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A NECESSARY CONDITION FOR MAKING MONEY FROM
FAIR GAMES

By HARRY KESTEN! AND GREGORY F. LAWLER?

Cornell University and Duke University

Let X;, X,, ... be independent random variables such that X; has
distribution F,;,, where o(j) =1 or 2, and the distributions F; have
mean 0. Assume that F, has a finite ¢;th moment for some 1 < g; < 2. Let

=L%_,X; We show that if g, + g5 > 3, then limsup P{S, > 0} > 0
and hm sup P{S < 0} > 0 for each sequence {o(j)} of ones and twos.

1. Introduction. Let X, X,, ... be independent random variables with
E(X;)=0andlet S, =L} ,X;. If the X; all have the same distribution, it is
known [1] that S, is recurrent that is, for every ¢ > 0,

(1) P{S,| <ei.o.}=1.

It is easy to see that (1) can fail to hold if we remove the assumption that the
X are identically distributed. Likewise (1) can fail to hold if we do not assume
that E(X)) exists, even if the distribution of X; is symmetric about the origin.
By (1), it is impossible for S, — « w.p. 1 if the X; are ii.d. mean 0. However,
there are examples of mean-zero i.i.d. X; such that S, — « in probability (see,
e.g., [2]. This last condition is easily seen to be equlva.lent to

P{S, >0} - 1.

While such examples exist, it can be shown that there are no such examples
such that E(IX;|?) < » for some g > 1 (see Proposition 2).

In this paper we consider the case where the X; are not identically
distributed, but rather can have a finite number of possible distributions. Let
F,, ..., F, be nontrivial mean-zero distribution functions on R with moment of
order q,, that is,

(2) F(0) <1, [xdF(x)=0, [lxIdF(x) <,

and let {Y; };_, . j_12... be independent random variables with Y, ;
having distribution F;. Let o: {1,2, ...} = {1,..., p} be any sequence, X =
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Y . .and

a(y)J
n
Jj=1

In [2] examples were constructed with p = 2 and q; + g, < 3 in which S, —
w.p.1. Such examples were also constructed for general p < under the
condition

2 —q:
®) T (si-nT] —%
@<Sell,...,p} iesq; — 1
Note that (3) reduces to q; <2 — 1/p when all the q; are equal. Here we
consider the converse question: Under what moment conditions can one find
an example such that S, is transient? It was conjectured in [2] that (3), in the
weak form with a greater than or equal sign, is necessary for S, — © w.p.1
This paper proves this result for p = 2. Note that the previous paragraph
discusses the case p = 1. '
Suppose that w.p.1 S, = ». Then clearly

(4) lim P{S, > 0} = 1.

> 1.

We will assume (2) and the weaker condition (4) and see what restriction this
puts on the g;. Fix the sequence o and let

N(n) =#{j<n:a(j) =1i}.
Then S, has the distribution of

Ny(n) Ny(n) N,(n)
LY ,+ LY+ -+ LY,
j=1 j=1 j=1

We will assume that N(n) — » for each i (otherwise we can ignore the ith
distribution). Suppose q, = 2, that is, F, has a finite variance. Then by the
central limit theorem,

Np(n) 1
(5) ’}%P{ El Y, < o} -3

Since

pP— 1 N,(n) Np(n)
P{S, <0} ZP{Z Y Yi,jso}P{ Y Yp,jso},
Jj=1

i-1 j=1
(4) and (5) imply

pP— 1 N, t(n)
limP{E Y Yi,jSO} =0.
n=e \i=1 j=1

In other words, the random walk which does not take steps from the distribu-
tion F, also satisfies (4). We will therefore concentrate here on the case with
/%% dF,(x) = o for each i. The case with p = 2 and [x? dF(x) < « for one i is
easily treated by the above observation and Proposition 1 below.
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THEOREM 1. Suppose p = 2, (2) holds, [x2 dF(x) = [x2 dF,(x) = © and

(6) lim P{S, > 0} = 1.
Then
(7 g, + g, < 3.

We conjecture that S, — « w.p.1 actually implies that q, + ¢, < 3, but we
do not have a proof. It is also interesting to ask whether or not there exist two
distributions satisfying (2) and (4) with 1 < q;,q, < 2 and q, + ¢, = 3. In the
case of general p, we expect that a similar theorem as above will hold, possibly
with the weak form of (3) being the correct condition. Note that the form of
the theorem in the abstract is just the contrapositive of the version here.

There is a similar problem which we call the “control problem’” where we
allow the o(j) to be random variables measurable with respect to {S,:
0 < n <j}. Examples were given by Rogozin and Foss [4] of transient walks
with p = 2 and ¢, + ¢, < 3. In these examples, one selected the distribution
at step n based on whether S, > 0 or S, < 0. We conjecture that one cannot
do any better in the control problem than in the problem with nonrandom o,
that is, if q, + g, > 3, then the walk will visit some fixed interval [—L, L]
infinitely often. While we have no proof of this, it has been shown [2] that if
g1 =9y = *** =q, = 2, then such an interval [~ L, L] does exist.

The proof of the theorem consists of a sequence of reductions. We first show
that we may assume supp(F;) N (0,») is a single point. We next find a
necessary and sufficient condition for (6) to hold in a given strategy, that is,
choice of o (see Lemma 2). This will allow us to restrict the F, further to
distributions with

(8) supp(F;) N (-»,0) c{—a; ;}

for some sequences 0 <a,, <a;,< -+ with a; j+1/a; ; = ». It is then
shown that the necessary and sufficient condition for (6) is more or less
equivalent to convergence to 0 of two simple sequences of ratios involving
specially selected atoms of the distributions. The final step is to show that the
atoms can be chosen to satisfy these conditions and (2) only if (7) holds.

2. Proof.

Step I: Reduction of supp(F;) € (0,»). Let F, be the mean-zero distribu-
tion which agrees with F; on (=, 0], but which puts all the mass of F, in
(0,) on a single point. Since F;, has mean 0, this point must be the
conditional expectation

_ [x>0xdFl(x)

b= XL
[x>0dFl(x)
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and the mass there must be

p= [ dF(=).

Let Y,,Y,, ... be independent random variables with distribution F, and
Z,,Z,, ... independent with distribution F,. Also assume that the {Y;} and
{Z,} are independent. Let U, = L%_,Y; and V, = Y% ,Z,. Then S, has the
distribution of

Unyny + Vignys

where Nj(n) is the number of k < n with X, having distribution F;. (We
tacitly assume that N,(n) — «, i = 1,2, for otherwise S,, is recurrent by 1
Similarly, let Y; have dlstrlbutlon F, and define U, Sn in the obvious way.
We wish to show that

(9) P{S, <0} - 0 implies P{S, <0} — 0.

Since
P{S, < 0} = [P{Vym € dv}P(Uy,iny < —0},

and similarly for S, it clearly suffices to prove that there exists a C > 0 such
that uniformly in v,

(10) P{Uy < —v} > CP{Uy < —v} — on(1).

We decompose the Y, into their positive and negative parts, that is, we write

N N
=LY -1Y.
i=1 i=1
Let M be the number of Y, which are strictly positive, so that TNyr
contains exactly M nonzero terms. If we replace these strictly positive terms
by b, we obtain

N
Mb- Y Y,
i=1
which clearly has the distribution of Uy. By conditioning on M and all the Y,
we easily see that (10) will follow if we show there exists a C > 0 such that
uniformly in w,

M
(11) P{Z Yi<wlY;>0,1<i sM} > CP{Mb < w} — op(1).

i=1
This needs no proof if Mb > w, while for Mb < w it suffices to prove there
exists a C > 0 such that for all sufficiently large M,

M
(12) P{ZY,*sMblY,.>0,1sisM}zC.
i-1
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Note that under the condition {Y; > 0, 1 < i < M}, the Y;* are i.i.d., each with
the conditional distribution of Y, given Y; > 0. This conditional distribution
has mean b. Thus (12) is a special case of the following lemma giving a bound
for the probability of a sum of i.i.d. random variables to lie on one side of its
mean.

Lemma 1. Let W,W,,W,, ... be i.i.d. random variables. Assume that
there exists a ¢ < © with P{W < —c¢} = 0 and EW =b < . Then if Z); =
Eﬁlwc‘,

(13) lim inf P{Z,, < Mb} > 0.

Proor. We assume b = 0, and without loss of generality we may assume
that W does not have compact support, for otherwise by the central limit
theorem,

P{Zy <0} > 1/2.
Assume (13) fails and fix M, <M, < --- such that
P{Z,, <0} - 0.

Restrict M to this subsequence {M,} in the argument below. Write W = X + V,
where X is bounded, E(X) =0, d = P{X # 0} > 0, P{X # 0, V # 0} = 0 (this
typically requires randomization at the atoms of W), and define X; and V,
similarly. Let X;, X,, ... be ii.d. with the distribution of X given X # 0, and
let A, be the event that X; = 0 for at least (1 — d/2)M values of j < M.
Then for any D < o,

M
Jj=1

=
1 Mx

<

IA

)
=

- 5
M}

Sc{1,...,

and V; = 0, XjaéOifandonlyiijS}

zP{ % VjsD\/I\—l}P{ sup ijs —DW} —P(Ay).
j=1

Jj= dM/2<N<M j=1

Note that P(A,;) — 0 and by the invariance principle,

N
liminfP{ sup Y X;<-DVM}>0.
Moo dM/2<N<M j-1
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Therefore, P{):j-{lV} <DVM} - 0. Also, if 0 < D, C < o,

P{ZMsD\/H}sP{% V}s(D+C)\/1\—4} +P{§st —cm},

j=1 j=1

so by taking C — «, we can see that P{Z,, < DVM} - 0. Finally, if U, U,, ...
are independent random variables, independent of W, W,,..., each with a
uniform distribution on [—1, 1], then a similar argument shows that

M
P{Z(Wj+Uj)50}—>0.

Hence, without loss of generality, we may assume that W has a continuous
distribution.
Now choose y, such that

1/2

(14) P(W < y,}"* = max{P(Z,, < 0}'*, M;}.

Then P{W <y,}* - 0 and P{(W <y,} —» 1 and y, — . The first relation
implies
M,P{W > y,} — .

Let W, ,, j=1,2,..., be iid. with the conditional distribution of W given
W <y,. Then

P{ZMkSO} zP{ZMkSO;styk,j = 1,...,Mk}
M,
= P{Wsyk}M”P{ Y W, < o}.
j=1
We will show that

M, 1
(15) lillznian YW ,<0)> 3
which implies for all large %,
P(Zy, < 0} = 1P{W < y,}",

contradicting (14).
Let

my, = EW, , = [P(W < y,}] " E(WI{W <,})
= "[P{Wsyk}]_lE(m{W>yk})'
Then
—m, ~E(W{W > y,}) 2 5, P{W > y,},
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and hence for large %,

Vi 2

16 <
(16) Mylm,| = M,P{W > y,} -

0.

Suppose for a given k&,
17 M,m?2 > 2Var(W, ,).
For any such %, Chebyshev’s inequality shows that

Mk Mk
P m:k>0 =P Z(“G,k_Em,k)>_Mkmk
Jj=1 Jj=1
< M, Var(W, ;) < l

MZm? 2
If all sufficiently large & satisfy (17) we are finished. Otherwise, consider the
subsequence of M,, which we still denote by M, such that

M,m,)* < 2Var(W, ,).
Along this subsequence we have [using (16)]
M,E\W, , — myl®  My(y, + c)Var(W, ,)
=

[M, Var(W, )"~ [M, Var(W, ,)]*”

Thus, by Lyapunov’s theorem (see [3], Exercise 8.10.17),

M,
> Wj,kso} zP{

i=1

z

J

1

1 0 —x2
P (Wj’k_EWj,k)SO ﬁﬁf_me /zdx=—2—.

1
This then gives (15) and hence the lemma. O

Lemma 1 proves (12) and allows us to replace F; with F,. After F, has been
replaced we can replace F, with F,, defined in the obvious way. We then have

P(S,>0} -1

for the same strategy as before, but with supp(F;) N (0, «) being one point. We
drop the tildes and assume from now on that

(18) supp(F;) N (0,) = {b;}.

Step II: A necessary and sufficient condition for P{(S, > 0} - 1 under (18).
We begin with an analog of Lemma 1 which gives a bound for P{¥ j”: W, >
Mb + some positive quantity}. For each ¢ > 0 and i = 1,2, define L/(n,¢) to
be the largest number satisfying

(19) F(-L(n,e) ) s — < F(~Ly(n,e)).
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It is necessary to be specific about randomization if there is an atom at
_Li(n,s). Let
£
— =0|F,(-L;,(n,e)) - F,(—L;,(n,e) —
) L = 0 F(~Ly(n,)) = F(~Li(n,2) )]
+ F(-L,(n,e) —), 0<6<l.
We then think of a fraction 6 of the atom giving rise to values on the left of

—L(n,¢) and a fraction (1 — 6) giving rise to values to the right of —L(n,e).
Accordingly, we define the truncated first and second moments,

#i(n’s) B ‘/;>—L<(n e)xdFi(x)
—(1 - 8)Ly(n,&)[F(~Li(n,e)) = F(~Li(n,¢) -)|,
S?(n,S) - 'l;c> —Lgn e)xz dFl(x)

+(1 = 8)Ly(n,e)’[F(~Ly(n,2)) — F(=Ly(n,¢) -)].

Note that u;(n,e) > 0 and p(n,&) > 0 as n — ». Also, s¥(n,e) < » by (18).

The next lemma is stated in a stronger form than needed here; the stronger
form will be used in a forthcoming paper by Kesten and Maller. We shall apply
the lemma in this paper with W, = —Y,, where Y,Y,, ... are iid. with
distribution F;, i = 1,2. These varlables Y are bounded below by —b; and
therefore satlsfy (22) with B, = b,. If these Y have an infinite second moment
then they also satisfy (23) with thls B, and some B,. Then we obtain for each
e > 0,k,1 <, that for sufficiently large M,

M
(21) P{ Y Y, <Mp,(M,e) — EVMs,(M,e) — IL;,(M,e)} > C(k,L,¢).
j=1
If Y; has a finite second moment, then (21) follows easily from the central
limit theorem, since L,(M,&) = o(YM) in this case and the Y, have zero
mean. '

LemMa 2. For all k,l, ¢, B,, B, > 0, there exist constants C =
C(k,l,e,B;,B,) >0 and ny,= no(k l,e, By, By) < », with the following
property: Let W™, j=1,...,n, bei.i.d. with dzstrzbutzon function G™. Let
L(n, 8) be any (1 - 8/n)—quantzle of G™, that is,

é
G™(L(n,8) —) <1-— — = G™(L(n,¥d)),

and define the truncated moments

w(n,d) = fxd(n FdG(x) + |1 3 — G™(L(n,5) —)]L(n,&),
s%(n,8) = ];<L(n o x2dG™(x) + |1 - —8— - G™(L(n,d) - )]Lz(n 8).
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Assume that G™ satisfies the following inequalities:

(22) | lxl®dG™(x) < B3,
x<0 '
1
(23) 1-G"™(B,) < 8 and s(n,8) = 4(B; + B,).

Then for all /4 < 6 < 4¢ and n > n,,

Jj=1

(24) P{{n‘, W™ > nu(n,8) + kins(n, 8) +lL(n,8)} > C.

Proor. Let W, ,, j=1,2,...,n, beiid. with distribution

P(W,, <x}= (1——8—)_ G™(x), x<L(n,?),

J,n = n
P{W,; , <L(n,8)} =1.

Except for the randomization at L this is the conditional distribution of W™
given W; < L. Note that

é -1
(25) EW, , = (1— _rZ) w(n,d).
Also, by Schwarz and Jensen’s inequalities,

) -1
|EW; | < (1 - ;) {B1 +f0 xdG™(x)

<x<B,

(26) +s(n,8)[1 — G Bz)]”“’}

< 7}-2—s(n,8).

The second inequality follows from (23) for n sufficiently large [i.e., for all
n > ny(e)—in the remainder of this proof we will say “for large n”’ to mean
for all n > ny(k,1, ¢, B,, B,)]l. Thus for large n,

8\ ! 1
(27) Var(W, ,) = (1 - —’;) s%(n,8) — |EW, ,I* > —2-32(n,8).
Also,
EIW,,, — EW, ,° < 4 EIW,,,|° + EIW}', - EW, |
<4[B} + (L + |EW, |)Var(W; ,)]
< 4[B} + LVar(W, ,) + 27'/%s(n, 8)Var(W, ,)|.
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Therefore, by (23) and (27), there exists a D = D(e, B,, B,) > 0 such that for
all large n,

nE\WW,, —EW, ,I° D L(n,s
(28) L 2 [+ ( )].

[nVar(Wj’n)]?'/2 = Vn s(n,d)

By the Berry-Esseen theorem ([3], Theorem 16.5.2), there exists an a = a(k)
such that if X,,..., X, are independent random variables with

s 32 =@
[£3., Var(X))]

then

1
sup [T(x) — ®(x)l < -P(x),
Ixl< 2k 2

where ® is the standard normal distribution and T is the distribution function
of

Lj-1(X; - EX;)
s 12"
[Zj=1 Var(Xj)]

We now split the argument into two cases.
Case (i): L(n, 8) < (a/2D)Vn s(n, 8). In this case the left-hand side of (24)
is at least

P{Wj(") > L(n, &) for exactly I values of j < n}

(29) n—l
XP{ Y W, ,=nu(n,8) + kVns(n,8)).

Jj=1

In the first factor we take into the account the randomization when W™ =
L(n, 8), in which case we count W™ as being strictly greater than L(n,d)
with conditional probability

G"™(L(n,8)) — (1 —-48/n)
G™(L(n,8)) - G™(L(n,8) —)
Thus the first factor equals

(n)(a)l( 5)’” e‘58l>e“45(s/4)l.

N5 72

n

It is easily seen that this factor is at least C, for some C, = Cy(l,£) > 0 and
all n > [. By (25), for large n,

nu(n,8) — (n—1)EW, , = (I - 8)EW,,

(30) < 2(1 + 8)s(n,d).
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Therefore, by (27), the second factor in (29) is at least
Li2i(W,. — EW, )
[(r - 1)Var(W, ,)]"*

> 1.5k},

at least for large n. For large n, the right-hand side of (28) is less than « and
hence by the Berry-Esseen theorem is bounded below by ®(—2%)/2 for large
n. This finishes case (i).

Case (ii): L(n, 8) > (a/2DWn s(n, 8). Let r be the smallest integer larger
than

2D(k + 4)
l+ —,
a
Then as in (29), the left-hand side of (24) is at least

P{W; , > L(n, 8) for exactly r values of j < n}

xp{nz_;rwj,n > nu(n,d) + kvns(n,d) + (I — r)L("n,a)>.
j=1

As before, the first term is bounded below for all n by some C, = Cy(e, r) > 0,
and by the choice of r the second term is bounded below by

n—r
P{ E VVj,n = np,(n,S) - 4\/’73(na6)}‘
j=1
As in (30), for large n this is greater than
P{ Y (W, ,—EW, )= —2ﬁs(n,6)}.
j=1
Finally, since
2 8>(1 S)EW2 >(1 a)V W,

s (n’ )— n ( l,n)— n ar( l,n)’
Chebyshev’s inequality shows that the last probability is at least 1/2 for n
sufficiently large. This completes case (ii) and finishes the proof of the
lemma. O

ProrosiTioN 1. Under (18), a necessary and sufficient condition for
P{S, >0} - 1is

Ny(n)s? + L% + Ny(n)s? + L2
[Nl(n)/Jq]2 + [Nz(n)lfvz]2

where N(n) is the number of k < n with X, having distribution F, and
L, =L(N(n),e), u; = u,(N(n),e), s2 = s2(N(n), ¢).

’

(31) Ve>0,
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PrOOF. Assume (31) holds. Let {Y; ;}, i=1,2, j =1,2,..., be indepen-
dent random variables with Y; ; having distribution F;. Then S, has the
distribution of

Nn) Ny(n)
h Y, ; + h Y, ;-
j=1 j=1

For each ¢ > 0,

N(n) N(n) €
P{ ng Yi* ng Y, 1Y, 2 _Li]} = Ni(n) N(n)

where L; = L(N{(n),¢) and again we use an appropriate randomization if
Y, L,. By Chebyshev,

o

Ni(n) Ny(n)
P{ Z Yl,jI[Yl,j 2 _LI] + Z Y2,jI[Y2,j 2 _L2] S 0}
j=1 Jj=1
Ny(n) Ny(n) ’
= P{ Z (Yl,jI[Yl,j Z _LI] - Ml) + Z (YZ,jI[Y2,j 2 _Lz] - /.L2)
j=1 j=1

< —Ny(n)p, — Nz(n)ﬂ«z}

< Nl(n)sf+N2(n)s§
T [N(n)ny + Ny(n)ps]®’

which goes to 0 by (81) since u; > 0. This proves sufficiency.
To prove the necessity, suppose for some & > 0 that the ratio in (31) is
greater than n > 0. Then

1/2
Nypy + Napg < ‘/E([Nhuq]z + [N21~L2]2)

2
< ‘/ - [Ny(n)s2 + L2 + Ny(n)s? + L3]"”

< \/g[\/NI(n) s1+ Ly + {Ny(n) sy + Ly),

and hence

Ny(n) 2 5
P{S, <0} zP{ Y Y <Ny(n)u, - ‘/ p w/Nl(n)sl - 1/ - L,
Jj=1
> Y, ; < Ny(n)pp — V ; VNa(n) sy — V ; Lz}.
Jj=1
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By (21), this implies for n sufficiently large that

GUERES|
P{S, <0} >|C|y/—,1/ —,¢|| >0
Ui Ui

The necessity of (31) is then immediate. O

To get a feeling for the condition (31), we will describe what sort of moment
conditions it implies for one distribution.

ProposiTiON 2. Let X, X;, X,, ... be i.i.d. mean-zero random variables
with distribution function F and suppose

lim P{ XX > 0} 1.
n—o j=1
Then E|X~|? =  for every q > 1.

Proor. Assume P{L7_;X;> 0} - 1. Let V,,V,, ... be independent stan-
dard normal random variables independent of X;, X,, ... . Then an argument
as in Lemma 1 shows that P{L}_(X; + V) > 0} - 1. We may then apply the
result of Step I and combine all of the mass of the distribution of X; + V; on
the positive axis to a single point. Hence, without loss of generahty, we may
assume that F(x) is continuous and strictly increasing for x < 0, and that the
distribution on the positive axis concentrates on a single x > 0. By (31) applied

with F, = F, = F we see that for every ¢ > 0,
L(n,e)

im ————

n—o n/.L(n,e)

An examination of the proof shows that this holds uniformly for 1/2 < ¢ < 2
and so

i al(a) .
am0 (X dF(y)

where now L = —F~'. The substitution b = F(y) in the denominator changes
the integral to — (§L(b) db, and hence if

: a
g(a) = log [ L(b) db,
0 .
g'(a) =o(a™) as a | 0. It is easy to see that this implies for every & > 0,
e 5
[ L(b) db = c(8)lal
Yo

for some c(8) > 0. However, it is easy to see that if E|X~|? < », for some
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q > 1, then a'/9L(a) — 0 and hence

[°L(b) db < O(ata=/1), =
0

Rather than work directly with (31), which has a separate requirement for
each ¢ > 0, we want to work with a single sequence. Note that LN, ¢)
increases as ¢ decreases. Consequently, s2(N, ¢) increases and u,(N,¢) de-
creases as ¢ decreases. It is therefore easy to see that (31) holds if and only if
there exists a sequence ¢, — 0 for which

L u[Ni(n)sE(Ni(n), €,) + LE(Ni(7), 2)]
[Ni(n)a(N(n), e2)]* + [Ny(n)a(Ny(n), £2)]°
From now on we will assume that ¢, — 0 has been fixed such that (32) holds.

(32)

Step III: Replacement of F; by a discrete distribution. Let 0 =a, <a, <
a, < -+ be any sequence of real numbers increasing to «. For any {a,}, we
can define the distribution obtained by ‘‘ pushing the mass of F; onto {—a,}.”
We do this in a unique way by preserving the ‘“mass and mean of the interval
[—a,,1, —a;),” that is, we take the mass from [-a,,,, —a;) and give mass a
to —a,,, and mass B to —a;, where

a+p= dFy(x)
[-a;i1,a0)
and
—ag,.y — o= [ % dFy(%).
—ay41, =@

Let —b € [—a,,, —a;) be such that

= Fi(x
“ '/[‘_azn:—b)d 1( )’
with an appropriate randomization at —b if necessary. We think of the mass in
[—a,, 1, —b) as being shoved to the left (away from the origin) and the mass in
[-b, —a,) as being shoved to the right.

Now assume that F, are chosen satisfying (2), (6) and (18). Then also (32)
must hold. What we will show is that we can find a sequence {a;} with
a,,./a, = « such that the distribution derived by pushing the mass of F; on
{—a,} satisfies (2) and (32) and hence (6). Note that (18) is unchanged.

Let {a,} be a sequence such that a,,,/a, increases with /. We will consider
what happens to the quantities L,(N, ¢), s3(N, ¢) and u,(N, ¢) after moving
the mass of F, onto {—a,;}. Assume that

—a;,1 < —Ly(N,¢) < —a,

and write L, § and j for the quantities after modification. The total mass of
each interval [—a,,;, —a;) has been distributed over —a, and —a,, . There-
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fore, L(N,&) = —a, or —a,,,. Thus
L Qi1
— =<
L a,
Also, no mass in [—a;,, —a;) goes further than —a;,, and the mass in

[~L,) for F,, the modified dlstrlbutlon is the same as in [—L,x) for F.
Therefore

SNy = [ L F @)
x> —L, &

() e = %] v

and

fuﬁldﬁﬁx)==0(1)+-z;r4*%+ Jxﬁldﬁﬂx)

© a1
a .
<o+ X [ mﬂiﬂ)wmy
j=1"l-a,:1,~a)) a;
Since (2) holds, we can find some sequence with a j+1/@; 1@ s0 slowly that the
last sum is finite. In addition, we can let a;,,/a; increase so slowly that we
may replace N;s? + L? in the numerator of (32) by

Ny(n)5}(Ny(n), e,) + LI(Ny(n), &,).
As far as the denominator goes, we claim that
(33) Ay(N,e) = py(N,¢),

and hence for this choice of {a}, (32) holds for the modified distribution, with
the same N,;(n) and same ¢,. To prove (33), we need only consider the two
cases L <b and L > b separately (with appropriate modification if b is an
atom). In the first case (32) is easy to verify since all the mass in[-L, —a,) is
moved toward the origin. In the latter case all the mass in [—a,,;, —L] gets
moved away from the origin, so —[(N, &) < —u,(N, ¢).

In a similar way we can modify F, to a discrete F, with atoms of —b, >

—by > -+ on the negative side and b, ,/b; 1. We assume from now on that
these changes have been made and we drop the tildes. Thus F; has atoms at
a>0,0,-a;, —a, ... with mass at —a; denoted p;, and F, has atoms at

b>0,0, —b;, —b,, ... with mass at —b; denoted q;.

Step IV: A necessary condition in terms of special atoms of F;,. We assume
that the F, have the form given at the end of the last step and satisfy (6) and
deduce a weakened form of (32). First, we replace ¢, in (32) by two sequences
m:(n) = e, which have the property that 7, does not change between jump
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points of L;. Let
Li(n) = sup(e;: j = Ny(n)}.
Find sequences 1,(%)| 0 such that
-1/2
£2) )}

nz(k)zmax{(gkq,)l/z,zz(( qj)_w)},

n;(k)L7-ra;,p; n2(R)E7_20,9,
——— T, ———— 1.
):j=kpz

© 1/2
(k) = max{(lgkpl) » &1

~. ~.
(e (s

and such that
(34 -
) 1=k 1
It is easy to verify that such 7; can be found. Let

k k
n;( ) O My(k) - ni( ).
1=k D1 =91

M(k) =

Then M(k)1 > and
L(M,n(k))=a, for Mi(k) <M <My(k+1),
L,(M,ny(k)) =b, for My(k) <M < My(k +1).

We let
mi(n) = n;(k) for Mi(k) < Ni(n) <M;(k + 1).

Note that since ¢, is decreasing and n > Ny(n), if M(k) < Ny(n) < M(k + 1),

g, < (n) < &(My(k)) = fl(nl(k)(likpl)

- -1/2
< Q((l;kpl) ) < (k) =74(n).

Similarly, 75(n) > ¢,,.
By the monotonicity properties of L, s and u, (32) holds with 7,(n)
substituted for ¢,, that is, for every & > 0 we have for all large n,

(35) S[Ny(n)py]® — Ny(n)s? — L% + 8[ Ny(n)ns]® — Ny(n)si — L} > 0,

where u; = p(N(n),7(n), s} = sX(Ni(n),7(n)) and L; = L(N,(n),7,(n)).
Define H; by

H(M) = 5[ Mui(M, ny(R))]* — Ms?(M,n,(k)) — LI(M,n,(k))
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for M (k) < M < M,k + 1). Then by (35) for large n,
Hy(Ny(n)) + Hy(Ny(n)) > 0.

H, has a slightly unpleasant definition because of the randomization. Let
= 7, for the time being. If

B n(k)
0py, + L7 p+1P

for some0 <0 <1,

then
L1(M,"7(k)) = ak:

s} (M,n(k)) = ¥ pa%+ (1 - 6)p,a?,
i<k

p(M,n(k)) = X pja; + 0p,a,.
J=k+1
We are going to replace Msi(M,n(k)) + L3(M,n(k)) by MY ;_,p,a® and
pAM, (k) by £5_,.1p;a; for M € [M(k), M(k + 1)). To see that this is
permissible, note that for large %,

Mu,(M,n(k)) =Mép,a, + M Y, p;a;

j=k+1

6pra;m(k) s
0p, + X5 k1P, jek+1

0
<a,+M } pa;
j=k+1

=L(M,n(k)) +M ¥ p;a;.
Jj=k+1
Hence
P 2
M ) pa;

1 2 1 1
Z[MIJq(M,Tl(k))] < EL%(M’T'(k)) * 2 Jj=k+1

In addition, for large %,
kR)(1—-6
M(1-6)p, + 1= :}fk J)r(z;;“)f;j +1
n(k)(1 — 60)p, + 0pp + LF_p11P;
0pr + L5-k+1P;
n(k)p;
"~ 0py t+ X5 _p1p;

= Mpk'
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Therefore,
Ms3(M,n(k)) + LY(M,n(k)) 2 M ¥ p;a.
Jj=<k
If we define H, by
2

-MY p;a?, M,(k) <M <Mk +1),
Jj<k

H(M)=|M ¥ p;a;
j=k+1

then for large £,
2

M Y pa;
j=k+1

— 1 1
H\(M) < §L%(M,n(k)) t3

- Ms}(M,n(k)) - Li(M,n(k))

2

1 °° 1
<5|M X pja;| - S[MsH(M,n(k)) + L3(M, (k)]
Jj=k+1 )
1 °° S | , 1
SE Z p;a; _EMZ pjaj=§H1(M).
Jj=k+1 J<k

If we define H, similarly,
2

Hy(M)=|M ) q,b; -MY q;b, My(k) <M < My(k +1),
j=k+1 J<k

then for n sufficiently large,
(36)  Hy(Ny(n)) + Hy(Ny(n)) = 2H,(Ny(n)) + 2Hy(Ny(n)) > 0.

This is close to the desired form of the necessary condition. Note that on the
interval [M,(k), M (k + 1)), H, is the simple quadratic function of M,

H,(M) = AM? - BM
with coefficients

. 2
( Y pjaj), ifi=1,
i=k
A=A(k)={ 7
( > quj), ifi =2,
Jj=k+1
k
Y pja?, ifi=1,
=1
B=Bk)={",
Y g2, ifi=2.
j=1
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This function of M has a minimum value of —B2/4A at M = B/2A. (For
convenience we will now consider M to be a continuous variable. It is easily
checked that this makes no significant difference.) It is of course possible that
B,(k)/(2A,(k)) lies outside [M,(k), M,(k + 1)), so that this minimum is not
“realized.”” The idea of the following argument is to look for intervals
[M,(k), M,(k + 1)) which actually do contain the corresponding minimum at
B,(k)/(2A,(k)). This will occur for some n when N(n) = B,(k)/(2A,(k)). At
this n, H; will be quite small and by (36) this will have to be compensated for
by H;_,(N;_,(n)). Even though we have little knowledge of N;_;(n), which
depends of course on the strategy {o(j)}, we will be able to give an estimate on
the maximal height of H,;_,(N;_,(n)) at all n’s before N;(n) reaches
B,(k)/(2A,(k)). Inequality (36) says this maximum has to exceed
B2(k)/(4A,(k)). At the end of this step, we will have the final form of the
necessary condition for (6).
We define % to be a J-index of type i if

[+
prar= Y pa;, i=1,
Jj=k+1

qkbk > Z quJ’ l = 2.
Jj=k+1

[We call this a J-index because H,(-) has a big jump at M, (k) if % is a
J-index.] First, we show that there are infinitely many J-indices. Note that if
q: + 9, > 3 and ¢4, q, < 2, then ¢,,q, > 1. Hence we will assume from this
point on that q,, g, > 1.

Lemma 3. If F, has a (1 + &) moment for some & > 0, then there exist
infinitely many J-indices of type i.

ProoF. Assume not, say for i = 1 all indices j > & are not J-indices of
type 1. Then

-] 1 oo 1 J—k )
szaz>§ Y pa;> o >(‘2‘) Y pa,.
1=j 1=j-1 i=k

However,

Y. pa; <a;° ) pa;tc <a;°C.

I=j i=j
Since a;,;/a; > ®,a; > A eventually for any prescribed A. Therefore for any
A and j sufficiently large,

Cz N2 ) pa,,
I=k

which is impossible if A* > 2. O
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Let j(i) <ju(i) < --- be the successive J-indices of type i. We will call the
interval [ M,(j,(0)), M;(j,, (i) special if
(87)  max{H,(M): M,(ji(i)) < M < M,(ji1(i))} > H(M,(ji(2)))-
In this case we attach a special index k to this interval. It is the smallest index
k € [j(i), j;+(i)) for which H(-) is not decreasing on the whole interval
[M(%), M,(k + 1)). We prove below that each special interval has a unique
special index. Note that % special means

By(k)
24,(k)

since the minimum occurs at B;(k)/2A (k).

M(k) <

<M;(k +1),

Lemma 4. (i) Forany r,
H;(M(r)) < H(My(r) -),
that is, at the jumps, H; jumps downward.
(ii) For ry <ry,
Bi(rl)2 Bi(r2)2
4A,(ry) 4A,(ry)’
that is, the potential minimum of H,-) on [M,(r), M(r + 1)) decreases as r
" increases.

(i) On [M(r), M(r + 1)), H(:) takes its maximum at M(r) or
M,(r + 1) — . Indeed, on [Mr), M(r + 1)), the behavior of H; is one of the
following: increasing, decreasing, or first decreasing and then increasing.

Giv) If j, is a sufficiently large J-index of type i, and k is the first special
index of type i which is greater than or equal to j,., then

B,(k)
24,(k)’
and the minimum of H, over [M,(j,), Mk + 1)) is —B;(k)?/4A (k). [See
Figure 1 for a “typical” graph of Hy(").]

(v) There are infinitely many special intervals of each type, and each special
interval has a special index attached to it.

H(M) < H(M;(j,)) forM,(j,)<M=<

Proor. We will assume i = 1 (an identical argument works for i = 2).
Note that A,(r) decreases and B(r) increases as r increases. Hence

Hy(My(r)) = [My(r)]*Ay(r) = My(r) By(7)
< [M(P)]*A(r = 1) = My(r) By(r = 1) = Hy(M(r) -).
This gives part (i). Part (ii) is immediate from the monotonicity of A; and B,
and part (iii) follows from the fact that H, is a quadratic function on
[M(r), M(r + 1)).

To prove part (iv), let j, be a J-index of type 1 and [M(j,), M{(j,,,)) the
first special interval in [ M(j,), ®). Then by definition

max{Hy(M): My(j,) < M < My(j,.1)} = H(M(j,)) forr<s<l.
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FiG. 1. Illustration of the graph of H(M) with some indices used in part (iv) marked. In this
figure the J-indices are j,, j, = j..1, and j, . The interval [ j,, j;) is not a special interval but the
interval [j;, j;+1) is a special interval with special index k. [ For convenience we label the indices
by j rather than the proper notation M(j).)

Also, by part (), for r <s — 1 <,

H(M\(j,)) < H(M(j,) —) < H(M,(j,_,))-
Hence
(38) H\(M) < H(M(j,)) for Mi(j,) <M <Mj,),

and H,(-) jumps down at M = M,(j,). Next, we check the behavior of H,(:) on
the interval [ M,(j,), M,(j,, ). First, note that for any J-index j of type 1 and
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M@G(G)<M<M((j+1)

d
__H(M)=2M( r p,a,) - X p.a}
aM’™! rzj+1 r<j
2
sZM( P prar) - p;aj
(39) rzj+1 , _1
S2M( Z prar) _(Zpr) (p.]'a'.l’)2
r=j+1 rzj
2 -1 2
SZM( Z prar) _(Zpr) ( Z p"a") :
r>j+1 r=j rzj+1

This is negative for M = My(j) = n(J)IZ,. ;p,I”" as soon as 27,(j) < 1.
Thus, if j is a sufficiently large J-index, then the quadratic function H\(-) is
decreasing immediately to the right of M (). It will continue to decrease until
it goes through a minimum or until it reaches a jump point. If H,(M) reaches
a jump point M,(k) and is still decreasing on the left, that is,

( @%—u)— ) My(k)—

then by the monotonicity of A; and Bj, the right-hand derivative will also be
negative (regardless of whether or not % is a J-index) and hence H, will start
to decrease after the jump. Thus H, will decrease on successive intervals
(M), My(j + 1), j =j;,,j, +1,..., until the first £ such that H; has a
turning point in [ M,(k), M(k + 1)). This is the special index attached to the
special interval [M(j,), M,(j,, ). Note that there must be such a special
index, for otherwise the argument would show that H; is decreasing on
[My(j,), M(j,,,) which contradicts the fact that this is a special interval.
Since H,(-) is decreasing on [M(j,), B{(k)/2A(k)] this gives part (iv).

We have shown above that every special interval has a special index, so to
prove part (v) it remains to show that there are infinitely many special indices.
Assume that there are only a finite number; then from some J-index j, of
type 1 on

= 2M,(k)A(k — 1) — By(k — 1) <0,

H\(M) < H(My(j,)) <0, M = M(Jjo)-

The first inequality follows as in (38), while the second inequality follows as in
(39) from

Hl(Ml(jO)) = M1(j0)[A1(jo)M1(jo) - Bl(.jo)]

< Ml(jo)[Ml(jo) - (gp)](zlpa)

(40) = 2
- MG -V E ) ( T pa)

r=jo rzjo+1
<0,
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at least if 7m,(j,) < 1, which is true if j, is chosen large enough. But if
H,(M) < 0 eventually, then H,(N;(n)) < 0 eventually. By (36) this implies
H,(Ny(n)) > 0 eventually. Since N,(n) increases by jumps of size 1, this
implies H,(M) > 0 eventually. This is impossible, since the calculation in (40)
shows that for all large j which are J-indices of type 2,

Hy(My(j)) <0.
This completes the proof of the lemma. O

For a special index K of type i, let

. B,(K)
v(z,K)=12Ai(K)}

be the value of M for which H,(M) (essentially) reaches its corresponding
minimum. Let p,(K) be the smallest value of n for which N;(n) = v(i, K),
that is, the first time at which our strategy really reaches this minimum. We
call the p,(K) special minima. Blocks of special minima of one type alternate
with blocks of special minima of the other type. The last special minima in
these blocks will play a special role. To isolate these, write K;(0) < K;(1) < ---
for all the special indices of type i. Corresponding to these indices are the
special minima p,(K;(0)) < p,(K(1)) < --- . We start with some (sufficiently
large) special index of type 1, K,(p(0)), with special minimum p,(K,(p(0))).
Let py(K,(q(0))) be the smallest special minimum of type 2 greater than
p1(K(p(0))), and let p,(K(p(1))) be the largest special minimum of type 1 less
than p,(K,(g(0))). Thus

Pl(K1(P(O))) s1’1(K1(p(1))) <P2(K2(Q(O))) <P1(K1(p(1) + 1))

Similarly, p,(K,(q(1))) will be the largest special minimum of type 2 less than
p1(K(p(1) + 1)), that is,

p2(K2(q(0))) < pa(K2(q(1))) < py(Ki(p(1) + 1)) <py(Ky(q(1) + 1)).

Next we let p,(K(p(2))) be the largest special minimum of type 1 less than
po( K5(q(1) + 1)), and continue in the obvious way. We have for ¢ > 1,

p2(K(q(1))) < pi(Ky(p(i) + 1)) < py(Ky(p(i + 1)) < pa(Ky(q(i) + 1)),
and for i > 0,
pi(Ky(p(i + 1)) <pa(Ka(q(i) + 1)) < pa(Ka(q(i +1)))
<p(Kyp(i+1)+1)).

By (36),
(41) H (Ny(py(Ky(p(J))))) + Ho(No(po( Ko(2(4))))) > 0
and
BY(Ky(p(J
(42) H(N((K(p(D)) ~ - e )

~4A(K(p()))
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Since the next special minimum of type 2 after p,(K(p(j)) is p(Ky(q(j — 1)
+ 1),

By(Ky(q(j -1 + 1)) .
Ny(n) < 2A,(Ky(q(j — 1) + 1)) for n < py(Ky(p(J)))-

Therefore,

H2(N2(p1(K1(p(j)))))

(43)  By(Kfai-D + 1)
< max) Ho(M): M < o (KaG - D + D) |

We turn to the calculation of this maximum. We need the following nota-
tion. Let K be a special index of type ;. We denote the special interval that it
belongs to by [M,(L,(K)), M{LK))). Thus L(K) [L,(K)] is the last (first)
J-index of type i that is less than or equal to K (greater than K). Note that
neither L;,(K) nor L;(K) has to be a special index.

LEMMA 5. Let K' < K < K" be three successive special indices of type i.
Then:

)

~
Il
i

B,(K") }< 4["71(L1(K))“L1(K)]2,
24,(K") 4o Lo(E))bryrer]

(ii) For any fixed & > 0, if K is sufficiently large,

max{Hi(M): M<

I
p

F)
2
[le(K)aLl(K)] s
)

bL._,(K)

é
Ay(K) < [ ] [9Lymbrm]

bLz(K')

Proor. We will do the case i = 1. Since [I',I(Ig "), L(K")) can, by defini-
tion, contain only one special index, we have K < L (K") and

K<L(K)<L,(K")<K"<Ly(K").

Since K and K" are successive special indices, there is no special index
between the indices L,(K) and K”. Therefore, by Lemma 4(iv),

 B(K") <MLK
max{ Hy(M): M < 5o = — max{H,(M): M < My(Ly(K))}.
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On the intervals [ M(r), M(r + 1)), H|(*) takes its maximum at one of the
endpoints, and it jumps downward at each M,(r). Thus

max{H,(M): M < L (K)} = max{H,(M(r) -): r < L(K)}
= max{Ml(r)zAl(r -1)
—M(r)By(r — 1): r < Ly(K)}
< max{M,(r)*A(r - 1): r < L(K)}

2
r 2]
= max [ 77:( ) Y pja;|:r sLl(K)\.
Ej=rpjj=r f
By (34), the last term above equals
© 2
ﬂl(Ll(K))Ej=L1(K)pjaj
L 5Ly )Py ‘
Since L(K) is a J-index,
Y. P;a; < 2PLx)@Lyky
J=L(K)
Combining this with the above, we get
oy < 2Ly ik z
max{ H,(M): M < 24K | = [m(Ly(K))ar ) >

which gives part (i).
To prove part (ii), note that if (» + 1) is not a J-index, then

2 - - o
[A1(’°)]1/ = Z PiG; =P8, 1 T Z pja; <2 Z p;a;
Jj=r+1 j=r+2 j=r+2
=2[A(r + 1)]V2
Since K + 1,..., L(K) — 1 are not J-indices but L,(K) is a J-index, we have
[A(K)]* < 20K A(Ly(K) = 1))
= 9L(K)-K-1 i P,
J=L1(K)

L(K)-K
< 28 pp k)0 L)

Since a,,;/a, — », we have 4 < (a,,,/a,)’ for all sufficiently large r. Thus,
for sufficiently large K,

ALK

5
A(K) < ( ) [le(K)aLl(K)]z'
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Finally, L(K') < K. Thus ag > a, k., which completes the proof. O

From (41)-(43), we get for j sufficiently large,

B}(Ky(p(J)))
8A1(K1(P(j))) ’

4[my(Lo(Ky(a(J ~ 1))))bL2<K2(q<j—1)»]2 2

and hence
By(Ky(p(J)))
. 1/2 0.
[A1(K1(p(l)))] bLz(Kz(q(j—l)))
Since K,(p(j — 1)) < K{(p(j)) implies L (K(p(j — 1)) < K,(p(j)), we get

Ky(pG)
B(Ky(p(j))= X pai
=1

> [ I?
2 Pryky(pGi-ImL @ LyEyp(i-Dp] >

which implies finally from Lemma 5(ii) that for every 6 > 0,

2
Pk oG-l O Lk oG- 10)

- 0.

8
QL (K(pGM b
| PLy&ypGMELy(K1(pGWMOLy(K (i~ 1))

@ Ly(Ky(p(i— 1))

Similarly, after interchanging the role of i = 1 and i = 2 [and noting that the
last K,(p(-)) before K,(q(j))is K(p(;)) rather than K(p(j — 1))], we obtain

2
ALy(Ky(q(i- 1)»[ bk a0i- 1)»]
- 0.

iimiaon | ;
[ brykoati-1m ] T LK @MLK aGmE LK y(p()
If we let
P(J) =pPrxwimy  QU) = diykaquim
C(J) = arxwim D) = drykyain
then we have shown that for every & > 0,
P(j-1[Cc(- 1P
P(HICN]’DG - 1)

and

QU - HIDG - HI*” |
QR())D(J) " C(J)
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In addition, if we assume (2), then for j sufficiently large
P(HICWHI" =<1, QHIDLH]"*=<1.

Step V. A lemma on sequences. We have reduced Theorem 1 to the
following lemma about sequences.

LEMMA 6. Let P(j),Q(j),C(j), D(j) be sequences of strictly positive num-
bers with D(j) — » such that for every § > 0,

P(j-1)[C(i - D]**°

44 -
“9 P(HICWNH]™’DG - 1)
and

. . 12+
(49) W-DIPGZDL_

Q(J)D(J) C())

Suppose also that for some 1 < qq,qs < 2, for j sufficiently large,
(46) P(HICHI" <1 and Q)D()]™ < 1.
Then

( 1)( )
>1,
g, - 1)\gs—-1

ProoOF. Assume (44)-(46) hold for some 1 < q,,q, < 2 with ¢, + g, > 3
and find 0 < § < gq; — 1 with

2—-q,+6
g, —1-9

that is, g, + g5 < 3.

2—-q,+96

47

Let
r(j) = P(j)C(j)**,
AGj) = [Q()D()]

Then by (46), T'(j) < C(j)?~91*% and A(j) > D(j)?~17%, If we multiply (44)
and (45) we obtain

-1

M- DAG)
r(j)a@G -1 ’
from which it follows that A(j) = o(I'(j)). Going back to (44), we get
M- DCU)
Ir(j)D(j - 1)
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But for large j,
C(j) F(j)l/(2—q1+5) F(j)l/(z—q1+8)
. = > .
D(J —_ 1) A(j _ 1)1/((]2—1—5) F(J _ 1)(1/q2—1—8)

Thus
F(j)(ql—l—ﬁ)/(2—q1+8)l—‘(j _ 1) —(2-qg+8)/(q3—1-8) -0

or
: . 2-q;+ —1-8)X2-gy+ -1-8)
F(_]) o([F(_; 1)] 2-q;+8)/(q1—1-8)X(2—qy+8)/(g2—1-3 )

In view of (47), this clearly implies that I'(j) is bounded as j — » and hence
that A(j) — 0. But this is impossible since

Q(J/)D(j)'*® = o(Q(J)D(Jj)™) = o(1),
and hence A(j) - ». O
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