol'<”s"’("(a)y:)>l2ds - [Xav,v.>ds
gla 2 g(a).2

where 8, = 6 min,(¢,,, — t;) which allows us easily to conclude the proof. D

ProPOSITION 3.5.

lim (1 % log p[exp(g(a)2/()1<y:, éu(s)>)]

1 .
= 5 [Mavm> ds + G ([0, 1)

for every v € €', where v, = (v((s, 1D, ..., v4(s, 1]).
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ProoF. In view of (3.3), we have to prove that

lim ! 2 log E[exp(g(a)fol@s,0("(“)3’:» dws)]

o —> 00 g(a

(3.4) X
= E/:(qu, v, ds.

Let us note

Z(a) = j;)1<vs,a(h(a)y§)> dw,,
Y(a) = f01|<us,a(h(a)y:)>|2ds,

e(@2(a@) - £ v

> e,

1=E[X(a)l,, | + E[X(a)lac,]-

’

X(a) = exp
so that E[X(a)] = 1 for every a. If

A, - {|Y(a> ~ [Ravor) ds

then

By Lemma 3.4,

h(e)®
P(AS,) < -8 >
( "‘*f)“"p( g(a))

for « large, so that

E[X(a)ls ] < E[X(a)’] " P(4S,.)

2
and since
E[ X(a)?] = E[exp(28(a) Z(a) - 28(c)*¥(a))exp(8(a)"Y(a))]
< E[exp(2g(e) 2(a) - 22(a)*Y())]exp[ (@) o2y, IZ]

= exp| g(a)?llo Iy 2],

g(a)2 2 2 6 h(a)z
E[X(a)lyc ] Se‘Xp[ 5ol IE - 5 (a)z}.
But
g(a)2 2 2
E[X()lag,] < exp| —5—llollllv 2 E[exp(g(a)Z(a))1a, ],

517
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from which we get finally

Efexp(g(a) Z(a)) Lyg ]<exp[g(“) otk l = 3 E:;}

so that since lim ,_, (h(a)/g(a)?) = +,
1
(3.5) lim x log E[exp(g(a)Z(a))lyc | = —.

o —> g(a
On the other hand,

3 ()| ;

(3.6) E[X(a)lAa,S] > exp-— 5 (/‘; (qu,vy) ds + s).
X E[exp(g(a)Z(a))1s, |,

' g(a) '

3.7) E[X(a)lAa,e] < exp|— (f {quv,,v,) ds — s).

XE[exp(g(a)Z(a))lAa,s] .
From (3.6), we have

g()

Elexp(g(a)Z(a))l,, | <E[X(a)l,, |exp

(f (qu,,v,) ds +e)

g(a)

< exp (f (qu,v>ds+e)

which together with (3.5) implies that

. 1 1 " 1 4

Jim 5l Blowp g(e) [ o (h(@)92)) ds| < 5 [Navarr ds + 5.
Similar arguments using (3.7) yield that the lim inf of the above expression is
larger than 1 /l{qv,,v,) ds — /2, thus proving (3.4). O

In order to prove Theorem 2.1 we only need the following.

PRrOPOSITION 3.6. The Legendre transform

L) = sup (92 = § [ ava,v)ds = (a([0,1))

ve¢'
is-given by

1
L.(y)=1% fo (g™ Yyl ds,

if v € € is absolutely continuous and y(0) = x, L (y) = + otherwise.
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The proof of Proposition 3.6 reduces to the computation of an uncon-
strained extremum and is easily performed by differentiation.

ReEMARK. Since the probability laws P*° live in ¢, and L, = + outside
of €,, Theorem 2.1 still holds if F C €, and G C ¢, are, respectlvely, closed
and open in the induced topology of ¢, (Theorem 1. 2 of [3]).

4. Applications: Iterated logarithm law for periodic diffusions. In
this section, z will be the solution of the SDE,

dz, = o(z,) dw,, 2,=0,
where o still satisfies Assumption A of Section 2. Let us denote
h(a) = yalogloga, LL(a) =logloga,
and define { (¢) = z,,/h(a). By Itd’s formula and time change, ¢, satisfies

1
At) = et (@) dwy £,(0) =0,

Through (1.3), {, also defines a random variable taking values in <.

THEOREM 4.1. The family {{ ), is a.s. relatively compact in ¢ and as
a — © has a limit set % given by

K= {7 € ¢;v(0) = 0,%f1<q‘1vs’,vs’>ds < 1},
0
q being defined in (2.7).

Theorem 4.1 will follow from Propositions 4.5 and 4.7 below. The proof
makes use essentially of the large deviations estimates of Section 2. The idea is
not far from the one developed for other similar statements (see, e.g., [2],
Theorem 2.2). Theorem 2.1 states that

(4.1) lim sup

msup 77 log P{{, € F} < —Ay(F),

1
(4.2) llcl;rl)lol.}f LL (D) log P{¢{, € G} = —Ay(G),

where F' and G are, respectively, a closed and open subset of € and A, is
defined in (1.1). In order to simplify the notation we shall write A and L
instead of A, and L,,.

REMARK 4.2. We shall often make use of the fact that for every ¢ > 1, the
quantity

const
(4.3) = exp[ —kLL(c")] =

is summable if and only if 2 > 1.
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If y € € and A C €, we shall write d(y, A) == inf, _ 4lly — 7ll..

LeEmMA 4.3. For every ¢ > 1 and every & > 0, there exists a.s. a positive
integer j, = jo(w) such that for every j > j,,
AL, X)) <e.
Proor. Let %' = {y;d(y, %) > ¢}. Since L is lower semicontinuous and

the level sets {y; L(y) < k} are compact in .%¥ for every finite &, there exists
8 > 0 such that A(%,’) > 1 + 26. Thus from (4.1) for large j,

P{{. e ¥} <exp|—(1+ 8)LL(c)],

which is summable by Remark 4.2. The Borel-Cantelli lemma allows us now
" to conclude the proof. O

For every positive integer j and ¢ > 1, let us set
h ( c/ )
h(a )

1 B 1
h(a) = " h(a)

Y,= sup

b= 773

sup
¢/ l<ax<c/

¢/ l<a<e/
LeEmMMA 4.4. For every ¢ > 0, there exists a real number ¢, > 0 such that if
1<c<e,

P{there exists jo = jo(w) such that Y; < ¢ whenever j zjo} =1.

Proor. We want to prove that

P(limsup{Y} > s]) =0.

Jjo®
But
1
h(a) " h(a)

1 1
R(e7D) % R(eTh)

sup
¢/ l<axe’

> &
-

=&
-

- sup

¢/ l<ax<e/

-
|
o
|

Iz j-1, — 2 j—lll > 8}
1 4 1 c s
0<s<1 h(c’”

s/csitsss ( )

c’)
sup
0<s<1 h( J 1)
s/c<t<s

=1 l-1(t) — Lei-i(s)l = e}.
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Since for every & > 0 and large j,
h(c’)

———F— < Vc (1 + ),
h(cj—l) ‘/7( )
if we set
£
A, ={y€¢; sup Ivt—YSIZE ,
O0<sx1
s/c<t<s

then if Ve (1 + &) < 2, for large J,
(4.4) P{Y,>¢} <P{{;€A,}.

But if ye A, there exist s, with 0 <s <1, s/c<t<s such that
lvs — 7.l > £/4; then using (2.4),

& s 12| (4,2 12

— < ’ — ’
4_/;yudus|s t| (fslyul du)

1/2

1 1/2 1 1 .

Thus
g% 1
= e -1
Thus for 1 <c¢ <c¢,, L(y) > 3 and A(A,) > 3. From (4.4) and (4.1),
(4.5) P{Y; > ¢} < exp[ —2LL(c’)],

" which is summable (Remark 4.2) and the Borel-Cantelli lemma concludes the
proof. O

PRrOPOSITION 4.5. For every ¢ > 0, there exists a.s. a positive real number
ay = ao(w) such that for every a > a,,

d({ (), *) <e.

In particular, {{ }, is a.s. relatively compact and all its limit points as a — ®
are contained in %,

Proor. For ¢ > 1, we have
h(c’) h(c’)
d({a,%) <d £a, h(a) {cj +d Wgcj,gcj +d‘(£cj,<}£/) =I]_+Iz+13,

where j is such that ¢/~! < @ < ¢/. By Lemma 4.3, there exists j, such that
for j > j,, I3 < €e/3. As for I,, since for every 6 > 0 and large j,

h(c)
'S %)

<ve(1+9)
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and ||,ill- is bounded in j by Lemma 4.3, if ¢ > 1 is in a neighborhood of 1
and j large then I, < ¢/3. Also I, < ¢/3 if ¢ is in a neighborhood (possibly
smaller) of 1 by Lemma 4.4. O

In order to complete the proof of Theorem 2.1 we only need to prove that
every y € % is a limit point of {{,}, a.s. We shall make use of the following
lemma (Lemma 2.14 of [6]).

LEMMA 4.6. Let (Q,3, n) be a probability space and {%,}, an increasing
sequence of o fields. Let E, € &, and define p,,_(0) = W{E,|%,_,). Then if
for almost all w,

an—l(w) = +°°’
n
we have P(limsup,, ., E,) = 1.
PRrOPOSITION 4.7. Let y € % be such that
1
3 <@ v ds < 1.
0
Then for every & > 0, there exists ¢ > 1 such that
P(lim sup {lIZ.; — ¥l < 6}) =1.

n—o

In particular, every y € % is a limit point of {{,}, as a = © a.s.

Proor. Let % =o(z,,u <¢’) = 0({,(s),s < 1). In view of Lemma 4.6,
we need to prove that

(4.6) Y Pl — vl < 81F5_y} = +oo.
J
But
{12 — ylle < 8} = { sup 1Z,i(t) — ()| < 6} N { sup |£i(t) —y(®)l < 8}
t<l/c 1l/c<t<1
~A,NB,

A; is clearly ¥ -measurable and the Markov property gives

1
(4.7 P{lli —yllo <81F_y} = 1AjP4cf(1/°>< sup  |Li(t) — 'y(t + ;)’ < 5}.

0<t<1l-1/c

Now

< 6} = P*{{.; € E;},

<s).

1
P"{ sup  |[{4(t) — ‘y(t + —)
O0<t<i-1/c . 4

where

1
E3={ne€;\ sup n(t)—y(t+;)

O0<t<1l-1/c
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By the Holder inequality and (2.4),

1/2
t 1
Y(0) = [rids < @l [am vy ds)
0 0
so that sup, _;,.|y(®)| < lloll./ Ve and if ¢ is large enough,

o
(4.8) sup ly(¢)l < 1
t<l/c
In particular, y(1/c¢) < /4. Thus if |x| < §/4, the path
() = x—y(1/c) +y(t+1/c) ft<l-1/e,
K (1) ifl1-1/c<t<l,
is in E; since supg ;<11 ,.m() — vt + 1/¢)l = lx — y(1/c)| < 6/2. More-
over,

1
L.(n) = %fl/c<q‘1vs’,7;> ds <L(y) <1,

since 17(0) = x. Thus A (E;) < L(y) <1 and from (4.2), if L(y)<c <1,
lx| <8/4 and j is large, )

La(t) — 'y(t + %) < 8} > exp[—cLL(cj)].

Thus the right term in (4.9) is not summable in j by Remark 4.2. Moreover,
for large j,

(4.9) P"{ sup
O0<t<l-1/c

(4.10) ()] = suplg () 2D 1£-1(2)
. su J = Sup|ei-1 - < sup|g.i-1 .
tsll/)c ¢ tsrl) h(cJ) \/E tsrl)

By Lemma 4.3, d({-1, ¥) <¢e for j=>j, so that sup,_,|{-1(t) <
sup{linlls, n € %} + . This bound and (4.10) yield

1)
(4.11) sup |{.i(¢) < 1
t<l/c

for j>j, if ¢ is large enough. (4.8) and (4.11) together give that
sup; <1 /.1¢.i(¢) — y(#)| < 8/2. In conclusion, if ¢ is large enough there exists j,
such that {,, € A; and |{.(1/c)| < 8/4 for every j > j,. Recalling (4.7) and
(4.9), this proves that the sum in (4.6) diverges, thus concluding the proof. O

ReEMARK. In this section we have considered the process z with initial
condition z, = 0; of course the same result holds for the solution z* of

dzf =o(2f)dw,, 2z2j=x.
Indeed, 2f = 2, + x for Z the solution of
dé, = d(%,)dw,, £,=0,

where 6(z) = o(z — x). It suffices now to remark that ¢ is still periodic and
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has the same periods than o, so that we can apply the results of this section
to 2.

REMARK. Our proof of Theorem 4.1 is relevant only if the dimension m is
larger than 1. Indeed, if m = 1, there is an easy time change argument at
hand since in this case z, = W,, for a suitable Brownian motion W, where
A, = [t 0(z2,)? ds; this fact enables us to write

Wy, VA, loglog A,

t =
L) VA, loglog A,, alogloga

and one may now use Strassen’s law for Brownian motion and the fact that

V Aat lOg log Aat
li =
o Yaloglog a va,

since by the ergodic theorem

1
lim —A, = [o(2)*dm(2) = q.
t—o f T
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