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RANDOMIZED STOPPING POINTS AND OPTIMAL
STOPPING ON THE PLANE!
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We prove that in continuous time, the extremal elements of the set of
adapted random measures on R2 are Dirac measures, assuming the under-
lying filtration satisfies the conditional qualitative independence property.
This result is deduced from a theorem in discrete time which provides a
correspondence between adapted random measures on N? and two-parame-
ter randomized stopping points in the sense of Baxter and Chacon. As an
application we show the existence of optimal stopping points for upper
semicontinuous two-parameter processes in continuous time.

1. Introduction. The notion of randomized stopping point was first in-
troduced by Baxter and Chacon [1] for one-parameter processes. Roughly
speaking, a randomized stopping point is a stopping point T(w, A) which
depends on an additional random parameter A € [0, 1]. A randomized stopping
point T induces an adapted random measure u on the parameter space J
(usually J is N, R,, N? or R2) by means of the formula

(1.1) w(w, B) = {A:T(w,A) € B},

where B is a Borel subset of J and | - | denotes the Lebesgue measure on
[0,1]. In the one-parameter case, it is easy to show that (1.1) establishes a
bijective correspondence between randomized stopping points which are non-
decreasing and left-continuous in the second variable and adapted random
measures such that u(w,J) = 1 for all w. Let us denote by % the convex set
of random adapted measures on J with total mass equal to 1. The set % is
compact with respect to a suitable topology introduced by Baxter and Chacon.
Furthermore, the set 7 of ordinary stopping points can be embedded into %
and, in the one parameter case, the representation (1.1) implies that the set of
extremal elements of % is exactly the set of stopping points (see Edgar, Millet
and Sucheston [10]). This property has been used (see, e.g., Bismut [2], Edgar,
Millet and Sucheston [10] and Ghoussoub [12]) to study the optimal stopping
problem for one-parameter processes.

When trying to extend these results to processes parametrized by N? or R2,
some differences appear. Simple examples (see Mazziotto and Millet [17]) show
that there may be extremal elements of % which are not stopping points.
Furthermore, the representation of randomized stopping points as random
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884 D. NUALART

adapted measures given by the expression (1.1) is not bijective in general. That
is, if %, denotes the subset of % formed by the measures of the form (1.1),
then the inclusion %, C % is in general strict.

As it is usual in the theory of two-parameter processes, one can try to
recover the one-parameter results when the two-parameter filtration satisfies
certain classical conditions such as Hypothesis F4 of Cairoli and Walsh [4] or
Hypothesis CQI of Krengel and Sucheston. For instance, assuming CQI,
Dalang, Trotter and de Werra [9] have proved the equality 9 = ext(%) on
finite probability spaces and Dalang [6] has proved this property in discrete
time. On the other hand, the property J = ext(%) has been proved by Dalang
[7} in continuous time, assuming CQI, and provided the underlying probability
space is a nonstandard (Loeb) space. Note that for the optimal control problem
considered by Dalang in [8] one can show the existence of an optimal solution
without the hypothesis CQL.

The main results of this paper are the following:

1. Under CQI and with a discrete parameter space (i.e., N?), the equality
%, = % holds. That means, any adapted random measure on N? of total
mass equal to 1 can be represented in the form (1.1) for some randomized
stopping point T'.

2. In continuous time (i.e., the parameter space is R2) and assuming CQI,
every extremal point of % is a stopping point.

These results can be applied to show the existence of optimal stopping
points. The optimal stopping problem for two-parameter processes has been
recently investigated by several authors. Starting with the paper of Cairoli and
Gabriel [3], the problem was solved under different conditions by Krengel and
Sucheston [13] and Mandelbaum and Vanderbei [14] using the notion of tactic.
In discrete time, Mazziotto and Szpirglas proved the existence of an optimal
stopping point without the CQI assumption and using Snell’s envelope.

Following the approach used by Dalang in [5] we can apply property 2 to
deduce the existence of optimal stopping points for upper-semicontinuous
processes parametrized by R2. This result was stated in [17] and [19] but the
proofs contained in these two papers are not complete. For nonstandard (Loeb)
probability spaces, the result has been recently proved by Dalang in [7]. On the
other hand, in discrete time and without the CQI assumption, one can still
show the existence of an optimal stopping point provided the set %, (which in
general is strictly contained in %) is closed for the Baxter—Chacon topology.
To find sufficient conditions for %, to be closed is an open problem. We
remark that in some particular cases, like in the example introduced by
Mazziotto and Millet in [17], one can easily show that %, is closed and deduce
the existence of optimal stopping points.

The paper is organized as follows. Section 2 contains some preliminary
notations and results. Sections 3 and 4 are devoted to proving the above
results 1 and 2, respectively. In Section 5 we discuss the problem of optimal
stopping for two-parameter processes.
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2. Definitions and notation. We will consider stochastic processes
parametrized by I2, where I is one of the sets N, D, = {i27", i € \} or
R, = [0, + ). It will be convenient to add to I? an extra element denoted by =
and we will set I2=I? U {}. With the usual topology I? is a compact space.
The notations #(I1?%) and #(I?) will denote the corresponding Borel o-field.

We define on I? the usual order s = (s;,s,) <t = (¢,,¢,) if s, <¢; and
8y < t,. We will use the notation s < ¢ to express that s < ¢ and s # ¢. We can
also consider the order s = (s, s,) At = (¢,,¢,) if s; < ¢; and s, > ¢,.

Let (Q, &, P) be a complete probability space. A two-parameter filtration
(#), < 12 is a family of sub-o-algebras of % verifying the following properties:

F1. %, contains all P-null sets.

F2. s <t implies & C %,

F3. When I =R, & = N,.,% forall s € I2

DeFiNITION 2.1 (cf. [13]). Given three o-algebras F!, 2% and & con-
tained in %, we will say that #! and %2 are conditionally qualitatively
independent given # if

(P(AL#) > 0) N (P(Bl.#) > 0} < {P(A 1 Bl#) > 0

for all A€ F!, Be &2 In the sequel this property will be denoted by
CQUF !, 2, 2).

Let (%), 2 be a two-parameter filtration and for any (o, 7) € I2, define
Fw=V.er . and & =V . . Many results in the theory of two-
parameter processes require a supplementary hypothesis on the two-parame-
ter filtration. Usually one assumes hypothesis F4 of Cairoli and Walsh [4]
which says that given any z = (o, 1) € I?, %, » and Z _ are conditionally
independent given . In this paper we will make use of the weaker condition
of qualitative conditional independence which can be formulated as follows:

(CQD: For all (o,7) € I?, CQUY, ,,, &, ., %, ) holds for each n,m €I,
n>o,mz>r.

One of the main ingredients in the proof of the main result of the next
section is the notion of conditional supremum operator, which was introduced
by Dalang in [6].

DErFINITION 2.2. Given a bounded random variable Y and a o-algebra
& C &, the conditional supremum of Y given & is the random variable
[denoted S(Y|#)] defined by

S(Y|#Z) = ess th; Z.
VA .f-meisurable

The following result (cf. Proposition 4.6 in [6]) establishes a fundamental
relationship between the conditional supremum operator and conditional prob-
ability.



886 D. NUALART

PROPOSITION 2 3. For any k € R and for any bounded random variable Y,
we have

(2.1) (S(Y|£) >k} = {P(Y > kl&) > 0}.

Equality (2.1) implies that for any nonnegative and bounded random vari-
able Y, the conditional supremum operator S(Y|#) coincides with the infinity
norm of Y with respect to a regular version of the conditional probability
given . That is, we have S(Y|#) = lim, . [E(Y|£)]'/?. For this reason,
the conditioned supremum operator has many properties similar to those of
the conditional expectation. We refer to Dalang [6] for the statement and
proofs of these properties. We will just recall the properties of the conditional
supremum operator that will be relevant here.

ProposITION 2.4. The conditional supremum operator verifies the follow-
ing properties:

(a) Monotonicity: &, C &, = S(Y|#) = S(Y|Z,).
(b) Iteration: &, C &, = S(S(Y|£)|#Z) = S(Y|£).
(¢) “additivity: If Y is &#measurable, then

S(X+YI#)=Y+8(XI¥).
(d) Monotone convergence:

Y, 1Y =S(Y,|£)1 8(Y|¥),

G, 1 Z=8(Y|£)18(Y|¥).

PropoOSITION 2.5. Let F'!, 2 and & be three og-algebras such that

CQI(F, F2 £) holds. Then if X' and X? are two bounded random vari-
ables which are &' and % 2-measurable, respectively, we have

(2.2) S(X! + X2|9) = S(X'#) + S(X#).

Property (2.2) will play a basic role in the sequel. Its heuristic interpretation
is clear from the following fact. If X; and X, are bounded and independent
random variables, then || X; + X,ll. = | X;llo + [ X, a.s.

ProOPOSITION 2.6. Let F!, #2 and & be three o-algebras such that
CQI(F', F2 £) holds. Let Y be a bounded  '-measurable random variable.
Then

(2.3) S(Y|£) <S(YIF?).
We will also need the notion of optional increasing path.
DEeFINITION 2.7. A family Z = {Z(u), u € I} of stopping points is an op-

tional increasing path provided Z(0) = (0,0) a.s., u < v implies Z(u) < Z(v)
as.and Z(u) + Zy(u) =u as.forall u €1.
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3. Randomized stopping points in the plane. A stopping point is a
random variable T: Q — I? such that {T < ¢} € %, for every t € I2. We will
denote by 7 the set of all stopping points.

The notion of randomized stopping point was introduced by Baxter and
Chacon [1] for one-parameter processes. A mapping T: Q X [0, 1] — I? will be
called a randomized stopping point if it is a stopping point for the two-parame-
ter filtration ., = %, ® #((0, 1)), that is, if

(T<t)e F o B(0,1]), Vtel

Notice that if T is a randomized stopping point, then T'(-,A) is a stopping
point for any A € [0, 1].

Another way to randomize the set 7 of stopping points is the following.
Consider the convex set % of random probability measures u(w, B), w € Q,
B € #(I%) such that u(-,[0,t]) is % -measurable for all ¢ € I2 Then each
randomized stopping point T': © X [0, 1] —» I? determines the random proba-
bility measure pu,; € % defined by

(3.1) pr(w, B) = {T(w,") € B},

where | - | denotes the Lebesgue measure.

Let %, denote the set of random probability measures of the form (3.1) for
some randomized stopping time T'. Notice that 7~ can be embedded into %,.
The set %, has the following properties.

ProPOSITION 3.1. The embedding in % of the set %, is convex and its
extremal points are the stopping points; hence, I = ext(%,).

Proor. Let us first show the convexity of %,. Fix p,pu, € %, and
0 <a < 1. Denote by T, and T, two randomized stopping points associated
with p; and p,, respectively. Define

T(w,1) = Ty(@, & A1 o(A) + Ty(w, (1 — @) "'A) 1, 4(A).

Then T is a randomized stopping point and for any Borel subset B of ﬁ, we
have

{A:T(w,A) € B}l = |{A: Ty(w,a™*A) € B} N [0, a)|
+|{A: Tz(w,(l - a)—lA) e B} N [a, 1]‘

apy(w, B) + (1 = a)uy(w, B).

The stopping points, considered as elements of %,, are random Dirac mea-
sures and they are clearly extremal elements. Conversely suppose that 1 € %,
is an extremal element. Let T be an associate randomized stopping point. We
want to show that there exists a stopping point 7 such that for any w € Q,
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T(w, A) = 7(w) for almost all A € [0, 1]. Fix a € (0,1) and define
T, (0,A) =T(w,ar), 0<acx<1,
Ty (0,2) = T(w,a +A(1 - a)), 0<Ac<l,
p1,a(@, B) = I{A: Ty 4(w,)) € B,
fa o(®, B) = I{A: Ty (w,A) €B)l, Be B(I?).

Then . Mo o€ % and u =ap;,+ (1 - au,, Consequently, u =
K1 o = Mg, Which implies

a '{r: T(w,A) € B} n[0,a] = [{A: T(w,A) € B}l

for any B € B(I?). Therefore, |{A: T(w, A)} € B| is equal to 0 or 1 for all B,
which implies the result. O

In the one-parameter case, one has %, = % (cf. [1]), and therefore, J is the
set of extremal points of %. A simple example due to Mazziotto and Millet (see
[17]) shows that the inclusion %, C % is generally strict in the two-parameter
case. Furthermore (see [17]), th1s example shows that J is not the set of
extremal points of %. We postpone to Section 5 a detailed discussion of this
example. On finite probability spaces, the class of filtrations for which J is
the set of extremal elements of % has been characterized in [7].

Our purpose in this section is to show the equality %, = % assuming that
the parameter space is discrete, that is, I*= I%2= N2 and the conditional qualitative
independence property holds. As a corollary we have 7= ext(%) in this
situation. This property was proved by Dalang in [6] using a direct approach.

For the rest of this section we will assume that the parameter space is
I2= N2. First observe that in this case a random probability measure u € %
can be identified with a positive weight process (a,):<n? defined by a/(w) =
w(w, {¢)). This weight process satisfies the following conditions: (i) a, > 0 a.s.;
(i) @, is F-measurable for all £ € N?; (iii) L ;en2a, = 1.

Before stating the main result, let us introduce some preliminary technical
results.

LEMMA 3.2. Let u € % and assume the CQI property. Then, for any ¢t € I?
we have

©([0,2]) + S(r([0,2,] X (¢35, ) F ) + S(u((t,%°) X [0,5,])F ) <1 ass.

ProoF. Using Proposition 2.5 and the £additivity property [see Proposi-
tion 2.4(c)] we obtain for all M > ¢,

r([0,¢]) + S(u([0,2,] X (22, M),))F; ) + S(u((ty, My) X [0,2,]) %)
= 1([0,2]) + S(u([0,2] X (25, My) U (¢, My) X [0,8,])F; )
= S(u([0,¢] U [0,2,] X (5, My) U (21, My) X [0,8,])|F ) < 1.
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Then the result follows by letting M, and M, tend to infinity and using the
monotone convergence property of the conditional supremum operator [see
Proposition 2.4(d)]. O

We denote by & the family of all finite disjoint unions of intervals of the
form (a,b], 0 <a<b <1, and [0,b], 0 <b < 1. For any set B € # with
|IB| < 1 and any real number 8 < 1 — |B|, we define

A(BaB) =B°n [O’BBL
where Bz = inf{A: |B° N [0,A]] = B}. Then A(B,B) € £ and |A(B, B)| =B.
The proof of the following two lemmas is immediate from the definition of A:
LemMA 33. Set AcB, ABe# 0<a<1-|A],0<B8<1-|B|and
a < B. Then
AU A(A,a) cBU A(B,B) and sup A(A,a) <sup A(B,B).

LEMMA 34. LetBe Zand B+a <1-|B|, a, B = 0. Then
A(BU A(B,a),B) = AN(B,a + B).

Given two sets A, B c [0, 1] we will write A < B if x <y for each x € A,
y € B.

LemMa 3.5. Consider a family of subsets of [0,1], belonging to 2,
By,..., B, such that B, N B; = Jif i +j. Let a;, B;, 1 <i <k, be nonnega-
tive real numbers such that

J J

Z ai < Z Bi’ 1 S] < k,
i=1 i=1

and L*_, B, <1 - |B,| — -+ —|B,|. Define the following sets:

= A(By, ay), D, = /\(BI:BI)’

Cy = A(CLUB;UB,,a;), Dy= A(D;VUB;UB,,B,),

A
l

C,=A(C,U---UC,_,; D,=AND;V---UD,_ UB;U --:

UB, U -+ UB,,a,), UBy, Br)-
Then
C,uCyuU:---UC,UB,UB,U...UB,
(3.2) cD,v---uD,UB;U - UB,
and

(3.3) sup C, < sup D, .
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Proor. We will prove this lemma by induction on k. Clearly the lemma
holds for 2 = 1. Suppose it holds for k. Set
k k
F,= U((CUB), G,= U (D;UB)).

i=1 i=1
From (3.2) we get
F, UB,,; ©GpU By,

Now, by Lemma 3.3, we obtain
k+1 k+1

U(CuB)c U (D; UB))

i=1
and
supC,,, <supD,,,. ]

The following is the main result of this section:

THEOREM 3.6. Let {a,, ¢t € N?} be a positive weight process. Then there
exists a randomized stopping point T:Q % [0,1] > N? such that {T = t}| = a,
for any t € N2. Moreover T can be chosen in such a way that the following
property holds:

(3.4) (T = (t1,t5)} <{T = (51,85)} ift; <sjandi,=s,.

ProOF. Our aim is to construct a countable collection of random subsets of
[0,1]:{I,, ¢ € N% such that the following properties hold:

() For every w € Q, the sets I,(w) form a partition of [0, 1].
(i) For every ¢t € N2, {(w,A): A € I(0)} € & ® %([0,1).
(iii) For every ¢t € N?, we have |I,| = a,.

If we define T(w,A) =t whenever A € I(w), then T will be a randomized
stopping point such that |{T' = #}| = a, for any ¢ € N2 Let us first describe the
procedure we will use to define the sets I,.

Consider first the points (0,0), (1,0) and (0,1). Observe that it is not
convenient to set Iy o = [0,a¢ ), I; o = (@g 9, @90+ a1l and Io; =(ago +
@10, Qoo+ a1 ot ag 1l because the interval 1, 0.1 does not satisfy the measura-
bility property (ii). In order to avoid this difficulty we will set Iy, =10,a,]
and I o = (ag + K,a9 + a; o + K], where K is a random variable which is
S, o-measurable and larger than or equal to % *_1Q, ;- That means, X is the
length of a free space between the intervals I 0,0 and 1 1,0 that will contain the
random sets I, ,, ¢t > 1. The right choice for the random variable K will be
S(X3% -1@, 1 F6.0), where S denotes the conditional supremum operator intro-
duced in Section 2.

Following these ideas we will construct the sets I, in a recursive way. Set
Q, = [0, £,] X (¢,, ). With this notation we have X%5_; a, ; = u(@, o), where p
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denotes the random probability measure in % corresponding to {a,}). First we
will define I, for the points ¢ of the form (¢,, 0):

0 =1[0,a0,],
0 =(@0,0,0,0 + S(1(Q0,0)1 F%.0)],
I, =(ao,0 + S(1(Qo,0)| Fo,0): @g,0 + @10 + S(1(Qo,0)|Fs,0)]»
0 =(@0,0 + a1,0+ S(1(Qo,0)| Fo.0),a0,0 + a1 + S(1(Q1,0)F1,0)],
and, for { > 2,
Lio=(ago+ "~ +a; 10+ S(1(Q-1,0)lFi-1,0)

Ggo+ " +a; 0+ S(w(Qi—1,0)Fi-1,0)]

and
Jio=(a00+ " +a; 0+ S(w(Q_1,0)Fi_1,0),
@go+ "t +a; 0+ S(w(Qi—1,0)F0)]. .

Notice that the sets J; , are well defined because by Proposition 2.6 and the
CQI hypothesis, we have

S(u(@i—1,0)lFi_1,0) < S(u(Qi—1,0)1F,0)
< S(1(Q;,0)|F,0)-
Furthermore, from Lemma 3.2, we have
Goot "+ 0+ a0+ S((Q0)F o) <1, as,

for any i > 1. Consequently the intervals {I; ,, J; o, i = 0} are disjoint and
included in [0, 1]. The intervals I, , verify properties (ii) and (iii) and I, <
I;+1,0- On the other hand, J; , is 97 o-measurable and

70,0l + 1eJ3,0l + =+ +1J; ol = S(1(Q;,0)|F,0)-
In order to define the sets I, ; we proceed as follows. Define
Iy,y =(@0,0,@0,0 + @g,1] 5
Jo,1=(@0,0 + @o,1, 80,0 + @1 + S(1(Qo, ) . 1)].

We have I, , UJ,; Cdy,. In fact, using the additivity and monotonicity
properties of the conditional supremum operator we obtain

@g,0 + @g,1 + S(1(Qo,1)|Fo,1) = ao,0 + S(1(Qo,0)| F,1)
< ag,0+ S(1(Qo,0)l F,0)-
The next random set I, ; will no longer be an interval. We define it as follows:
= Ao o Ul VI o Uy 1,0y ,).

Then I, , is an 571 l-measurable random subset of [0, 1] such that I, ;| = a, ;.
Moreover we have that I 1,1 ClooUdyo Ul oUd,,. In fact, notice that the



892 D. NUALART

supremum of I, ; is bounded by
@oo0+ ag 1 +S((Qo, 1) Fo,1) taro+ay,
and the union I, y U J, o U I, o U, is equal to the interval
[0,a0,0 + @10 + S(1(Q1,0)|F1,0)]-
Consequently, the above inclusion follows from the following inequalities:
g1+ a1+ S(r(Qo, ) Fo,1) = a1 + S(1(Qo,0)F,1)
<ay; +S(1(Qo,0)F1,1)
=S(ay,1 + 1(Qo,0)F1,1)
< S(1(Q1,0)1F1,1) < S(1(Q1,0)|F1,0)-

Then we define
Ji1= ATy o VI VI VI Udy, S(m(Q1, )1 F1,1)
_S(:U'(QO,’I)LZ),I))‘

The sets I; ;, J; 1, i > 2, will be introduced in a similar way. Having in mind
the preceding construction, we can introduce now the general definition of the
sets I, ; and J; ;:

(3.5) Ii,j = A(( U It) UJO,j UJl,j (ORI UJi_lyj,ai’j),

t<(@i,j)

(3.6) Ji,j = A(( U It) UJO,j UJl,j (ORI UJi—l,j’lJi,jl)’

t<(,j)
where
(3.7 ;1 = S(w(Qi ) F, ;) = S(m(Qi-1, ) Fiv, )
Notice first that for any fixed j > 0, we have that the sets {I; ;,J; ;, i = 0}

verify

(3.8) Iy ;<do; <Ij ;<dy;< - <I ; <dJ; ;< -

It is possible to define these sets because by Lemma 3.2, we have
w([0,2]) + S(w(Qi ) F,) < 1.

The sets I, ; and J, ; are F; -measurable and |I; ;| = a; ;. So, it remains to
show that the sets {I; ;, (i, j) € N? are disjoint. Clearly I, ;N I, , =@ if
(k,1) <(,j), (k1) # (i, j). Suppose now that 2 > i and ! <j. We want to
show that I, ; < I, , for k > i and ! <j. To do this we will show the following
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relations:

(3.9) ( U It)UJO,jU“‘UJi,jC( U It)UJO,j—IU“'UJi,j—l’
t<(i, j) t<(,j—1)

(3.10) sup[Ii,j U Ji,j] <supd; ;_,

for j > 1, i > 0. Then the inequality I; ; <1I, , will be an immediate conse-
quence-of (3.10) because by iteration we have

sup(l; ;) <supd;, and J;,;<I,,,

where the second inequality follows from (3.8).

PROOF OF THE RELATIONS (3.9) AND (8.10). The proof will be done by
induction on i. Suppose first that i = 0. We want to show that
J Jj-1

Iy Vdo ;i UlyrVdg -1
k=0 k=0

and
sup[I, ; Ud, ;| <supey ;_; forall j=>1.
Notice that the sets I, ; U, ; and J, ;_; are intervals with the same left
boundary. In fact,
I, ;U d,

Z ao,k'%,j)]

=(a0,0 + - +a0’j_1, aO,O + - +a0’j_1 + aO,j + S
k=j+1

and

Z.ao,kl‘%,j—l)]'

Jo,j-1= (ao,o + i tag 1,800 T T tag i+ S
k=j

We have

aO,j+S( > aO,kl‘Z),j)SS(Z.aO,kl'z),j—l)

k=j+1 k=j
and this implies
Iy ;U ;g1
Now suppose that (3.9) and (3.10) hold for all the indexes (i, j) with

0<i <i and j >0 and let us show these properties for (i + 1, j), j > 0.
First notice that by Lemma 3.4, we have

Iz,JUJl,‘]=A(( U It)UJO,jU'..UJi—l,j’ai,j+|Ji,j|)

t<@, )
Jj-1

i

i—1
=0 1=0
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On the other hand we have

j-1
U Il,k]"Ji,j—ll)'

k=0

Jz] I_A(U(Jlj I)UU

=0

The sets By = U{Zb Iy, By = U{Z4 Iy ..., B;= U5 I, are disjoint by
our induction hypothes1s Take

ap=ay;+ Wyl

Br = |Jk,j—1|~

Then L2 ,a, < Z¥ B,, because

M
kz_oak,j + S(1(Qu, ) Fon.;) < S(1(Qu, j-1)| Fus, 1)

and % _o B, + L% _olB,| <1, because

S(u(Q:,;-)1Fi,j-1) + Z Z Ct,m =

I=0m=0

Now the properties (3.9) and (3.10) follow from Lemma 3.5 applied to the sets
By, By, B,, ..., B; and the real numbers a,, B;.

In order to complete the definition of the randomized stopping point T' we
set T=o0con(0,1] = U,cp2 1. O

ReMARK. Consider the randomized stopping point 7' constructed in Theo-
rem 3.6. For every j > 0, we denote by I,(j) the first index ¢ such that
a € [0,sup I, ;], where a € (0,1). Observe that T '(J) is a stopping time with
respect to the one-parameter filtration (%, ;); . o Set T (j) = = if there is no
such index i.

We can define the measures u, ; and y, , by

Bo1= 2 e T =t} N [0,a]ls,

tel?
2= L (1-a) T =1} N (a,1]5,.
ter?
Suppose I',(j) < ». Then
Ba2({(k,j)}) =0 forallk=0,...,T,(j) -1
in fact
ta,2({(Rs D) = (1= @) ML, ;0 (o, 1] = 0
because I, ; < [0, al; and
ta,1({(k,J)}) =0 forall k >T(j),
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in fact
Bo,1({(R,4)}) =a M, ;n[0,a]l =0

because I, ; ¢ (a, 1].

4. Extremal elements of the set % of random adapted measures.
The purpose of this section is to show the property 7 = ext(%) when the
parameter space is I“= I%= Rz and we assume the conditional qualitative indepen-
dence property. The proof will make use of Theorem 3.6 which provides the
equality = %, in discrete time.

Let ¢ denote the set of continuous real-valued processes (X,); < 12 such that
E(sup:c21X,]) < ». The space ¢ equipped with the norm |X| =
E(sup; < 72|X,|) is a Banach space. We will denote by o(€*, ¢) the weak
topology on the dual €* of ¢. Observe that % is a closed subset of the unit
ball in €* and, therefore, is compact in the weak topology.

THEOREM 4.1.  Let (%,),cpz be a filtration satisfying conditions F1 to F3.
Suppose also that the qualztatwe independence property holds. Then the

extremal elements of the set % of adapted random measures on R2 are exactly
the stopping points.

ProoF. Suppose that 4 € % is an extremal element of %. We denote by
A, = u([0,¢] the increasing process associated with u. For every n > 1,
we define the countable set of points #'; =(i/2",j/2"), i,j > 0. Set
A =@y tly) =21, A ={0) X (G — D/2%, j/2"], A%, =
G - /2, i/2m] x {0}, AG , = {(0,0)} and

Y w(A} ;)8 + u({=}) b,
i,j=0

Then u* € % and the sequence u” converges to u in the weak topology
a(€*, €). By Theorem 3.6, for each n > 1, there exists a measurable mapping
T": Q x[0,1] » D* (D" = {(i/2", j/2"), i, j = 0}) such that:

Q) {T"(-, ) =te & forallte[D" A €[0,1];
Gi) [T =1¢| = "({t}) for all ¢ € D™

That means T'" is a randomized discrete stopping point associated with the
random measure u”. We fix a € (0, 1), and define

Tr(A)=T"(ar), 0O0=<rc<1,
Ta"z(/\) =T"(a+A1-a)), O0<Ac<1,
- Tl - )

t,",j + |{Ta'fl = °°} |6w

- .):.|{ 2= ) (T = <) o
LJ
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The random measures u7, ; and ), , belong to the set % and we have

W= el + (1 @)uh g

Indeed,
w(By= T w({h= L l(T"=9l- T HT"=#n[0,all
teBND" teBND" teBND"
+ T (T =40 (a]
teBND"
- T arn=gl+ T (-alTr=1]
teBND" teBND"

= apf (B) + (1 — a)uf 5(B).

By the compactness of the set % in the weak topology o(£*, ¢') we can choose

an increasing sequence of natural numbers %k, > 1 such that the sequences

pkn and pks, converge weakly to some elements u, 1,142 € %. Conse-

quently, we obtain
“m =a/"l'al+ (1 _a)I'LaZ’

and this implies p = p, ; = i, 5. Actually, notice that all the limit points of
the sequence u7 ; must be equal to w, so lim, u?, =p and similarly
lim, u? ; = w. Define

B, =A, + S(:U‘(Qt)l‘g; )

The process B, is adapted and increasing in the coordinate ¢,and decreasing in
the coordinate ¢,. In fact:
(i) Suppose s; < s,. Then using Proposition 2.6, we obtain for all 7 > 0,

A, +S(m(Q ), ,) <Ay .+ S((@,,.)] )

<A, . +S((@,.)F%,)-

(ii) Suppose ¢; < t,. Then using the #additivity and the monotonicity of
the conditional supremum operator we obtain for all ¢ > 0,
)

A, .+ S(w(Q )N F.) = S(A,,,, +1(Q,.,)| %,
=S4y, +1(@0,1,)| 1)
> S(A,., +1(Q,)|F.1,)
= A, +8(1(Q, )| F.0,)-
We also have 0 < B, < 1, due to Lemma 3.2. Fix ¢ > 0. Define

T, . = inf{o > 0: S(u(Q,.)|%,,) = a}.

T, , is a stopping time for the one-parameter filtration {7, ,, o > 0}.

ty
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CLAIM.
(4.1) n((T, ., ) X[0,7)) =0 if T, , < w.

Proor oF (4.1). It suffices to show that
v((T,, , +&,9°) X[0,7r—¢€))=0, Ve>0,if T, <o
We will show that
E(Ly,  cap((T,,, +5,2) X[0,7—¢))) =0.

We have, using the fact that the set (T, , + £,%) X [0, 7) is open in R?, that the
above quantity is the limit as n — « of

E(I(TR’T<OO)I“L’(;,2((TC¥,T +¢&,®) X[0,7 — 8)))

Suppose 27" <g/2. Then if T, <», we have that u} ,(T,, + ¢, %) X
[0, 7 — &)) = 0. In fact, consider a dyadic point ¢ ; = (e;, B,) such that «,_; <
T,,<a;<T,,+eand B;_; <7— ¢ <B; <. The definition of T, , implies

S(M(Qai»‘f)ly;,,r) =4 «a,

T

SO

S( Z /-"n(tln,k)l‘%.xi,ﬂj) = S(I‘L(Qanﬁj)l‘q;i»ﬁj) za.

0<l<i

k>j+1
By the construction of the measure u7, ; (see the remark after the proof of
Theorem 3.6), we have

H«Z,1( U {tln,k}) =0
1>
k<j
and, consequently, u7, ;((a;,®) X [0, B;]) = 0 which implies u7, (T, , + &, ) X
[0,7—&)=0.
Set T, = inf, ., T, ,. Then T, is a stopping time for the filtration (%, ,), .,
and we have

(4.2) n((T,,») x[0,7)) =0
and
(4-3) #([0,T;) X[r,%)) = 0.

In fact, property (4.2) follows from the definition of T,, and to check (4.3)
notice that the set {o <T,} belongs to % . and on this set we have
S(uw(Q, ) ) = 0. Consequently,

0= 1(0’<T.,)S(I""(Qa,7)|‘9(;,f) = S(1(0<T,)“(Qa,f)|‘go",'r) 2 1(0'<T.,)IJ'(Q0',T)'

If t; < t,, then S(u(Q, )%, ) = S(w(@Q, )% ) and, therefore, T, < T,
a.s. Also, using the right-continuity of the filtration and the monotone conver-
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gence properties of the conditional supremum operator [see Proposition 2.4(d)],
we have that ¢, |  implies 7, | T, a.s. Therefore, we can assume that {7} is
an increasing and right-continuous family of stopping times.

Let us denote by D the closure of the set of points (o, 7) such that T, < o or
7 = 0. The indicator function 1, is an adapted process because

(zeD} - N (Tl Ulr=0) e &

for all z = (o, 7). Moreover 1;, is increasing with respect to the order A and
contains the axis {(¢, 0), o > 0}. Following Walsh [20] we introduce the upper
left portion of the boundary of D defined as

I'(D) = {(s,t) € D: there exists no (o,7) € D with 0 < s and 7 > ¢}.

By Theorem 2.7 of [20], T'(D) can be parametrized to be an optional increasing
path {Z(u), u > 0} (see Definition 2.7). Properties (4.2) and (4.3) imply that
with probability 1, the support of u is contained into the image of Z. Finally,
Lemma 6.4 of [7] shows that under this condition u must be a stopping
point. O )

RemARk. (i) Dalang pointed out to us that the proof of the property (4.1)
in the above theorem can be done in a different way. More precisely, instead of
using Theorem 3.6, one can apply the direct approach developed in [6] in order
to show the discrete time analogue to Theorem 4.1.

(ii) We can replace [0, 112 by @ in the preceding theorem and the result is
still true.

5. Application to the existence of optimal stopping points. Con-
sider the case of processes parametrized by [0,1]* and let (), (o 12 be a
two-parameter filtration verifying the CQI hypothesis. The main result of this
paper is the following theorem:

THEOREM 5.1.  Suppose that (X,), (0,12 is @ measurable process with upper

semicontinuous sample paths such that E(sup, <o 1p X,) < . Then there exists
a stopping point T, such that

(5.1) E(Xy,) = sup E(Xp).
Te I

Proor. The proof can be done as follows. Consider the mapping ®: - R
defined by ®(u) = E(J 12 X(0)u(w, dt)). By Proposition 7.1 of [7] (see also
[12]), this functional is upper-semicontinuous on %. Since % is convex and
compact and @ is affine, it attains its maximum on % at an extremal element
u’ € ext(%). By Theorem 4.1, u° must be a stopping point T, and (5.1)
follows. O

The existence of an optimal stopping point still holds without requiring the
CQI property if we suppose that %, is a closed subset of %. Indeed, it suffices
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to consider the restriction of the mapping ® to %,. However, we do not have
general conditions ensuring that %, is a closed subset of %.

We will close this section with the discussion of a particular example that
has been taken from [16]. '

ExampLE. Let Q = [0, 1[ equipped with the Borel o-field ([0, 1[) and the
Lebesgue measure. Consider the sub-o-fields of #([0,1[) given by & =
(20, 1D), &, = o(B(3,2D) and ; = o(HB(2, 1])). Now we introduce the
two-parameter filtration:

%,o= 9%,1= 9.1,0={¢,Q}: 96,2:*971’ 9.1,1='972, 9—2,0=M3,

and &=V, , % for all ¢teN?-{(0,0),(0,1),(1,0),(0,2),(1,1,(2,0}. In
this example the inclusion %, ¢ % is strict and CQI does not hold. Indeed,
consider the element u € % defined by

p(w) =1y (“’)(%5(1,1) + %5(2,0))
+ 1y 51 (0)(380,2 + 39¢,0)
+ 1z g (“’)(%5(0,2) + %5(1,1))-
We claim that u & %,. Suppose that u € %, and let T be a randomized

stopping point such that [{A: T'(w, A) = t}| = u(w,{}) for all ¢+ € N2, Consider
the sets

Ii(w) = {A €[0,1]: T(wy,A) = (0’2)}’
I(wp) = (A €[0,1]: T(wy,2) = (1,1)},
I3(w3) = {A €[0,1]: T (w3, 1) = (2’0)}’

where w, € [3, 1], w, € [0,3[U[2, 1[ and w, € [0,2[. Then |[(w,)| = [I,(w,)| =
Iy (w3)l = 3 but I(w,) N I(wy) = I(w,) N I {ws) = I,(wy) N I,(ws) = @ which
is contradictory.

In this example the fact that a measure u € % belongs to %, can be
characterized by an analytical condition. As a consequence, one can show that
%, 1is a closed subset of % and deduce the existence of optimal stopping
points.

Acknowledgment. I would like to thank R. Cairoli for suggesting this
problem to me and for his valuable remarks during the accomplishment of the
work.
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