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UNIFORM CONVERGENCE OF MARTINGALES IN THE
BRANCHING RANDOM WALK

By J. D. BiGGINS
University of Sheffield

In a discrete-time supercritical branching random walk, let Z(
be the point process formed by the nth generation. Let m(A) be the
Laplace transform of the intensity measure of Z. Then W)(A) =
Je **Z")(dx)/m(A)", which is the Laplace transform of Z» normalized
by its expected value, forms a martingale for any A with |[m(A)| finite but
nonzero. The convergence of these martingales uniformly in A, for A lying
in a suitable set, is the first main result of this paper. This will imply that,
on that set, the martingale limit W(A) is actually an analytic function of A.
The uniform convergence results are used to obtain extensions of known
results on the growth of Z(®Xn¢ + D) with n, for bounded intervals D and
fixed c. This forms the second part of the paper, where local large deviation
results for Z(®) which are uniform in ¢ are considered. Finally, similar
results, both on martingale convergence and uniform local large deviations,
are also obtained for continuous-time models including branching Brown-
ian motion.

1. Introduction. An initial ancestor is at the origin (in “#?) and the
positions of its children form a point process (the first generation) Z®, with
intensity measure w. Each of these has children, the second generation, with
positions relative to their parent given by independent copies of Z, and so
on. The point process formed by the nth generation is denoted by Z™, with
points {z{™: r}, and this has the intensity measure u"*, the n-fold convolution
of w. The (multivariate) Laplace transform of u is denoted by m, so that

m(A) = [e™u(dx),

where A € €7 and A =60 + in with 6,1 € #P. (Throughout, the real and
imaginary parts of A will be denoted by 6 and 7, respectively; also, no special
notation will be used to indicate inner products like Ax above.) Sometimes we
need to consider the transform m as a function of 6, with n = 0, and this will
be denoted by m(6); while m(in) is m(A) with A = in. We will throughout
consider only those A for which m(6#) < ». Notice that m(0) = uW(£*) =
E(ZM(#P)) is a parent’s expected number of children; we will consider only
supercritical processes and so take this to be greater than 1.

Let ™ be the o-field containing all information about the first n
generations. It is straightforward to show, and well known, that, when m(A)
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138 J. D. BIGGINS

exists and is finite but nonzero,
W(A) = m(A) ™" [e2*Z™(dx)

is a martingale with respect to & ). The convergence of these or similar
martingales has been considered quite frequently [see Watanabe (1967), Joffe,
Le Cam and Neveu (1973), Kingman (1975), Biggins (1977), Wang (1980),
Uchiyama (1982) and Neveu (1988)]. When this martingale converges we will
denote its limit by W(A). The first objective here is to seek conditions ensuring
W@(A) converges to W(A) uniformly for A in any closed subset of a certain
open set, A, almost surely. As W()X()) is analytic on A, it will follow that W(\)
will also be analytic on the interior of A.

In another paper [Biggins (1989)], I considered the problem in the one-
dimensional case (i.e., p = 1) and obtained convergence in a neighbourhood of
part of the real axis. Here greater efforts are made to make the set A as large
as possible with an explicit definition. The idea used there is to employ
Cauchy’s integral formula to estimate the supremum of |W®*7(A) — W™())|
over a set strictly within a contour in terms of an integral round the contour
and then to show that this integral tends to 0 with n, uniformly in r. This
method extends to the multidimensional framework. Also in that paper is a
result on the uniform convergence of W()(9) for real 6, which can be obtained
under rather weaker moment conditions. Of course, the trick of using Cauchy’s
integral formula is then no longer available. It ought to be possible to extend
this result also to the multidimensional framework, but this problem is not
considered here. The only explicit result I know of on such uniform conver-
gence is contained in Joffe, Le Cam and Neveu (1973), who consider the
convergence of W()(in) for a particular case of the process described above.

A major reason for trying to obtain a uniform convergence result for
W)(A) (besides its intrinsic interest) is to use it in obtaining results about the
sequence of point processes {Z(™} as n — . It is plausible that Z(™ will have
many properties analogous to those of its intensity measure, the n-fold
convolution u™*, and as transform methods are frequently used to establish
properties of the latter, it is reasonable to hope that sufficiently strong results
about the martingale W)(1) will be useful in establishing results for Z.
This general idea is not new [see, e.g., Watanabe (1967) and Remark 2 in Joffe
and Moncayo (1973)] but, as I hope to demonstrate both here and elsewhere, it
still has considerable potential.

Here we will use W™)X()A) in the study of the large deviation behaviour of
Z™, (Note that here ‘“large deviation behaviour for Z™” refers to the extent
to which large deviation estimates for u™* carry over to Z™, rather than to
the asymptotics of probabilities of rare events associated with Z(.) Stone
(1967) gives an estimate of u™*(nc + dx) that is uniform in ¢, for a suitable
range of values of c—a uniform local large deviation theorem. The main result
in the later part of the paper will be (roughly speaking) a similar uniform
estimate of Z(™(nc + dx). This estimate will involve W(8) in an essential way.
Some weaker results on the large deviations of Z(™ have been established
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previously. In Biggins (1979), Corollary 1 and Theorem B, it is shown that
(when p = 1)

Z™(nc + a,nc +b)
EZ™(nc + a,nc + b)

(1.1) - W(9)

almost surely, for any (fixed) ¢ in a suitable interval, where 6 is given by
—-m'(0)/m(0) = c. [If p is lattice (a, b) must be large enough to contain a
lattice point.] A result of the same form for a multivariate continuous-time
model is given by Uchiyama (1982), Theorem 1 and Remark 3. It will be a
consequence of Corollary 4 in Section 4 that (1.1) holds uniformly, for ¢ in
suitable compact subsets, almost surely. It is not surprising that the uniform
convergence of W™ to W and the smoothness of the limit W should be
essential ingredients in establishing this.

The next section contains the statement of the main results on the conver-
gence of W(™)X()) for this discrete-time model, while Section 3 contains their
proofs. Section 4 contains both the statement and the proofs of the large
deviation results for Z™). The final section discusses the continuous-time
analogues of the martingale convergence and large deviation results, essen-
tially demonstrating that they carry over with only the obvious changes. The
model discussed in that section includes as special cases both branching
Brownian motion and that studied by Uchiyama (1982). In particular, the
large deviation results give a generalization of Uchiyama’s Theorem 1, men-
tioned above.

2. Martingale convergence, discrete time; results. The first theorem
considers the convergence of W()(A) for a particular A, rather than as a
function of A. The convention that A = 0 + in, with 6,7 € %P, established
earlier, is used in its statement. Its two corollaries deal with the special cases
A =0 and A =in. The set Q° occurring in the first of these, is defined by
Q° = int{A: m(#) < o}, where int A is the interior of the set A. Also m'(#) is a
vector of partial derivatives with respect to 6, so that §m’'(8) is an inner
product.

THEOREM 1. If

(2.1) EW®(0)" <w for some y € (1,2]
and

m(ad)

(2.2) <1 forsomeac (1,y],

|m ()]

then {W™(A)} converges almost surely and in ath mean.
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CoROLLARY 1. If (2.1) holds, 6 € Q° and
om'(9)
m(9) ’

(2.3) ~ log(m(0)) < —
then {W™X(8)} converges in mean.

CoroLLARY 2. If (2.1) holds and
m(0) <|m(in)[",

then {W™)(in)} converges almost surely and in yth mean.

A conclusion like that in Theorem 1 has been obtained for a continuous-time
version of the process by Uchiyama (1982), Proposition 1. In Section 5,
Theorem 1 will be used to obtain a strengthening of that result.

In the case A = 8, W(™)X(9) is a positive martingale so its convergence almost
surely is automatic. This case has been considered in greater detail in Biggins
(1977) [see also Biggins (1978), page 71], where, when 6 € Q°, the weaker
moment condition EW®(0)log*(WM(9)) < = and (2.3) are shown to be neces-
sary and sufficient for W)(6) to converge in mean. Also, for real 6, the
conditions of Theorem 1 are essentially necessary for convergence in ath
mean; see Biggins (1979), page 26.

Turning to the case A = in covered in Corollary 2, here m(0) is the mean
family size and (2.1) is just a moment condition on the family size. Some
results of this kind have been obtained previously, at least when y = 2. See,
for example, Stam (1966), in particular equation (16), and Joffe, Le Cam and
Neveu (1973), who also consider uniform convergence.

We now turn to the uniform convergence of {W™)(A)}. Let

Q! = int{A: EW®M(0)” < oo}

and
6
2.4 Q2=intA:-m—(y—)—<1.
(2.4) y ¥
|m(A)]
Now let

QV=Q;nQ§ and A= | Q,.

1<y<2

Therefore (), and A are open.

THEOREM 2. {W™X()A)} converges uniformly on ary compact subset of A,
almost surely and in mean, as n — ©.

CoroLLARY 8. W()) is analytic on A.

If W™ is restricted to a compact subset F' C A, it can be thought of as a
martingale with values in the Banach space of continuous functions on F
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(under the supremum norm). Theorem 2 then asserts that this martingale
converges almost surely and in mean. One possible approach to this result is to
show that W(A), the limit of W)(A), which exists by Theorem 1, is continu-
ous in A, and then to use known results about the convergence of W) =
E(W|F ™) to W in Banach spaces [Neveu (1975), Proposition V-2-6]. This is
the approach adopted by Joffe, Le Cam and Neveu (1973) in obtaining their
result of this kind. Here a direct approach is used and so the continuity of W
on F is a consequence of the theorem. In fact, as W™ is analytic on A,
standard complex analysis [see Hormander (1973), Corollary 2.2.4] gives the
analyticity of W recorded in Corollary 3.

Some remarks about the constituent sets of A are in order. Obviously, Q) is
a “strip,” in that 6 + iy is in Ql if and only if 0 is, and the same is true of
Q° As

(2.5) (m(O)WD(0))" = (L e=*)"

is convex in 0 for y> 1, so is m(8)’EW™(0)”; hence {9: 6 € Q° and
{6: 0 Q;} are both open convex sets in %#7”. It is also worth noting here that
m(A), EW™(9)” and m(y6)/Im(A)|” are continuous functions on Q°, Q! and
Q2, respectively.

To clarify the role of y it is worth re-expressing slightly the definition of A.
Let

af
Q3 ={rreQf 1nf L)—<1
1asy (D"
Then it is fairly easy to check that Q?, can replace Q?/ in the definition of A so
that A is also given by
A= U (0pn02)
1<y<2

Now notice that Q; increases as vy decreases but 93 decreases as y decreases,

so that there is a trade-off between the moment condition, Ql and the
condition on m(A), Q3. Also the restriction of Q3 to 0 € R* is

6
0:0 € Q°, 1nf m(af) <1
255, (o)

and, by considering the slope of m(af)/m(0)* at a = 1, this is the same as

0:0 € Q° —1 9)) < bm (%)
10 € - -
{ ’ og(nz( )) (0) }’

and so is actually independent of vy. (The same calculation is all that is needed
to deduce Corollary 1 from Theorem 1.)

3. Martingale convergence, discrete time; proofs. The basic ideas
here are the same as those used to prove Theorem 1 in Biggins (1989). The
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definition of the process gives immediately that
— ,\z(rn)

(3.1) WerDA) - WP() = 3 ——=(Wy,(A) — 1),

 m()"
where {W, (A} are i.i.d. copies of W®(A). Hence the martingale difference
WEHD()) — W™X(A) is, given & ™), the weighted sum of independent identi-
cally distributed random variables with zero mean. The following lemma
concerns the calculation of the moments of such expressions. A stronger result
for real random variables is contained in von Bahr and Esseen (1965), Theo-
rem 2, and their methods yield the following result for complex-valued random
variables fairly easily. The actual value of the constant 2* occurring is irrele-
vant, so the Marcinkiewicz-Zygmund inequalities and their extension to mar-
tingales [see, e.g., Neveu (1975), Corollary VIII-3-18] will also readily yield a
suitable inequality.

Lemma 1. If {X,} are independent complex random variables with E(X,) =
0, or more generally, martingale differences, then E|L X;|* < 2°L E|X,|* for
l<acx<?

Proor. Let S, = X"X, and let X, be independent of {X;, X,,..., X}
with the same distribution as X,.;. Then EIS, " =E|S, +X, | <
EIS, +X,,, — X, 1|“<EIS, |+ EIX, ., — X, ,.* < EIS,|* + 2°E|X,, I
where the inequalities used are, successively, those of Jensen, Clarkson [see
von Bahr and Esseen (1965)] and Minkowski. O

An easy calculation establishes that

m(8)*
|m ()"
and this estimate and Lemma 1 now allow the following estimates of moments

of (WD — W®™) and hence of (W™ — 1). Notice that Theorem 1 is an
immediate consequence of this lemma.

(3.2) EIW®D(A) — 1]* < 2941 EW®(6)"

LEMMA 2. For 1<a <2 and fixed A, let k =m(ad)/Im(N)|*, M =
EW®D(0) and ¢ = m(0)/Im(A)| then

(1) E|W("+1) —Wm™* < 22a+1¢aMKn’
n
(ll) Elw(n+1) _ lla < 23a+1¢aMZ K",
r=0
23 Ml/a
iii Y E[W®+D - ™| < ZoM 7~ if ik < 1.
&l 1 -— Kl/a

Proor. Take the expectation of the ath absolute moment of (3.1) condi-
tional on & ™, apply Lemma 1, the bound (3.2) and take unconditional
expectations; this gives (i). The other two parts follow easily. O
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Proor or THEOREM 2. The proof of this theorem will rely on an estimate
derived using Cauchy’s integral formula for functions of several complex
variables [see, e.g., Hormander (1973), Theorem 2.2.1]. The theory required
(and the derivation of the estimate) is a straightforward generalisation of the
one-variable case. To state the estimate, we first introduce some notation.

The open polydisc centred at x = (x;, x,,...,%,) € €7 with radius p>0is
denoted by D,(p) and defined by D, (p) = {y € €7: Ixj — yjl <p, ¥ j}, and its
“distinguished boundary” T,(p) is defined by I'(p) ={y € €7: |x;, —y,l =p
V j}. Now suppose I',(2p) is parameterized by ¢t € C € #?, where
(33) C={te®”:0<t; <27,V j} and z;(t) =x; + 2pe's,

so that T (2p) = {2(¢): t € C}.
LemMmA 3. If fis analytic on D,(2p") with p' > p, then

sup | F(M)| <77 [ f(2(t)]de

r€D,.(p)

with C and z(t) as defined at (3.3).

Proor. Use Cauchy’s integral formula over I ,(2p) and the triangle in-
equality. O

LEMMA 4. For any x € A there is a polydisc D,(p) C A such that W™(A)
converges uniformly on D, (p), almost surely and in mean.

Proor. Given any x € A, we can find y with x € (), and hence can find p
such that D,(3p) € . As WN*D(1) — W™X(1) is analytic in A on D,(3p), we
may use the estimate in Lemma 3 to deduce that

(3.4) sup sup 7TP|W(N+1)()\) _ W(")()\)| / Z W+ — W| d¢
N=z=n xeD/p) Pl

[where z(¢) has been suppressed in the integrand]. Note that [with I' = I',(2p)]

E/ 2 W+ — WO dt < (27) sup 2 E|WC+D(A) — WO(A)],

Ael r=0

so if this bound is finite the right-hand side of (3.4) will go to 0 both in mean
and almost surely. Recall that I' ¢ Q_ = Q) N Q2, T is closed and compact and
m(A), EW®(6)” and m(y8)/Im(A)|” are continuous on {2, and hence on T.
Therefore the estimate in Lemma 2(iii), with o = v, is uniformly bounded for
A€ T, completing the proof of Lemma 4 and hence, by a compactness argu-
ment, of Theorem 2. O

4. Large deviations for Z™. In this section we will obtain large devia-
tion results for Z(™ showing that, up to the random function W(8), it mimics
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the behaviour of u™*. The relevant estimates for u"* are supplied by Stone
(1967) and the results for Z™ will be obtained by following Stone’s proof
through with Z™ in place of u™*. We will assume that p is nonlattice, in that
for some (and then for all) 6 € Q° |m(8 + in)/m(6)| = 1 only when n = 0.
This assumption is unnecessary, as a study of Stone’s proof will reveal, but it
lessens the notational burden. We will also assume that u is strictly p-dimen-
sional in that its support is not contained in any lower-dimensional hyper-
plane.
Let the conjugate measure p, be given by

e—0x

m(6)

mo(dx) = p(dx),

with mean ¢, and covariance 3,,. Let o, be the square root of the determinant
of 3, which is nonzero as u, is strictly p-dimensional, and let p, be the
Gaussian density with covariance 3,. Let I, be the cube of side & centred at
the origin.~Finally, if A c €P let A be the restriction of A to 8 € %P, so, for
example, 1° = int{6 € #P: m() < «}. The following result is (essentially)
contained in Theorem 2 of Stone (1967).

THEOREM 3.
p/2, nk p x
nP/ 2 ¥ (x + ney + I,) — hPpy T -0
n

as n — o, uniformly for h in bounded sets, 6 in compact subsets of Q° and
all x.

There are two parts to Stone’s proof. First, the result is proved for a
smoothed version of u%*. This is done (essentially) by estimating the required
difference by the integral of the absolute difference in the corresponding
characteristic functions. The second part then shows that the smoothed and
unsmoothed versions of u2* attach similar weight to sets of the form x + I,.
(When there is a lattice component it is not smoothed, the Fourier estimate
alone sufficing for these parts.)

To state the analogue of this result for the branching random walk, let

—6x

m(6)"

Z{M(dx) = Z™(dx).

THEOREM 4.

4 : x

! nP/2Z{M(x + ney + I) —hPW(O)po(T_—)‘—»O
n

as n — o, uniformly for h in bounded sets, 6 in compact subsets of A and all x,
almost surely.
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We will discuss the proof in a moment but note first that
JF()Z®(ne, + dy) = (m(0)e™)" [ (y)e¥Z§ (e, + dy).

We can therefore use a Riemann sum argument and Theorem 4 to approxi-
mate this integral. By paying suitable attention to the uniformity in 6 of the
Riemann approximation of f(y)e?, this yields uniform estimates for Z
[cf. Theorem 3 of Stone (1967)]. We give one version; others are possible.

COROLLARY 4. For any directly Riemann integrable function f of compact
support,

np/? W(0)

% [F(9) 2™ (ne, + dy) -

T o

(277_)P/2
as n — o, uniformly for 8 in compact subsets of A, almost surely.

Notice that if f is the indicator function of a bounded Riemann integrable
set D, then this theorem gives an estimate of the growth of Z""X(nc, + D) that
is uniform in 6. Combining this with the corresponding estimate of
w**(ncy, + D), derived from Theorem 3, gives a version of (1.1) holding uni-
formly in 6.

The function —m'(6)/m(6) is continuous and one to one on (1°, so we see
that compact subsets of A correspond to compact subsets of Cj; = {c: 6 € A,
¢ = —m'(6)/m(0)}. The expressions in Theorem 4 and Corollary 4 could just
as well be parameterized in terms of ¢ (instead of ) with the corresponding
results holding uniformly in compact subsets of Cj;. It is worth commenting
that, under this parameterization, the term m(6)e®® in the normalization in
Corollary 4 is exactly the Cramér function of u, defined by inf{m(8)e%c: 6},
evaluated at c.

Proor oF THEOREM 4. Let ¢4(n) = fe :""u,(dx) be the characteristic func-
tion of u, (the choice of —7n in the exponent is for later notational conve-
nience). We will also sometimes denote this by ¢(A) [= m(A)/m(6)]. The
“characteristic function” of Z{™ is then W6 + in)d ()" [= W™(A)(M)™,
and should be interpreted as m(8) "fe **Z(™)X(dx) if m(A) = 0]. The next
lemma shows that the approximation of W™(A)¢(A)" by W(0)d(A)" is legiti-
mate. Once the lemma is established, the theorem follows from the proof of
Theorem 3.

LemMMA 5. Let F be a compact subset of A. Then, for any a > 0,

sup nP/2l W6 + in) — W(6)|Idy(n)"Idn — 0
6eF “Inl<a \

as n — « almost surely, with the null set independent of a.
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Proor. We split the integral into two parts, |n| < e and ¢ < || < a, and
deal with them in that order.
A standard Taylor series estimation gives, for small ¢ and |n| <&,

sup |¢4(n)| < exp(~Clnl?).
. 0€F .
Now let F, = {A: 8 € F, |n| < ¢}. The integral over |n| < ¢ is less than

sup |W™ (1) — W(8)]
AEF, ( ) ( )/I’n|<s,/ﬁ
using Theorem 2, and this may be made arbitrarily small by choosing &
sufficiently small.

Consider now

exp(—Clnl*) dn — K sup |W(2) - W(6)],
AEF,

/ LRI AWE) S0 dn.
e<inl<a

We will show that this converges to 0 uniformly in a neighbourhood of any
0, € A, and hence uniformly on F, completing the proof. 5

Let B, be a closed ball in #” of radius r centred at 6, € A and let
G,, = {1: 0 € B,,, b~ 'e < |nl < ba} so that G, c G,,. As 8, € A, we may take
y € (1, 2] such that 6, € Q, and then

m(v0,)""”
(4.1) )
m(0,)
We may therefore choose r sufficiently small that, for some § < 1, B,, c (1.,

sup{m(70)1/7: LS Bzr}

(4.2) inf{m(6): 6 € B,,}

and, as u is nonlattice,
sup{Im(A)|: A € Gy, }
inf{m(6): 6 € B,,}
Let B™(A) = [e **Z™)X(dx) — m(A)" so that
WX d(X)" =m(8) "B™M(1) + ¢(1)",

(4.3)

then

sup np/2f [W(A)d(A)"dn .

0<B, e<|nl<a
sup{| B™(}) |2 €@}
inf{m(9)": 6 € B,}

(4.4)

< Kn?/? + 8"},

where here, and in what follows, K is a suitable constant independent of n
and 0. As B™()) is analytic in A, we can use Lemma 3 and a compactness
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argument to show that
(4.5) sup [BW(V)| < 7P L [ |B™(2(s))|ds,
AE€G, j °C

where {C;} parameterize the distinguished boundaries of a finite number of
polydiscs comfortably covering G, and lying within G,,.. (‘‘Comfortably”’ here
means that if their radii were halved they would still cover G,.) Taking
expected values of (4.5) and using Jensen’s inequality, we see that, for a > 1,
(4.6) E sup |B™(\)| <K sup (E|B™(0)[")".
AEG, AEG,y,

The next lemma, which is essentially a restatement of Lemma 2(ii), bounds the
right-hand side here.

LEMMA 6. Forl<a <2,

E|B™+O(0)[* < 23 1m(0) "EW®(6)* Y m(ab) |m(A)[" 7.
: r=0

As By, c Q), sup{m(6)’ EW™(6)": 6 € B,,} is finite. Now take a =y in
(4.6) and use it, Lemma 6, (4.2) and (4.3) to see that the expected value of the
right-hand side of (4.4) is less than

< KnP/%(n'/* 4+ 1)6™" 1.

r=0

n-1 1/a
Knp/2(( Z 8ar6a(n—1—r)) + 8"

Consequently, the right-hand side of (4.4) converges to 0 almost surely as
n — o, and, as the expression is increasing in a, the null set can be taken
independent of a. This completes the proof of the lemma. O

In following the pattern of Stone’s proof of Theorem 3, we find we must
estimate [cf. Stone’s (3.6) and (3.8)]

[ nP2emW (8 + in)dy(n)"g(n) dn,

Inl<a

where g depends on a and h but satisfies |g(n)| < 1. Obviously, Lemma 5
allows us to instead estimate

[ ne%eW(8)do(m)"g(n) du,

Inl<a .

and this differs from the quantity considered by Stone only by the factor W(6)
(which is continuous in 6). O .

5. Continuous-time results. Suppose that each particle lives for an
exponentially distributed length of time (hazard rate 8) and during its lifetime
it moves according to an independent copy of a process with stationary



148 J. D. BIGGINS

independent increments. This process is taken to be regular, in the sense that
it has right-continuous sample paths with limits from the left, and its expo-
nent function is a(A), so that if a particle, initially at the origin, is still alive at
time ¢, then its position has transform exp(a(A)t). At death a particle is
replaced by its children, and the point process X gives their positions relative
to their parent’s at its death. Independent copies of X are, of course, used for
each family, and we let b(A) = Efe **X(dx). Let Z® be the point process
resulting at time ¢ from this construction. The total number of particles
{(Z(2P)} forms a Markov branching process, and we assume that this is
nonexplosive. If a()) is degenerate, so that a particle does not move during its
lifetime, this is the process discussed by Uchiyama (1982). If movement is
according to a homogeneous Brownian motion and X is concentrated at 0, we
have branching Brownian motion, while if instead the branching process is a
birth-and-death process and the displacement distribution for an offspring is
isotropic, then we have a process discussed by Wang (1980).

The results in Section 2 may be applied to any discrete skeleton of this
process, thereby allowing continuous-time versions of these theorems to be
established. However, this involves imposing conditions on Z® for all small ¢,
and it is more usual to express such conditions in terms of the ‘““infinitesimal”
conditions. One part of this is fairly straightforward, for, by conditioning on
the time of the first death, it follows easily that

(51)  m(A)' = E[e™ZO(dx) = exp((Bb(1) = B + a(M)1),

S0 93, defined by (2.4), is independent of ¢, and could easily be given a
formulation in terms of a, b and B.

The moment condition presents more problems, but it is possible by a fairly
straightforward but tedious calculation to show that E(fe™**ZX(dx))” is finite
for all small ¢, provided that a(fy), b(y) and E(fe ®*X(dx))” are all finite.
Consequently, for the analogue of Theorem 2 we can now take

Ql = int{)t: a(0y) < ®, b(8y) < », E(/e"”‘X(dx))y < oo}

and let O, and A be defined as before. Note that A is again automatically
open.

The process {Z®} can be taken to be regular, with respect to the topology of
weak convergence of measures. Then [e **Z®(dx) will be regular so if Theo-
rem 1 holds for any discrete skeleton, it also holds for W(A). Hence we have
the following result.

THEOREM 5. If a(8y), b(8y) and E([e %*X(dx))” are all finite for some
Y€ 1,2] and
k2 0
m(a)
|m(A)["

for some a € (1,y), then {W®(\)} converges almost surely and in ath mean.

(5.2)
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A result of this kind is given as Proposition 1 of Uchiyama (1982) and a
special case is covered by Proposition 1 of Neveu (1988). To discuss the
relationship of Uchiyama’s result with Theorem 5, let T' = {8: m(af)/m(6)* <
1 for some a > 1}. This is simply a reformulation of the definition of T given
by Uchiyama (1982), just before (2.4). Now let Q, = {A: ab € T,
m(ab)/ Im()\)I“ < 1}, then the condition (2.4) imposed by Uchlyama is essen-
tially: A € Q for some « € (1,2]. In addition, the moment condition, labelled
(A.1) there,

(5.3) E[X(dy) [e *X(dx) <o forallg T,

is imposed. Proposition 1 of Uchiyama states that these two conditions suffice
for the conclusion of Theorem 5. The next result shows that this result is
contained in Theorem 5. In fact, when 0 € T, (5.3) includes the condition that
the second moment of the family size is finite, so Uchiyama’s conditions are
stronger than those employed here.

ProrosiTioN 1. If (5.3) holds and A € f)y with 1 <y < 2, then the condi-
tions of Theorem 5 hold with a = v.

Proor. If A € (), then y0 € T so, from (5.3), E/X(dy)fe "**X(dx) < =
and, letting N = [X(dy), E(fe”**X(dx))” < EN7"" e "X (dx) <
ENfe "**X(dx) < . Furthermore, again as y0 € T, m(y0) < « so b(y6) and
a(y#) are finite. Of course, A € Q also implies that (5 2) holds with a = y. O

Considering the case where A =in yields the following consequence of
Theorem 5, which includes Lemma 3 of Wang (1980) as a special case (in the
statement of which I think > should be >).

CoroLLARY 5. If E(fX(dx))* < o and m(0) < |m(in)|", then {W®(in)}
converges almost surely and in yth mean.

As indicated above, Theorem 5 requires no further proof; a skeleton argu-
ment and standard martingale properties suffice. However, the analogue of
Theorem 2, giving uniform convergence, which is now stated, does require a
little additional argument.

THEOREM 6. {W®())} converges uniformly on any compact subset of A,
almost surely and in mean, as t = .

.PrROOF. Let F be a compact subset of A; then W is a martingale in the
Banach space of continuous functions on F with the supremum norm (de-
noted by | - |). Furthermore, by Theorem 2, W*® has a limit W in this space
as n — o through the integers for any & >0. It follows that E||W® — W] — 0
as t — o, giving the convergence in mean, and that |[W® — W|| - 0 a.s. as
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t — o through the rationals. This will imply the stated result if |[W® — W || is
regular, which can be verified by routine analysis. O

Consider now the continuous-time analogues of the large deviation results
Theorem 4 and Corollary 4, obtained by simply replacing n by ¢ throughout
their statements. [This will include a uniform version of Theorem 1 of
Uchiyama (1982) as a special case.] The first part of the proof of Lemma 5
needs only obvious changes, with Theorem 6 being invoked in place of Theo-
rem 2. However, the second part does require some work. In continuous time
the crucial estimate (4.4) must be refined further if we are to get convergence
for all ¢.

Let I, ={¢t: n <t < n + 1}. We replace (4.4) by

sup 172 [ [WOA) (1) ] dn

6B, tel, e<|nl<a

up{| BO(\)|: 1 € G, te1,
SK(n+1),,/2{s1>{l )| , }W}.

inf{m(8)""':6 € B,}

Refining (4.5) and (4.6) similarly gives

1/a

(5.4) E sup |B®(\)| <K sup (E sup | BO(1)| ) )
AEG,, tel, AEG,, tel,

Now observe that, by (5.1), m(A) is never 0, and |[B®(A)/m(A)| is a regular

submartingale. Hence, by a standard martingale inequality [Williams (1979),

Lemma 43.3],

o [23

BO(A)
m()’

B("+1)()t)
m()\)n+l

E sup

n

and so (5.4) is less than
a\l/a
K sup (E|B"*D(W)[) " .

rEGy,

The proof now continues as in the discrete case.
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paper by Stone (1967), thereby sparing the reader my own laboured version of
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