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EXPLICIT CODES FOR SOME INFINITE ENTROPY
BERNOULLI SHIFTS

By STEVEN KaLIKOW AND BENJAMIN WEISS

University of Southern California and Hebrew University of Jerusalem

Some explicit isomorphisms are constructed between Bernoulli shifts
with infinite entropy.

The basic distribution with infinite entropy is the uniform distribution on
[0, 1]. Conceptually simpler distributions are discrete distributions
{p1, Pos---s Dp,-.-} with 3 — p, log p, = +. Ornstein (1970) has shown that
the processes obtained by having independent identically distributed (i.i.d.)
random variables with these distributions or any other having infinite entropy
are isomorphic. Represent the discrete-valued process by {x,}, n € Z, which
are independent N-valued random variables with distribution {p;, p,, ...}. The
isomorphism is given by a function which commutes with the shift

f:N? - [0,1]7,
whose coordinates {f,}, n € Z satisfy the following:

1. f, is uniformly distributed on [0, 1];
2. {f,}, n € Z, are independent;
3. the map {x,} — {f,} is almost surely 1:1.

The proof exhibits f,, as some complicated limit of finite codes and gives no
easy method of explicitly calculating f;,. Our main purpose in this note is to
give an explicit description of such an f,, for some family of distributions {p,}.
The interest here is in the existence of some explicit coding between continu-
ous i.id. random variables and discrete ones. There are two ideas involved.
The first suffices to give f with properties 1 and 2 above. In order to get
invertibility, property 3, we elaborate shghtly on the classic example of
Meshalkin (1959).

In the second part of the paper, we will give an explicit isomorphism
between the time one map of a Poisson point process on the line and [0, 1]
with the shift. Although it does not directly give an imbedding of a finite
entropy Bernoulli shift in a flow, nonetheless, when combined with the first
part of the paper, it gives an imbedding of a discrete Bernoulli shift in a
Bernoulli flow.
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1. From discrete to continuous. The distributions {p,}7 that we deal
with here have the following special form. There is a random length L with
distribution of

Prob(L =1;) = m;, 1<i<o,

and then conditioned on the length /,, we choose a binary sequence of length
I, with all binary sequences of length ; equally likely with probability 274,
Explicitly the p,’s may be defined by

i-1 i
p,=2"bm for Y, 2b<k< ), 20
j=1 j=1

Furthermore, we assume that
(1) Yl =+,
1

which is equivalent to infinite entropy.
A random variable x drawn from such a distribution will be written

x=x(1)x(2) - x(m) -,

where x(i) is either a 0 or a 1 for i < L and undefined otherwise and L is one
of the integers [,,l,,... and so on.

The condition (1) is equivalent to the condition that if {L,, L,, ...} are ii.d.
random variables with distribution {,})7, then with probability 1, L, > n
infinitely many times. This is an immediate consequence of the Borel-Cantelli
lemma and a standard summation by parts. If we are presented with a typical
sequence of values {x,}* . drawn independently from the distribution {p,} as
above, then with probability 1 for each index n the preceding condition is valid
for the associated L,, L. ,,... . Keeping this in mind, the definition of f, is
as follows. It actually depends only on {x;, x,,...}.

Form the infinite sequence

x1(1), 25(2),x3(3), ..., x,(n),... .

By the above, with probability 1, there are infinitely many terms in this
sequence that are actually defined with a value 0 or 1. Delete all undefined
terms, that is, whenever L; < i, delete x;(i) from the above sequence. Call the

new sequence
and define

Fo(tn 2g,...) = ¥ 7(i)27".

-~

In case there are only finitely many terms that are defined set f= 0. When f,
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is applied to a shift of the sequence (x,, x,,. 1, ...) the preliminary sequence
%,(1) %, 1(2)%, 1 2(3) -+ %, (P + 1)

is totally disjoint from all other shifts. This means that even conditioned on a
fixed sequence of values for the lengths L, the resulting f,’s will be indepen-
dent random variables uniformly distributed on the unit interval. '

This completes the first part of our project and gives a stationary coding
from independent discrete random variables to independent continuous ran-
dom variables. The mapping that we have defined is clearly onto but is not
invertible. Indeed without knowing the lengths, the problem of inverting the
mapping is completely hopeless. We get around this problem by doing a
separate coding for the lengths.

2. Coding the lengths. For the rest of this discussion we will fix the
length probabilities 7, to be 27* for all £ > 1. Meshalkin (1959) showed how
to give an explicit coding between the Bernoulli shifts (3, , 1, 1) and (3, 3, 5, 5,
1). A brief description of his code may be found in Weiss (1972). Iterating that
construction gives a simple explicit code between the Bernoulli shifts (3, 1, 1, 1
and (3,5, 3, 15, - - - )- Choose for the lengths [,,1,,... any strictly increasing
sequence of integers such that

For this the length probabilities will have to be of a special form. The first two
digits of the final f;, will now be given by the code that maps the length
sequence to two binary digits. Then the rest of the digits will be given by the
map f, previously described. In this way the coding defined by f, will be
invertible, since given fy(x,,%,,,...) for all n will enable us to recover, from
the first two digits, the entire length distribution L,. Then, given the length
distribution, the map is trivially invertible.

To keep the paper self-contained, we now give in more detail the code
between (3,%,1,1) and (3,1,3,...). For this we represent the integers
1,2,3,... as follows: 1,01,001,0001,00001,... . If an integer is chosen ac-
cording to the latter distribution, then the first digit is equiprobably 1 or 0,
and the second digit, given that it exists, is again equiprobably 1 or zero and so
on. In general, if we condition on the event that the nth digit is there, then it
is equiprobably equal to 0 or 1. It is a little easier to explain the mapping geing
from the (3, 1, 3, 3) shift to the (27%) shift, so we do so. Given a bi-infinite
sequence of random variables {u ,(1)u (2)f° ., that-are each 0 or 1 indepen-
dently with probability 3, we wish to form a bi-infinite sequence of integers as
above. To do so we first group. the u,(1)’s in pairs as follows:

Each «,(1) whose value is 1 is paired with the first «,,(1) with m > n that
is equal to a zero such that the block « ,(1)u,, (1) - -+ u (1) contains an equal
number of 0’s and 1’s. Thus each (1) that equals 1 with «,, (1) = 0 forms a

pair, then ignoring these pairs each u (1) that is a 1 and has a «,,(1) equal to
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Fic. 1.

a 0 immediately to its right is paired with it and so on. See Figure 1 for an
example.

The recurrence of the simple random walk guarantees that with probability
1 all symbols are paired. At this point for each pair (x,(1u (1)) we combine
u ,(2) with u ,(2) to form a new pair of independent random variables. It is
best to picture the original pairs as columns and then we get a new sequence of
such columns by ignoring the lower coordinate [which is u,(1)] and placing the
upper one over u,,(2) when n and m were paired above. The infinite sequence
of u,(2)u,(2) that is formed in this way (deleting all indices that correspond

t(l> tlhel olnes) is a new sequence of i.i.d. random variables with distribution
44> 4 1)

This map, which is easily seen to be invertible, was essentially what
Meshalkin did to exhibit an isomorphism between (3, 1, 3, 5, 3) and the 4-shift.
We do not stop here but apply the very same process again to the sequence of
u,(2)u (2)'s. Repeating the procedure infinitely many times will leave us with
a bi-infinite sequence of random variables of the form 1, 01, 001,... as
described above. To invert the procedure we simply reverse the steps above.
The independence of the resulting random variables is clear as is the fact that

their distribution is (27%) and this completes the construction.

3. An isomorphism from the time one map of Poisson point process
to (0,1)%. Let Q be the set of countable subsets of the real line. For any
w € O and any interval (a, b) C R, we say that the configuration on (a, b)
(when w is understood) is w N (a, b). When o N (a, b) = &, we say that (a, b)
is empty (w is understood). We put a measure p on (2, which will be called the
Poisson point process. u is defined uniquely by:

1. For any interval I = (a, b), the probability that I is empty depends only on
b—a.

2. Given r € R, let x be the first point of w such that x > r. Then x —r is
exponentially distributed with parameter 1, independent of the distribution
of wN[—o,rl.

" If these two properties hold, then the following properties are forced.

1. Let s c R have Lebesgue measure m.-Then #w N S is Poisson distributed
with parameter m.
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2. If §4,S,, S5 -+ are disjoint sets in R, then o N S;, 0w N Sy, 0 NS, -+~
are all independent of each other.

Let T: Q — Q be defined by T(w) = ,, where for all r € R, r € w,, iff
r — 1 € w. We now exhibit an exp11c1t isomorphism from (Q,T) to (I%,T)
(from here on in I = [0, 1]), where T is the shift map on IZ. This together
with the results of the previous section defines an isomorphism from (£, T') to
(@7, T ), where @ is a particular countable partition of infinite entropy. A
trivial coding cannot be carried out because with positive probability no point
of the process is in 1.

We now define an isomorphism ¢: Q — IZ such that ¢ is a bijection, is
measure preserving and commutes with 7' and T'. Let I be an _interval.

Let i be the measure u restricted to the condition that I is not empty.
Make the further restriction that 4 is to be regarded as a measure on
configurations on I, that is, { is the set of all finite nonempty subsets of the
unit interval and £ is the above defined measure on ().

LEmMma. (), 4 is measure-theoretically isomorphic to the unit interval with
Lebesgue measure.

The lemma is a special case of the well-known theorem that any separable
nonatomic regular measure space is isomorphic to the unit interval with
Lebesgue measure. In the spirit of this note we should really write out a proof
of this fact for this case, making the 1somorph1sm explicit. To do this we would
proceed as follows. Divide Q into ,’s, where Q is the space of configura-
tions of size n. For each Q , we shall have an 1nterva1 of T of size A({1,). Thus
the problem is merely to get Q to correspond to Lebesgue measure. Now Q
is essentially n independent random variables, drawn from I and arranged in
order. For n independent variables, the standard correspondence between I”
and I will work (see below).

Let I, be the interval from n to n + 1. Fix w € Q. Suppose o N I, # &,
1) ﬁIn+1 B,onl, o= 0N, . s=¢,...,001, ., =C,0onI, ,+
. This analysis includes the case where £ = 1. Let ¢ be the isomorphism of
the lemma (where the domain of ¢ is assumed to be configurations on I, .,
rather than configurations of I;)). Expand ¢(w N I,,,) into binary expansion,
that is, p(0 N I,,,) = L% 1@;27/, where each a; is either 0 or 1. The reason
that a completely trivial invertible coding cannot be carried out is that for any
given interval, there is a positive probability that no point of the process exists.

Let r,,, = (X%_,a;,2 X1 - p) + p, where p is the probability that the unit
mterval is empty
For 1 <i<k, let r,,; =X%_¢a,,,2 V" Vp. This defines r,,,,7,,5 -

+'n + @nd it should be noted that each integer M is in a unique set of the form

{(n+1,n+2---n+k}lsuchthat oNI,*¢, 0N, ,*#dpandonl, ;=
¢ for all i, 1 <i < k. Thus we have defined r;, uniquely for every integer M.
The reader can verify that the map o — {ry};;c, can serve as the desired
isomorphism.
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