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Let {T'(¢), ¢ € R} be a Banach space %-valued stochastic process. Let
P be the probability measure generated by I'(-). Assume that I'(-) is
P-almost surely continuous with respect to the norm || || of % and that
there exists a positive nondecreasing function o(a), ¢ > 0, such that
P{IT( + a) — T@®)|l = xo(a)} < K exp(—yxP) with some K, y, 8 > 0. Then,
assuming also that o(-) is a regularly varying function at zero, or at
infinity, with a positive exponent, we prove large deviation results for
increments like SUpg.;<7_q SUPg <5 <olIT( +s) — T()l, which we then
use to establish moduli of continuity and large increment estimates for
I'(:). One of the many applications is to prove moduli of continuity esti-
mates for [2-valued Ornstein—Uhlenbeck processes.

1. Introduction. The theory of sample path properties of ‘general, non-
stationary Gaussian processes based on concepts such as entropy and majoriz-
ing measures is now well understood. For an accessible, excellent introduction
to these concepts and to the general theory of continuity, boundedness and
suprema distributions for real-valued Gaussian processes, we refer to Adler
(1990).

Some of this theory can be easily extended to Gaussian processes taking
values in more general state spaces. For example, if X, = (X},..., X?) is an
R?-valued Gaussian process on a metric space (7, p), then X, is continuous as
a function from (7, p) to (R%,|| |} if and only if each X/ is continuous as a
real-valued function on (7, p). However, the problem of the behaviour in
distribution of sup, . -l X,ll, where || || is the Euclidean norm, is not so simple
in general [cf. e.g., the treatment of x? processes in Leadbetter, Lindgren and
Rootzén (1983) and Adler (1981)]. The same holds for the distributional
behaviour of SUp, ; c 7 ¢z, )< all X; — X,l. If, on the other hand, X, = {X/}_, €
1?2 and each X; is a continuous real-valued Gaussian process on (7, p),
then X, € I2 is continuous if and only if the /?>-norm squared process [| X,|l =
xA(t) = £7_(X})? is continuous on (7, p) (cf. e.g., our Lemma 5.1). It may
happen of course that neither of these two statements will be easy to establish
in some particular cases. For example, continuity of /2-valued Ornstein-
Uhlenbeck processes, defined on (7, p) = (R, | |), was treated via that of x*(¢)
on (R,| |) by Iscoe and McDonald (1986) and directly in I2-norm by Iscoe,
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1032 E. CSAKI AND M. CSORGO

Marcus, McDonald, Talagrand and Zinn (1990) as a consequence of a corollary
due to Fernique [(1990), Théoreme 3.3.3] of Talagrand’s (1987) theorem on
necessary and sufficient conditions for the continuity of Gaussian processes.
The final result along these lines is due to Fernique (1989). We quote a special
case of his theorem in our Section 4.

Continuing with the example of X, = {X/)}7_; €1? as above, it is of inter-
est to study the distributional behaviour of sup,..||X,|l and that of
SUD; ;e 7, p(t, s)<allXs — Xl Iscoe and McDonald (1989) established an upper
bound on P{sup,_,.rlX,|l > x} and the asymptotics for the given bound as
x — o, for {%-valued Ornstein-Uhlenbeck processes on (R,| |). As a conse-
quence of our inequalities of Section 2 for increments of Banach space valued,
not necessarily Gaussian stochastic processes, we will study the tail behavior
of 12-valued Ornstein-Uhlenbeck processes on the real line in terms of incre-
ments like supy_; . 7_, SUPg < <all Xihs — Xl

The essence of our approach is the realization that the inequalities of
Lemmas 1.1.1 and 1.2.1 for increments of a standard Brownian motion in
Csorgé and Révész (1981) [cf. also Lemmas 1 and 1* of Csorgé and Révész
(1979)] can be extended to increments of general, nonstationary, not necessar-
ily Gaussian, Banach space valued processes, defined on the real line. We state
and prove these inequalities in Section 2.

ReEMARK 1.1. Concerning the results in Section 2, a referee pointed out that
by doing a bit more work, our inequalities (2.5) and (2.7) follow also from the
more general methods in a forthcoming book of Ledoux and Talagrand (1991).
We thank the referee for sending a copy of the relevant Chapter 11 of this
book via the Editor. Nevertheless, we have decided to retain our proofs for the
sake of completeness and for illustrating that on occasion, increments of
general, Banach space valued processes can be treated directly in much the
same fashion, and with much the same tools, as if they were real-valued
processes.

The inequalities of Section 2 are established for the sake of studying small
and large increments of stochastic processes. This we do in Section 3, where
we state our immediate upper bounds for moduli of continuity and large
increments of the stochastic processes of Section 2.

We demonstrate the use of our approach by proving the main results of this
paper in Sections 4 and 5.

In Section 4 we establish moduli of continuity results for Dawson’s (1972)
12-valued Ornstein—-Uhlenbeck process in the context of the necessary and
sufficient conditions of Fernique (1989) for the almost sure continuity of this
process in 12 and compare our moduli of continuity to the one given by
Schmuland (1988c).

In Section 5 we prove moduli of continuity estimates for the non-Gaussian
12-norm squared process of Section 4 and compare them to those of others.

Further examples for the use of our general statements are given in Sec-
tion 6.
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2. Inequalities. The aim of this section is to show that the inequalities of
Lemmas 1.1.1 and 1.2.1 in Cs6rgd and Révész (1981) [cf. also Lemmas 1 and 1*
of Csorgé and Révész (1979)] can be extended to general, not necessarily
Gaussian, Banach space valued processes. The following results are also
extensions of inequalities in Révész (1985), as well as those of Cséki, Csorgé,
Lin and Révész (1990).

LemMA 2.1. Let & be a separable Banach space with norm | || and let
{[(t), —w < t < x} be a stochastic process with values in %. Let P be the
probability measure generated by TI'(-). Assume that I'(-) is P-almost surely
continuous with respect to || || and that for |t| < t;,0 <x* <xand 0 <h < h,,
there exists a positive monotone nondecreasing function o(h) such that

(2.1) P{IT(¢t + k) —T()l = xo(h)} < K exp(—yx*)
with some K,v, B > 0. Then

P{ sup sup [T(¢+s)—-T)l=x0(a+1/R)
0<t<T-aO0<s=<a

(2.2) +2Y xjo-(1/2’+j+1)}
j=0
< TR(Ra + 1)K exp(—yx*#) + 4TRK Y, 2/ exp(—'yxf)
j=0
for any 0 <T <ty, 0<ax<T, x*<x, x*<x;, j=0,1,..., and positive

integer r, where R = 2" and a + 1/R < h,,

Proor. We follow the proof of Lemma 1.1.1 of Csorgé and Révész (1981).
For any positive real number ¢ and integer r, put ¢, = [27¢]/2". We have
IT(¢ +s) —T()ll

<IT((¢ +8),) =TI+ T +s) = T((t+s) )l +1T(z,) — L)l

<I((¢+s),) =T+ f‘, IT((¢ + 8)rsjr1) — T(( + 8)raj)ll
Jj=0

+ 2: ”F(tr+j+1) - l-‘(tr+j)"a
Jj=0

where in the second inequality the a.s. continuity of I'(-) with respect to || || is
used. Since

sup |(t+s),—¢tl<a+R71,

0<s<a

sup (¢ +8)r+js1— (£ +58)rif < 9+,
0<s<a
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from (2.1) we get

P{ sup  sup [IT((¢+s),) —T()I=x0(a+ 1/R)}

0<t<T-a 0<s<a

< KTR(Ra + 1)exp(—yx*),

P{ Sup Sup ”F((t + 8),+j+1) —_ F((t + s)r+j)" > x10(1/2r+"+1)}
0<t<T—-a 0<s<a
< KT exp( _,yxjp)zr+j+1,
as well as
P{ sup  sup IIT(¢,4;41) — T(¢o5)ll = xj0(1/2r+j+1)}
0<t<T—-a 0<s<a
< KT exp(—yxf)2r++2,

Hence (2.2) follows from the last three inequalities. O

LemMa 2.2. Let {T'(), —» <t < »} and o(h) be as in Lemma 2.1 and

assume that o(:) is a regularly varying function at zero with a positive
exponent a, namely

(2.3) o(s) =s*L(s), a>0,

where L(-) is a slowly varying function at zero, that is, it is measurable,
positive and

(2.4) lin(}L(As)/L(s) =1 forall A >0.
sl
Then for any € > 0, there exist C = C(e) > 0 and 0 < h(e) < 1 such that

P{ sup sup [IT(¢+s)—=T@)I> xo-(h)}

(2.5) 0<t<l-h O<s<h
< (C/h)exp(—yxP/(1 +¢))
for every x > x* and 0 < h < hy(e).
Proor. For a given slowly varying function at zero, L(-), there exists
another slowly varying function at zero, L*(), such that
limL*(h)/L(h) =1
lim Z* (k) /L(h)
and h%/2L*(h) is an increasing function of A [cf. Corollary 1.2.1 of de Haan
(1975) or Lemma 4.1 in Csorgd and Horvath (1990)]. Then [cf. Corollary 1.2.1

of de Haan (1975) or Lemma 4.2 in Csoérgé and Horvath (1990)] for any ¢ > 0,
there exists A ,(¢) such that

L(Kh)/L(h) < (1 + €)L*(Kh) /L*(h)
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forall 0 < K < 1and 0 < h < hy(e). Hence we have
o(Kh) = K*h*L(Kh) = K°o(h)L(KR)/L(h)
< (1 + &) Ko (h)L*(Kh) /L*(h)
< (1 + &) K*/%0(h)(Kh)**L*(Kh) /h*/2L*(h)
<(1+¢&)K*%0(h).
Moreover, for any fixed K, > 0, we have
o(Koh) = K§h*L(Koh) < (1 + 6)KSheL(h) = (1 + ¢) Kso(h),

if h is small enough, that is, 0 < & < k().

Consider now (2.2) with a = h, T =1, x; = (j /y + xP)/¢, j=0,1,2,.
and let R of (2.2) be such that 2R > A/h > R where A is a positive constant
which is to be specified later on. Then, for 0 < A < min(h(e), h(e)) = hy(e),
we have

xo(h +1/R) +2}) x,0(1/27%+1)
Jj=0

< xo-(h + 2h/A) + 2 Z xj0(1/2r+j+1)
Jj=0

< (L+2)x(1+2/A)0(h) +2(1 +¢) ¥ x,0(h)/(A2)"”.
Jj=0

However,

%= (J/y +28)7 < LV 2R (/)P + ),
and hence we have
xo(h + 1/R) +2 Z xjo-(l/2r+j+1)

Jj=0

< (1+e&)xo(h)|(1+2/4)" + (2 v 21/F) f 1/(A2)*”
j=0

+((1+e)(2V 21/B)a(h)/(A°‘/2y1/B)) Zw‘, JjYB2iar2
j=0
= (1+&)xa(h)((1 +2/A)" + G/A*?) + (1 + &) Ba(h) /A*/?
<(1+e)xo(h)((1+ 2/A)% + G/A*/? + B/(x*A*/%))
< (1 +¢)’xa(h),
on taking A large enough, where

B=((2V 2P /yVB) Y jYB 2022, G=(2V2VF) Y 1/2/%/2,
j=0 =
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On the other hand,

R(Rh + 1)K exp(—yx?) + 4RK Y 2/ exp(—yx?)
Jj=0

< (A(A + 1)K/h)exp(—vyxP) + (4AK/h)( f 2je'f)exp(——yx’3)
Jj=0

= (C/h)exp(—vyxP?).
Consequently, by these calculations and (2.2), we obtain

P{ sup sup [[T(¢+s)-T)I=(1+ e)2xa(h)}

0<t<1l—-h O0<s<h
< (C/h)exp(—yx*),
and hence also (2.5). O

Obviously, the inequality (2.5) enables one to study the increments of I'(-)
for small % over the interval (0, 1). Also, it can be easily extended to any finite
interval (T}, T,), — < T, < T, < =, as follows.

LemMa 2.3. Under the conditions of Lemma 2.2, we have

P{ sup  sup IIT(¢+s) — L)l >xo-(h)}

(2.6) T,<t<Ty,—h 0<s<h

= (C(Tz - Tl)/h)exp(—yxﬁ/(l + 5))

REMARK 2.1. It is clear from the proof of Lemma 2.2 that the respective
conclusions of Lemmas 2.2 and 2.3 remain true if, instead of assuming that
o(s) is a regularly varying function at zero with a positive exponent, we
require it to be of the form s®L(s) in a neighbourhood of zero with some
a > 0, where L(-) is monotone increasing near zero.

The next version of (2.5) is for the sake of studying large increments of

rc).

LEMMA 2.4. Let {T'(t), —o <t < o} and o(s) be as in Lemma 2.1 with
to = ho = ®. Assume that o(s) = s®0(s), s > 0, for some a > 0, where o(s)
is a nondecreasing function of s. Then for any ¢ > 0, there exist C = C(e) > 0
and ay = ay(e) such that

P{ sup  sup IIT(¢ +s) — [()l> xo-(a)}
(2.7 0<t<T—-a 0<s<a
< (CT/a)exp(—yxP/(1 + ¢))

for everyx > x* and T > a > a,.
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The proof of this result is similar to that of Lemma 2.2 and therefore is
omitted.

3. Moduli of continuity and large increments. Based on our inequal-
ities in Section 2, here we give general results concerning upper moduli of
continuity and large increments for stochastic processes.

THEOREM 3.1. Let {T'(#), —© < t < »} and o(h) be as in Lemmas 2.1 and
2.2. Then for any —o < T, < T, < , we have

. IT(¢+s) =T
(3.1) limsup sup sup B
R0 Ty<t<T,~h 0<s<h 0(h)((1/v)log(1/h))

Proor. Without loss of generality, we take T; = 0 and T, = 1. Using
Lemma 2.2, the proof of (3.1) is similar to that of the first part of the P. Lévy
modulus of continuity for the Wiener process in Csérgé and Révész (1981). We
let

A,= sup sup [IT(¢+s)-T)

0<t<l-h O<s<h

and apply the inequality of (2.5) with x = (1 + &)>/A((1/y)log(1/h)'/?, & > 0.
Then

P{A,/(a(h)((1/7)log(1/h))"") = (1 + €)**)
< (C/h)exp(—(1 + ¢)log(1/h)) = Ch®.
Choose A > 1/¢ and let h = h,, = n™%. Then

¥ P{A, /(o(h,)(1/7)log(1/R,))"") = (1 + )7’ <CY n M <,
n=1 n=1
and it follows from the Borel-Cantelli lemma that
A
lim su hn <1+ as,

noon’ o (hy)((1/7)log(1/h,)) P

for all ¢ > 0. Hence, and because of (2.3), on considering now the case of
h,.. <h <h,, we obtain

. A,
D (1) (L/7)log(1/%))
< lim sup A, o (k) (1/7)log(1/h,))"”
T noe o(hy)((1/7)log(1/h,)) P o (hyi)((L/y)log(1/R, 1)) "
<(1+¢)*" as,

for all ¢ > 0. This completes the proof of (3.1). O
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REMARK 3.1. In light of Remark 2.1, the conclusion of Theorem 3.1 re-
mains true if o(-) is as postulated there.

THEOREM 3.2. Let {I'(t), —o < t < ®} and o(s) be as in Lemmas 2.1 and
2.4. Let 0 <ap <T be a nondecreasing function of T for which T/ary is
nondecreasing. We define

(3.2) Hy(T,arz) =IIT(T + ap) = T(T)I,

(3.3) H(T,ar) = . sup [IT(¢+s) — (T,

(3.4) Hy(T,ar) = squ IT(¢+agp) =T,
0<t<T-ar

(3.5) Hy(T,ar) = sup sup IT(t+s) —T()l,

0<t<T—-ar0<s<ar

and put

(36)  1/gr(v,B) = o(ar)((1/7)(log(T/ar) + loglog T'))""*:

We have

(3.7 limsupgy(y,B)H(T,ay) <1 a.s.,i=0,1,2,3.
T >

ProoF. Based on Lemma 2.4, the proof of (3.7) is similar to that of (1.2.11)
in Cs6rgd and Révész (1981). We let

A(T) = g7(v,B)Hy(T, ar).
By (2.7) we have for any ¢ > 0,
ar\° 1
P{A(T) > (1 +¢)** sC(——Z) ———
(ar) > @+ 0™} <o F) oo
Let T, = 6% (6 > 1). Then
¥ P{A(T,) = (1 +&)""} <o
n=1

for every £ > 0, 6 > 1. Hence, by the Borel-Cantelli lemma,
(3.8) limsupA(T,) <1 as.

koo

Also, if % is large enough, then we have

ng('y’ B) <0

(39) a ng+1(7’ B) '

On choosing now 6 to be near enough to 1, (3.7) follows from (3.8) and (3.9),
because Hy4(T, ar) is nondecreasing and g(y, B) is nonincreasing in T'. O
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As to the question of establishing lower bounds for the lim sup statements
in (38.1) and (8.7), this is a more difficult problem for which there is no
immediate general solution. It really depends on the finer structure of the
process I'(-). For example, the Slepian lemma and its extensions are efficient
tools for resolving such problems for real-valued Gaussian processes. For
sharp results along these lines we refer to Theorems 3.1-3.3 of Csaki, Csorgd,
Lin and Révész (1991). There are no analogous results available in other cases.

4. 12-valued Ornstein-Uhlenbeck processes. Let
(Y(2), — <t <} = {X,(t), — <t <o,_,

be a sequence of independent Ornstein—Uhlenbeck processes with coefficients
v, and A,, that is, X, () is a stationary, mean zero Gaussian process with

(4.1)  EX,(s)X,(t) = (vi/Ap)exp(—A,lt — sl), k=1,2,...,

where y, > 0, A, > 0.
The process Y(-) was introduced by Dawson (1972) as the stationary
solution of the infinite array of stochastic differential equations

(4.2)  dX,(t) = =20, X,(2) dt + (2v,) 2 dW, (), k=1,2,...,

where {W,(¢), —o <t < »f;_, are independent Wiener processes. The proper-
ties of Y(-) have been extensively studied in the literature. Since EXX(¢) =
y./Ap, it is clear that for every fixed ¢, Y(¢) is almost surely in /2 if and only if

EIIY(t)II2 = X /A =dp <.
k=1

In this section we assume throughout that Y(-) € [? that is, that , < © and
the Banach space & is identical with /2. Consequently, || || denotes !2-norm
here.

The continuity properties of Y(-) were investigated by Dawson (1972), Iscoe
and McDonald (1986, 1989), Schmuland (1987, 1988a, b) and Iscoe, Marcus,
McDonald, Talagrand and Zinn (1990), with a final result due to Fernique
(1989), which reads as follows: For each x € R*, let K(x) = {k € N: y, > A, x}
and A(x) = sup{A,: & € K(x)}. Then Y(-) € 1? is a.s. continuous if and only if
Jy < @ and [((log A(x)) V 0)dx < . He showed also that

(43) ﬁ(nmnu+awu)vm<w
=1

is a sufficient condition for a.s. 2 continuity of Y(-).
Concerning modulus of continuity, it was shown by Schmuland (1988c) that
if

(44) Y vi/A " <
k=1

then Y(-) is a.s. u-Holder continuous in I2 for any u < £/2.
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We now introduce the following notation:

(4.5)  of(h) = E(X,(h) — X4(0))” = (27,/M)(1 — exp(—A,h)),

46) o) = X of(h) =2 % (va/A)(L — exp(~Agh)),

k=1 k=1
(4.7) Ji=2X %
k=1
(4.8) Y* = maxy,.

Our main result is the following theorem.

THEOREM 4.1. Assuming that Y(-) is a.s. continuous in 1% and that
o(h) <o*(h), 0 <h < h,, where o(h) is defined by (4.6) and o*(h) is
regularly varying at zero with a positive exponent, we have

IY(z+s)—=Y()

4.9 limsup sup  sup <1 a.s.
(49) hi0 o<t<i-ho<s<h o*(h)(2log(1/h))"?

If, in particular, we have also J, < », then

. Y (t+s)—Y(t)ll
(4.10) lim sup sup 7z iz =1 as.
R100<t<1-h 0<s<h (2hy*) ""(2log(1/h))

Proor. In order to have Theorem 3.1 in terms of Y(-) € 12, we establish
inequality (2.1) for the latter process. It is clear that

E(exp(AlY(R) - Y(0)I7)) = E(exp(,\él(xk(h) _ Xk(o))z))

= 11 - 2x02(R))"* for 2Amaxaf(h) <1.
k=1
By Markov’s inequality we get for any x > 0 and 0 < 2A02(h) <1 — ¢, k =
L,2,...,
P{llY(t + k) — Y(¢)ll = x} = P{IY(h) — Y(0)II* > x?}

— 2 = _ 0_2 -1/2
(4.11) < exp(—Ax )kl:Il(l 2402(h))

< exp(—Ax% + Ao?(h) /¢)
< exp(—Ax® + )t(o-*(h))z/s),

where we used the inequality 1 — u > exp(—u/¢) if 0 <u <1 — . Now let
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A =(1-¢)/20c*(h)?). Then for any given 0 <& < 1, there exists K =
K(¢) > 0 such that for x > 0 we have (2.1) in the following form for Y(-) € %

(4.12) P{IY(¢ + h) — Y(#)ll = x} < K exp(—(1 — )x2/(2(a*(h))”)).

Hence we have also appropriate versions of (2.2) and (2.5). Since ¢ > 0 is
arbitrary, (4.9) follows from Theorem 3.1.

Next, for proving now (4.10), if J, < , we have o%(h) ~ 2hJ, (h | 0) and,
by putting A = (1 — ¢£)/(2hy*), from (4.11) we get

(4.13) P{IY(t+h) - Y(¢)l = x} < K, exp(—(1 — €)x?/(2hy*)).
Hence, Theorem 3.1 implies

Y (¢t +s)—=Y()l

1/2 =

(4.14) limsup sup sup
h10 0<t<l-ho<s<h (4hy*log(1/h))

On the other hand, there exists k, such that y, = y* and, obviously,

sup sup |X,(t+s)—X,(¢)l < sup sup [Y(Z+s) - Y()l.
0<t<1l-h O<s<h 0<t<l-h O<s<h

We also know that [cf. Theorem 3.1 of Cséaki, Csorgd, Lin and Révész (1991)]

X, (t +s) — X, ()
(4.15) lim sup  sup e ) ko(l/)z =1 as.
hi00<t<1-h 0<s<h (4yk0h log(l/h))

This and (4.14) imply (4.10) and the proof of Theorem 4.1 is now complete. O

REMARK 4.1. A version of Theorem 4.1 with —o < T, < T, <® as in
Theorem 3.1 also holds true, of course. We do not know how sharp our upper
estimate of (4.9) is in general, since we cannot give a lower estimate when
J; = .

We also note that Schmuland’s above quoted result follows from Theorem
4.1, since if (4.4) holds true, then

a?(h) = ¥ (va/Au)(1 —exp(—Ach)) < h* X (va/N )
E=1 k=1
on account of the inequality 1 —e ™ <u® for u > 0and 0 <& < 1.

ReMARK 4.2. For Y(:) € 12 there is no analogue of Theorem 3.2, since
lim, ., 0*(a) = J, < » and hence the assumptions of Theorem 3.2 cannot be
satisfied.

5. I2-norm squared processes. Here we consider {Y(¢), —» <t < o} =

{X,(¢), —» < t < =);_; as in Section 4, that is, Y(-) € 12, which in turn means
that we assume J, < ® throughout and study the behavior of the real-valued
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process
(5.1) X*(@) =IY(@)I* = ¥ X7(2).
k=1

This process was studied by Iscoe and McDonald (1986, 1989), Schmuland
(1988c) and Csérgs and Lin (1990). One of the motivations for studying this
process is the next simple observation.

LEMMA 5.1.  Y(+) € 12 is almost surely continuous if and only if x?(:) € R
is almost surely continuous.

Proor. For [t| < T, we have
X2(t+ h) = X2l =| T (Xt + ) = Xu(8))(Xa(t + h) + Xu(1))
(5.2) k=1
<20Y(¢t+ k) = Y(¢)lIsup IY(2)Il.
ltl<T
Hence the continuity of Y(-) € 12 implies the continuity of x%(+) € R.

On the other hand, assume that x2(¢) is almost surely continuous. Since the
Ornstein-Uhlenbeck processes X,(¢) are a.s. continuous processes themselves,
there exists a subset (0, of Q with P{Q,} = 0 such that for every w & Q, and
for each k£ > 1, X, (¢, w) and x*(¢, ®) are continuous real-valued functions in ¢.

Fix the value of t € R and w & Q. Since

Xi(t,w) = Y, X(t,0) <,

n=1
for any £ > 0 there exists an integer N = N(¢, w, £) such that
(5.3) rv(t) = Y XA(¢t o) <e.
k=N

Also, since ¥ Y !X2(:,w) is continuous at ¢ by definition and x2(-,w) is
continuous at ¢ by assumption, so is
N-1
(o) =x3(, ) - kZIXf(',w)~

Therefore, there exists a 8, = §,(¢, w, £) > 0 such that
sup ry(t + h,w) < 2e.

|h1<8g
Clearly,
1Y (¢ + h) = Y(2)I?
N-1 ©
= ¥ (Xu(t+h) X (1) + T (X (t+h) - X,(8))°
k=1 k=N
N-1

IA

(Xu(t + h,0) — X,(t,0))" + 2(ry(t + h, ) + ry(t, 0)),

k=1
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and, on account of X,(-, w) being continuous at ¢ for each 1 <k <N — 1,
there exists a §; = §,(¢, w, €) > 0 such that we have
N-1
Y (X (t + h,0) - X,(t,0))* <& for || <38,.
k=1
Combining this with (5.3) gives
IY(t+ k) - Y()I? <7 if|h] <& = min(8,, ;)

for any given ¢ > 0, that is, the a.s. continuity of Y(-) € {2 follows from that
of x2(:) in R. This also completes the proof of Lemma 5.1. O

CoROLLARY 5.1. x2(-) € R is continuous almost surely if and only if the
necessary and sufficient conditions of Fernique (1989) for the almost sure
continuity of Y(-) € 1% (quoted in Section 4) hold true.

Concerning moduli of continuity for x?(-) € R, Schmuland (1988c) proved
the following results: ‘

1. If T%_,y2/X37° < o for some 0 < ¢ < 1, then x*(-) is u-Holder continuous
for any p < e/2.

2. IfX%_,y2/A, < wand L%_,y2/A, ¢ < o for some 0 < £ < 1, then x*(*) has
Lévy’s Holder modulus (k log(1/h)'/2.

Csorgé and Lin (1990) investigated the problem of moduli of continuity for
x%(+) under the condition

(5.4) Jy= 2 vi/Ay <,
k=1
and in this case they proved the following results:
() Let M = max,,,(y2/A,) and assume that T), T continuously as & | 0.
Then

. 2(t +s) — x2(2)l
(5.5) limsup sup sup Y <
hi0 |4<T, 0<s<h (8AM) " log(T,/h)
(i) If, in addition, the continuous nondecreasing function T}, is such that
log T}, /log(1/h) — ® as h |0, then the modulus of continuity of (5.5) is exact,
that is, we have equality to 1 there instead of the inequality.
The simple equation

(5.6) 1Y (2) = Y(s)I* =Y (£)I> = Y (s)I* — 2¢¥ () — Y(5),Y(5)),

where (-, - ) denotes the inner product, shows that moduli of continuity
estimates in {2 imply similar ones for x? on R and vice versa. This is utilized,
for example, in Schmuland (1988c) for proving his previously mentioned
results [cf. (4.4) and results 1 and 2 above, right after Corollary 5.1]. These two
problems are not equivalent, however. This is due to the presence of the inner
product { -, - ) as well in (5.6), which may destroy the equivalence of rates
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obtained by mutual estimation (cf. Corollary 5.2 and the discussion right
after).

Here, based on our results in Sections 2 and 3, we establish further moduli
of continuity for x2(:). First we introduce some notation.

Let

(5.7) G2(h) = B(X2(t + k) — X2(2))" = 4(v4/A4) (1 — exp(—21,R)),
G2(h) = E(x(t + h) — x*(¢))

Y G2h) =4 Y (va/A0)X(1 - exp(~2Ah)).
k=1 k=1

(5.8)

THEOREM 5.1. Assuming the a.s. continuity of x*(:) and that &(h) <
6*(h), 0 < h < h,, where 6(h) is defined by (5.8) and 7*(h) is regularly
varying at zero with a positive exponent, we have

(¢ +s) — x*(2)l
5.9 limsup sup sup —— <1 a.s.-
(5:9) reo 0cror sy oSebs & (A)log(1/h)
Also, if (5.4) holds, then with M = max, . (yi/A,), we have

Ix2(t + s) — x2(2)l
(5.10) limsup sup sup X 1/2) x(4) <1
ni0 o<t<i-ho<s<h (8hM)" " log(1/h)

Proor. For the sake of proving (5.9), we first show that in the present
context we have [cf. also (2.9) of Csorgé and Lin (1990)]

P{x2(t + k) — x2(t)l = z} < exp(—tx)klfll(l — t%62(h))

(5.11) < exp(—tx + t20~.2(h)/(28))

< exp(—tx + tz(&*(h))z/(ze))’

since 1 — t262(h) > exp(—t264(h)/e) if 0 < t?62(h) < 1 — ¢ for a given 0 <
e < 1. Let now ¢t = (1 — £)/6*(h). Then for any given 0 < ¢ < 1 and small
enough A, there exists K = K(¢) > 0 such that for x > 0, we have (2.1) in the
following form:

(5.12)  P{x%(t + h) — x2(¢)| = x} < Kexp(—(1 — £)x/6*(h)).

Consequently, appropriate versions of (2.2) and (2.5) follow, rendering also
Theorem 3.1 applicable. The latter, in turn, results in (5.9), since ¢ > 0 is
arbitrary.

In order to prove (5.10), we let ¢t = (1 — ¢)/(8hM)'/? in (5.11). If J, < o,
then it is easy to see that ¢2(h) ~ 8hdJ, if h | 0. Consequently, by (5.11), for
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any given 0 < ¢ < 1 and small enough positive &, there exists K = K(g) > 0
such that for x > 0, we have (2.1) in the following form:

(5.13) P{lx*(t + k) — x*(t)l 2 x} < K exp(—(1 — £)x/(8hM)"?).

Hence, appropriate versions of (2.2) and (2.5) hold true, rendering Theorem
3.1 applicable, which then results in (5.10). O

A version of Theorem 5.1 with —o < T, < T, < « as in Theorem 3.1 is also
true, of course. The result of (5.5) and that of (5.10) are similar, both under
J, < . As stated above, (5.5) is sharp under the additional condition of
log T, /log(1/h) = « as h | 0. We do not know how sharp our upper estimates
are in Theorem 5.1, since we do not have lower estimates. In some cases
however we can expect better rates than given by Theorem 5.1. For example,
the inequality (5.2) in combination with Theorem 4.1 yields the following
result.

COROLLARY 5.2.  Under the conditions of Theorem 4.1, we have

. X*(¢ + ) — x*(2)|
(5.14) limsup sup sup iz <2 sup Yl a.s.
hR10 o0st<i-hoss<h 0(h)(2log(1/h)) 0<t<1

and if J, < », then

x2(t +s) — x*(2)l
(5.15) limsup sup  sup X ) ~x (1)/2 <2 sup lY()I a.s,
h10 Os<t<i-hO0<s<h (4y*hlog(1/h)) 0<t<1

where o(h) is as in (4.6).

Since we always assume that Y(+) € [ that is, that J, = L5 _(y,/A,) < o,
it is easy to see that on assuming also J, = X%_;y, < © we have J, =

2_1(y2/A,) < © as well. Thus in case of J; < x, the rate of (h log(1/h))'/2
of (5.15) is better than the rate h'/? log(1/h) of (5.10). In other cases however
it is not easy to compare our results in Theorem 5.1 and Corollary 5.2,
respectively, since o(h) and 6(h) are not easily comparable in general.

We note also that the above quoted result 2 of Schmuland (1988c) follows
from Theorem 5.1 since, if ©5_,(yZ/A%™¢) < «, then

F(h) = 4 T On/M)’(L = exp(~2h)) < 42R)° & (12/45°).

Concerning Schmuland’s result 2 we can prove Lévy’s Holder modulus rate
(h log(1/h))*/2 only under the condition ¢J; < ® as just described above.

6. Further examples of moduli of continuity and large increments
of stochastic processes. Sections 4 and 5 well demonstrate the validity of
our approach as summarized by Lemmas 2.1-2.4 and Theorems 3.1 and 3.2 in
that they throw new light on some specific problems which have been studied
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by many in the contemporary literature. Indeed, as we have already noted in
the Introduction, the latter works have served as a source of inspiration for
ours.

The premier example of, and another source of inspiration for, our work has
been Brownian motion. Ia particular, Lemmas 2.2 and 2.4 are extensions of
Lemmas 1.1.1 and 1.2.1, respectively, in Csérgd and Révész (1981) [cf. Lemmas
1 and 1*, respectively, of Csérgs and Révész (1979)], while Theorems 3.1 and
3.2 correspond to the upper estimation parts of Theorems 1.1.1 (the P. Lévy
moduli) and 1.2.1 [Theorem 1 of Csérgd and Révész (1979)], respectively, in
Csorgd and Révész (1981).

Here we give further illustrative examples of application of the results in
Sections 2 and 3. These examples may very well be treated also by results like
those of Jain and Marcus (1978).

ExaMpPLE 6.1. Let {W,(#),0 <t < »J;_, be independent standard Wiener
processes and consider {G(¢),0 <t < o} = {X%_,a,W,(?),0 < ¢ < «}, where
the coefficients a, are real numbers such that

k=1

The latter condition guarantees the existence of G,(¢) as an almost surely
continuous Gaussian process on R! by (6.F) (Example 6.2). Indeed, we have
{G(),0 <t <} =4 {AY2W(),0 < t < o}, where {W(¢),0 < ¢ < =} is a stan-
dard Wiener process. Consequently, with o*(h) = EGXh) = Ajh, y = 3 and
B = 2, we have Theorems 3.1 and 3.2, which in this case are also sharp, that is,
we have them in the respective forms of Theorems 1.1.1 and 1.2.1. of Csorgd
and Révész (1981).

Continuing with this example, we consider next the problem of {G(¢),0 <
t <o} ={a,W,(#),0 <t <oof;_, €12 with || || standing for the /2-norm. Since
E(a,W,(t))?> = a%t, we have G4(t) almost surely in I for every fixed ¢ if and
only if EIG,MI? = E(C5_,a2W2(t)) = tL5_,a2 < », that is, if and only if
(6.1) holds true. Under the same condition, we have also E|G4(#) — G(s)II>™
= O(|t — s|™) for every positive integer m and hence G(-) is almost surely
continuous in /2. By Markov’s inequality, we get for any x > 0 and 0 <
20a2h <1—¢ k=12...,

P{IGy(t + h) — Gy(t) = x} = P{IGy(h)II* = 22} < exp(—Ax® + ARA, /¢).

Letting now A = (1 — ¢)/(2ha*), where a* = max, a3, we have (2.1) for
G,(-) € I? in the following form:

(6.2)  P{IGy(t + k) — Gy(t)ll = x} < K exp(—(1 — £)x2/(2ha*)).

Hence we have also appropriate versions of (2.2) and (2.5) and hence Theorem
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3.1 yields

. IGo(t +5) = Go(2)l
(6.3) limsup sup sup Tz <
hi0 o<t<i-ho0<s<h (2a*hlog(1/h))

On the other hand, there exists &, such that aio = a* and, obviously,
sup  sup (a*)"*IW, (¢ +5) = W, (2)l
0<t<l-h O<s<h

< sup sup [IGy(t+s) — Gy(t)ll.
0<t<l-h O<s<h

By the P. Lévy modulus of continuity for a standard Brownian motion we have
as well

=1 a.s.

a*) AW, (¢ + s) — W, (2,)l
(6.4) limsup sup sup (@) b ) - /k2°( o)
hi0 0<t<l-h O<s<h (2a*h log(1/h))
Hence by (6.3) and (6.4), we have also
IG,(t + s) — Go(¥)l
(6.5) limsup sup sup 2 ) 2(132 =1
hi0 O0s<t<i-hos<s<h (2a*hlog(1/h))

Similar calculations to those resulting in (6.2) yield also an appropriate
version of Lemma 2.4 for G,(-). Hence for the latter process we have also (3.7)
with g,(-, - ) of (3.6) now looking like
(6.6) 1/g7(1/2,2) = (2a*a;(log(T/ar) + loglog T))"*.

Due to Theorem 1.2.1 of Csérgé and Révész (1981) and an argument similar to
that of (6.5), for G,(-) we also have

(6.7) limsupgr(1/2,2)H,(T,a;) =1 as.,i=0,1,2,3,
T —>o

where H(T,ar), i = 0,1,2,3, are as in Theorem 3.2, now defined in terms of
G,(+) and || || standing for /2-norm. Moreover, if

(6.8) lim log(T/ar)/(loglog T) =

then lim supy _,., in (6.7) can be replaced by lim . ..
In a similar vein, if instead of G,(-) € 2, we consider {G4(2),0 <t < x} =
{a,W,(),0 < t < }¢_, € R? with the Euclidean norm

d 1/2
IG3(£)1l = ( ) (akwku))z) :
k=1

then, replacing a* in the above results by a¥ = max, _, . 4 %, their respective
statements remain true for G4(-) with || || standing for the Euclidean norm.

ExaMPLE 6.2. Cséki, Csorgd, Lin and Révész (1991) considered the process
{X(@),t € R} = {Z5_,X,(t), t € R} of infinite series of the Ornstein-Uhlenbeck
components of Y(-) € 12 and showed that this series converges uniformly in
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every finite interval with probability 1 if and only if

(6.F) [ o) /(u(log(1/u)) %) du <

where o(u) is defined by (4.6). This condition figures in a result of Fernique
[cf. Corollary 2.5 in Jain and Marcus (1978)], which says that, in general, a
real-valued stationary Gaussian process G(-) has almost surely continuous
sample paths if and only if (6.F) is satisfied with 0%(u) = E(G(t + u) — G(¢))?,
which is assumed to be an increasing function in u > 0. With o(-) as in (4.6),
we have also that o%(h) = E|X(¢ + k) — X(¢)|. If we assume as well that ()
is a regularly varying function at zero with positive exponent, then easy
calculations lead us to conclude by Theorem 3.1 that we have

. IX(t+s) — X(2)
(6.9) limsup sup sup iz <1 as.
10 o<t<i-ho<s<h 0(h)(2log(1/h))

The same was concluded in Cséki, Csorgd, Lin and Révész (1991) by a less
general argument than that of our Theorem 3.1 here, where by using the
Slepian lemma we have also shown that the upper estimate of (6.9) is sharp
and that we actually have

. 1X(t+s) — X(2)l
(6.10) limsup sup sup iz =1 as.
10 ost<i-hos<s<h 0(h)(2log(1/h))

The statements of (4.9) and (6.9) are similar and so are those of (4.10) and
(6.10). However, for proving (4.10), we also had to assume that J; < .
Assuming the latter and that T, T continuously as & — 0, Cs6rg$ and Lin
(1990) proved the following version of (6.10):

. X (¢ +s) — X(¢)l
(6.11) limsup sup sup i3
hi0 0<t<T,—h 0<s<h (2hT})""*(21og(T,/h))

172 ~
By (4.2), the above process {X(¢), ¢ € R} has the representation

X(2)

i X, (2)
k=1
(6.12)

kz ft exp(—A,lt — 5)(2y,) /2 dW,(s), teR.
=17 -

The latter form suggests the study of
(6.13) Gy(t) = [ [ exp(—M(2)lt - sl)(2y(x))*W(ds, dx), teR,
07—

where vy(-) and A(-) are positive continuous functions on [0,®) and
{W(s,x), —0 <s <,0 <x <} is a two-parameter Wiener process [cf. e.g.,
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Sections 1.10-1.15 and supplementary remarks on Chapter 1 in Csoérgs and
Révész (1981)]. For further background on G,(-), we refer to Csérgé and Lin
(1989). Clearly G,(¢) is almost surely finite for each fixed ¢ if [J(y(x)/A(x)) dx
< o, We have also

(6.14) EG,(t) =0, EG,(t)G,(s) = j:(‘y(x)/)t(x))exp(—)t(x)lt — ) dx,

and this mean zero, real-valued stationary Gaussian process has almost surely
continuous sample paths if and only if (4.17) is satisfied with o(-) defined by

o2(u) = E(Gy(t + u) — Gy(t))?

(6.15) ©
= 2/0 (v(x)/A(x))(1 — exp(—A(x)u))dx, u>0.

If we assume also that this o(+) is a regularly varying function at zero with a
positive exponent, then easy calculations lead us to conclude again by Theorem
3.1, just as in the case of the X(-) process of this example, that we have (6.9)
for G,(-) as well. Since for any a < b < ¢ < d, we have also

E(Gy(b) — Gy(a))(Gy(d) — Gy(c)) <0,

by Theorem 3.1 of Cséki, Csorgd, Lin and Révész (1991) (a Slepian lemma
argument) we conclude that

Gy(t +5) — G4(2)

(6.16) liminf sup iz 21 as,

sup
hi0 o<t<1-ho<s<h o(h)(2log(1l/h))
and hence we have (6.10) for G,(-) as well.

ExampPLE 6.3. Let {W(¢),¢ > 0} be a standard Wiener process and let
L(a, t) be its local time at @ € R up to time ¢ € [0, ), jointly continuous in the
pair (a,t) € R X [0, ). Let

T,=inf{¢:¢>0,L(0,¢) >u}, u=x=0,
and consider the two parameter process
Z(a,u) =L(a,T,) - L(0,T,) =L(a,T,) —u.
It is well known that _#(a, ©) has the moment generating function
(6.17) Eexp(v-Z(a,u)) =exp(—vu +vu/(1 - 2lal)), |vl <1/(2lal),

[cf. It6 and McKean (1965), Problem 4, pages 73-74, or Bass and Griffin
(1985)] and hence we have

(6.18) EZ(a,u) =0, EZ%*a,u)=4lalu.

Also, {-#(a,u),u > 0} is a strictly stationary process of independent incre-
ments in u for any fixed a € R. In this example, we assume a € R to be fixed
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and, for convenience, positive. By (6.17), for A > 0, we have
E(exp(AlZ(a,u) —£(a,0)]))
= E(exp(Al-£(a, 1))
< E(exp(A(L(a,T,) —u))) + E(exp(-A(L(a,T,) — u)))

(6.19) Au Au
= exp(—/\u + 1= 2ar 2aA) + exp(/\u T 1" 2an 2a/\)
22
= 2exp(m) < 2exp(4X%au),

where the last inequality holds if A < 1/(4a). Hence, by Markov’s exponential
inequality, we obtain
P{|Z(a,u + h) — Z(a,u)l = x} = P{|£(a,h) — £(a,0) > x}

< exp(—Ax)(2exp(4A%ah)).
On choosing now A = x/(8ah), with some positive constant C we have
(6.21) P{l-£(a,u +h) —Z(a,u)l = x} < Cexp(—x2/(2(4ah)))

for 0 < x < 2h if h is small enough. Thus in (6.21), we have (2.1) for -#(a, - )

with y = 3, 8 =2 and 0%h) = E£*a, h) = 4ah. Hence the appropriate

versions of (2.2) and (2.5) hold true for -#(a, - ) and by Theorem 3.1, we get
| -Z(a,u+s)—ZL(a,u)l

(6.22) limsup sup sup <1 as.
) L0 Osus<l-h Oss<h (8ahlog(1/h))1/2

We also have the appropriate form of (2.7) for -#(a, ) and hence, by
Theorem 3.2, with 0 < a; < T, a nondecreasing function of T for which T/a
is nondecreasing, we obtain

(6.20)

|ZL(a,u+s) —ZL(a,u)l

limsup sup sup
(6.23) r-w o0s<us<T-ar0ss<ar (8aar(log(T/ar) + loglog T))l/2
<1 as.

as well as the other corresponding statements of Theorem 3.2 for -Z(a, - ).
We do not have a lower bound for the lim sup statement of (6.22). However,
under further assumptions on the growth of ar, that of (6.23) is sharp. This
can be seen as follows. In Cséki, Csérgs, Foldes and Révész (1989), where we
study -Z(-, - ) as a two-parameter process, we remark also that, on account of
{£(a,u), u > 0} being a strictly stationary process of independent increments
and having also a finite moment generating function in a neighbourhood of
zero, the Komlés, Major and Tusnady (1975) theorem implies that, on a rich
enough probability space, the process {-Z(a, u)/(2a'/?), u > 0} can be approxi-
mated by a Wiener process {W_(«), u > 0} for any fixed @ # 0 with the a.s. rate
of £(log u). Hence, if we assume also that a,/log T — » as T — » then, by
Theorem 1.2.1 of Csérgé and Révész (1981), (6.23) holds true with =1 a.s.
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instead of < 1 a.s. Moreover, if condition (6.8) is also satisfied, then in (6.23)
and as well as in the other corresponding statements of Theorem 3.2 for
Z(a, ), we have lim, _,, instead of limsup,_,, and = 1 a.s. instead of less
than or equal to 1 a.s.
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