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A DISTRIBUTIONAL FORM OF LITTLE’S LAW
IN HEAVY TRAFFIC

By WLADYSEAW SZCZOTKA

Wroctaw University

Consider a single-server queue with units served in order of arrival for
which we can define a stationary distribution (equilibrium distribution) of
the vector of the waiting time and the queue size. Denote this vector by
(w(p), 1(p)), where p < 1 is the traffic intensity in the system when it is in
equilibrium and A, is the intensity of the arrival stream to this system.
Szczotka has shown under some conditions that (1 — pXI(p) — A,w(p)) -,
0 as p 11 (in heavy traffic). Here we will show under some conditions that

1-pUp) = A w(p) —»p bBNYM as p11, where N and M are mutually
independent random variables such that N has the standard normal
distribution and M has an exponential distribution while b is a known
constant.

1. Introduction. In this paper we consider a single-server queue with
units served in the order of arrival. Thus the single-server queueing system is
generated by the generic sequence (v,w) = {(v,, u,), k > 1}, where v,, £ > 1,
represents the service time of the kth unit and u,, 2 > 1, represents the
interarrival time between the kth and (2 + 1)th units. Let w,, £ > 1, denote
the waiting time of the kth unit and let /,, £ > 1, denote the number of units
in the queueing system at the moment of the kth arrival, including the kth
unit. Throughout the paper, .#(X) denotes the distribution of the random
variable or random element X and the symbol = denotes the weak conver-
gence of probability measures. Hereafter, by the “stationary distribution of
waiting time”’ and the “stationary joint distribution of waiting time and queue
size” we mean the limiting distributions, in the weak convergence sense, of the
sequences of distributions

1k 1k
— 2 L(w) and + ) A(w;,l), k=21,
k iz k iy

respectively. Obviously, this definition agrees with that when the sequences of
distributions -A(w,) and £ (w,, {,), k > 1, are weakly convergent.

Now we describe the class of queues for which the stationary distribution of
waiting time and the stationary joint distribution of waiting time and queue
size exist and we give their form.

Let Y = {Y}, £ > 1} be a discrete time process with values in R™, m > 1,
and Y, =4 {Y,,,, & = 1}, n > 1. Y is said to be either (i) weakly asymptotically
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stationary or (ii) weakly asymptotically stationary in the mean if there exists
an R™-valued process Y° = (Y2, k£ > 1} such that .A(Y,) = -£(Y?) in case (i)
and (1/n)L?_,-2(Y;) = _Z(Y?) in case (ii). In both cases, the process Y° is
stationary and is called the stationary representation of Y. By Y* =
{Y;¥, —» < k < =} we denote the two-sided stationary extension of Y°. Accord-
ing to the preceding, a sequence (v% u®) = {(v?,u?), & > 1} denotes a sta-
tionary representation of (v,u) (if it exists in any sense) and (v*,u*) =
{(v§, u}), —o < k < =} denotes the two-sided stationary extension of (v° u®).
Furthermore, let S, =0, S, = X% (v, —u,), for k> 1, and S =0, S} =
T ¥ —uh), for k <O0.
We say that (v, u) satisfies condition AB or condition AB in the mean if

lim limsupP{ max (S, - S,_;) > 0} =0
k—>w n-oowo k<j<n
or
n

1
lim limsup — ), P{ max (S; - S,;_;) > O} =0,

koo n—oo i=k ksj<i

respectively.

In [10] (Proposition 2), it is shown that if v — u is weakly asymptotically
stationary or weakly asymptotically stationary in the mean and S*, » —
a.e. as k — o, then for any initial condition w; > 0 the following hold:

lim limsupP{max(Sn + w;, max (S, — Sn_j)) > 0} =0
koo npn—oowo k<j<n
or
n

lim lim 3" P{max(Si +w,, max (S; - si_j)) > 0} -0,
kowon—won . _, k<j<i

respectively. Hence the strengthened version of Theorem 1 from [6] (see also
[10], Theorem 1 or the closely related result in [2], Chapter 1, page 28) says the
following: Let (v, u) be either (i) weakly asymptotically stationary or (ii) weakly
asymptotically stationary in the mean and let it satisfy condition AB or
condition AB in the mean, respectively. Furthermore, in both cases let (v°, u®)
be such that S*, - —x a.e. as £ > ». Then (w,v,u) = {(w,, v;, u,), k > 1} is
weakly asymptotically stationary in case (i) and weakly asymptotically station-
ary in the mean in case (ii) and in both cases the two-sided sta-
tionary extension of a stationary representation (w° v° u®) has the form
(w*,v*, u*) = {(w}, v}, u¥), —o < k < »}, where

k
(1) wi=sup Y, (vf—u?¥), —o<k<owx,
J<ki=j+1
and {(vy, u}), —® < k < o} is a two-sided stationary extension of a stationary
representation (v°,u®). (Throughout this paper sums of the type Lf_;, where
k <j, are taken as zero or the zero vector.) Moreover, under additional
assumptions (a,) and (a,) from [7], the sequence (I, w,v,u) = {(,, w,, v, u}),
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k > 1} is weakly asymptotically stationary in case (i) and weakly asymptotically
stationary in the mean in case (ii) and

P{w? > x, 19 > k)
(2) =Plwl ,2x,wi+vi>ul+ul+ - +uj)
=P{w’(',‘ > X, wﬂik + v’fk > u’ik + u"ikH + - +ut1},

for k> 1and x > 0.

Hereafter, for clarity we write (w, ) instead of (w?, [9).

Now we will introduce the concept of families of queueing systems, for
which the heavy traffic limits are to be obtained. First, let us notice that the
distribution of (w, !) depends on (v*,u*). However, under some conditions on
(v*,u*) and in the heavy traffic situation, that is, in the case a =4
E(vi —u%)10, we have w —,» as a 10 while [ >, if a10 and 0 <
lim, ,, Eu% < . Hereafter, while considering an approximation of (w,!) in
heavy traffic, when writing a 10, we have in mind the conditions a 10 and -
Eu% - 1/1,0 < A < . However, in this case we parameterize (w, ) and A by
a writing (w(a), [(a)) and A,,.

Reference [9] gives general conditions under which |elw(a) -, M as a 10,
where M is exponentially distributed and [7] gives conditions for |a|(I(a) —
A w(a)) =, 0 as a 10. This result is close to the results obtained by Glynn and
Whltt [3], Kellson and Servi [4], Whitt [11] and Szczotka [8, 9] (other references
are cited in these sources). Here we will show under some conditions that
Viel (il(a) — A w(a)) -, BNVM, as a 10, where N and M are mutually inde-
pendent random variables such that N has the standard normal distribution,
M has an exponential distribution and b is some known constant.

2. Main results. The main investigation tool in this paper is the theory
of weak convergence of probability measures on metric spaces. So all main
notions appearing here can be found in [1]. Furthermore, we use some special
notation, for example, D[0,x), which denotes the space of all right-continu-
ous real-valued functions on [0, ©) with the limit from the left. This space is
considered with the Stone topology metrized by Lindvall’s metric d (see [5).
We assume also that subspaces of a metric space are endowed with the product
topology. If X, X,,, n > 1, are random elements of a metric space, then as in
[1] we assume the notation X, » X a.e., X, >, X and X, —», X for almost
sure convergence, convergence in probablhty and convergence 1n distribution
of {X,} to X, respectively. In the following, by an m-dimensional Wiener
process, m > 1, we mean an m-dimensional Gaussian process (#1, #5,..., #;,)
being a random element of D™[0,») and such that #;, 1 <i < m, are Wlener
processes with EX[()¥(s) = E¥()¥#(s) = o, ; min(¢, s), s, t > 0,
1<i,j<m, 0,;=1 Notice that if (}7/1, #,) is a two-dimensional Wiener
process, then for any positive numbers ¢, and ¢, we have ¢? — 2t by o + 15 2
0, where o, , = E#{(1)#;(1). Moreover, if #; = #, (in this situation oy , = 1)

and if ¢, = t,, then tZ + 2t,t,00 5 + 5 = (¢, — £,)> = 0.
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Let us consider the family of random vectors (w(a), I(a)), a < 0, such that,
for each a < 0, the random vector (w(a), I(a)) is defined in (2) by a stationary
sequence (v*(a),u*(a)) = {(vi(a), u¥(a)), —x < k < ©} of pairs of nonnega-
tive random variables v} (a), u%(a) satisfying the following conditions:

a = Evi(a) — Eu%(a), a0,

k
(3) Y. (v*i(a) —u*,(a)) > —» ae.as k - », foreach a <0.
i1

Let us introduce the following notation:
o= (Evi(@)),  A,=(Eui(a))”, c=lal,
[t/c]

V,(t) = Ve gl (via) —rat),

it/cl

Voi(t) = Ve X (vii(e) —n.t), £20,
i=1

[t/c]

Ua(t) = ‘/('—. gl (utz(a) - A;I),

B [t/c]
U t) =Ve ¥ (u*i(a) —A;Y), 20,
i=1
X (a) =vi(a) —uj(a), —o <k <o,
(Throughout this paper, square brackets are used exclusively to denote the

integer part.)
The main result of the paper is the following theorem.

THEOREM 1. Let the following conditions hold:

(4) supE(v}(a) - ui(a))’ < ;
a<0
(5) A, = A, asat0,0 <A <oy

there exist finite and positive numbers oy, o, such that

1 1 1 1
(6) ((_Va’—'Ua)y(_—Vb’_—Ub)) _)D(%/D %/2)’ asa 10,
S )

(51 (]

where b = a®, while ¥, = (#1 1, #1,5) and ¥, = (#3,1, #,5) are independent
two-dimensional Wiener processes. Then under

2 _ 2 2
0% =37 07 — 2010507 3 + 05 > 0,
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where o, 5 = EX{(1)#5(1), we have the following convergence:
Vial (I(a) ~ Aw(a)) >p X%, NVM, asato,

where the random variables N and M are mutually independent, N has the
standard normal distribution and P{M > x} = exp(—2x/c2), for x > 0.

Before proving Theorem 1 we prove two lemmas. The first gives sufficient
conditions under which condition (6) of Theorem 1 holds and the second
lemma will be needed to prove Theorem 1.

LEmMA 1. Let {Y, ,, k> 1,n > 1} be an array of random vectors in R™
such that for each n > 1, {Y, ,, k > 1} is a stationary sequence of random
vectors in R™ being ¢, = {¢,(k), k > 1}-mixing, that is,

sup IP(A N B) — P(A)P(B)l < ¢,(i),
AeF,(n), BEF**i(n)
where F,(n) and F**i(n) are o-fields generated by {Y, L J <k} and v,
J = k + i}, respectively, and ¢,(i) = 0 as i — . Furthermore, let
1 [&]
Su k= 7wk Z Y,;,, t=20,nk>1,

and let {k,} and {r,} be sequences of positive numbers tending to infinity such
that k,/r, > 0 and ¢,(k,) >0asn > IfS,, -, ¢éand S, , —péas
n — o, where &= (o, ¥,0,¥,...,0,%,), 0;, 1 <i<m, are finite and
positive numbers while (#;, #5,..., #,,) is an m-dimensional Wiener
process, then (S, , , S, . ) —=p (&1, §,) as n = ©, where

& = (0'1%,1"72%,2,---,4%%,,"), i=1,2,

while (W] 1, #1.9,--» X1.m) and (#y1, #3.9,..-, #5 ) are independent m-
dimensional Wiener processes.

Proor. Notice that

[% 1 i
Sn,r,,(t) = — Sn,k,, Z Yn,j’ t2>0.
Tn Vra J=[2k,t1+1

By the mixing condition it follows that, for any Borel sets A and B in R™, we
have

Tn i=[2k,t1+1

1 [r,t]
P Sn,kn(t) EA7 r Z Yn,j €B

< @u(ky)-

1 [r,t]
P{Sn’k"(t) EA}P{T Z Yny.l' EB}

n j=[2k,t]1+1
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Hence, and by &, /1, S, ,(2t) >, 0, where 0 denotes the zero vector in R™,
we have

(7) (Sn,k,,(t)7 Sn,rn(t)) d)) (§1(t)7 §2(t)), asn — o,

Now let us notice that for any ¢, > ¢; and for sufficiently large n, that is, such
that r,¢, — k,t, > 1 we have

|P{Sn,k,,(t2) - Sn,kn(tl) € A’ Sn,rn(t2) - Sn,r,,(tl) € B}

_P{Sn,kn(t2) - Sn,kn(tl) = A}P{Sn,r,,(t2) - Sn,rn(tl) = B}| =< (Pn(kn)
Hence and from (7) we have the weak convergence of two-dimensional distri-
butions of (S, S, ,) to (£,&). In a similar way we show the weak
convergence of any finite-dimensional distributions of these processes. This
together with the tightness of (S, , , S, , ), which follows from the tightness
of {S, ;) and {S, , }, gives the assertion of Lemma 1. O

Note 1. It is worth noticing that the assertion of Lemma 1 holds when
Y, 1,Y, ... are iid. random vectors in R™ for each n > 1, with the zero
vector of expectation, positive and finite variances of each coordinate Y,/ of
Y, ; and with finite

m
sup Y, E|Y;, — EY;} |**°, for some 6 > 0.

n>1i{=1

NoTE 2. Lemma 1 can be generalized to the situation when the limiting
process is a process with independent increments.

LEmma 2. Let (X,Y) and (X,,Y,), n>1, be random elements of
the product space D[0,») X S, where S is a Polish metric space and let
X have almost all continuous sample paths and P{sup,_, .. X, () < ®} =
P{sup, ., ., X(t) < ®} = 1. Furthermore, let (X,,Y,) »p (X,Y) as n > o
and

(8) lim limsupP{ sup X,(t) — sup X,(¢) > o} - 0.

k—o O<t<w 0<t<k
Then (supg ., .. X,(8),Y,) =p (supg ;<. X(¢),Y) as n — .

n—o

Proor. For any closed set F in R X S and any %k > 1, we have

P{( sup Xn(t),Yn) EF}

0<t<w

sP{( sup X,(t),Y,) €F, sup X,(t) = sup Xn(t)}
(9) 0<t<w 0<t<w O0<t<k
+P{ sup X,(¢) — sup X,(¢) > o}
k

0<t<wo O0<t<

SP{( sup Xn(t),Yn) EF} +P{ sup X, (¢) — sup X,(¢) > 0}.

O<t<k 0<t<®o 0<t<®o



796 W. SZCZOTKA
The measurability of the mapping

D[0,%) X S 3 (x,y) - ( sup x(t),y) €R X8,

O<t<k

its continuity on C[0,®) X S, and the convergences (X,,Y,) —p (X,Y) as

n’> n

n — o and supg ., < X(t) = supg ;... X(¢) a.e. as k > » give

lim sup limsupP{( sup Xn(t),Yn) € F} < limsupP{( sup X(t),Y) € F}

k— o n—o O<t<k k— o O0<t<k

< P{( sup X(t),Y) eF}.
0<t<w

This, in view of (9) and (8) and Theorem 2.1 from [1], gives the assertion of

Lemma 2. O

PrOOF OF THEOREM 1. In a similar way as we obtained (2) in [7], we can
obtain

P{(I(a) - Aw(a)) > x} = P{i(a) > [z + Aw(a)]}
= P{w? (z,0) T Vs,
> U oy F U e T FUE)
for x > —A,w*(a), where c(x,a) = [x + A,w*(a)]. For simplicity and clarity,
we drop the mark of dependence of wj, w}, v}, u%, X, —®» <k <, on the

parameter a.
Let us denote

1
0(x,a) =|— Vex + A cws and z(x,a) = \/Ex+Aacw*.
¢ a 0 0

Hereafter, for simplicity and clarity, we drop the mark of dependence of 6 and
z on the parameters x and a. Then we have

P{Ve (I(a) — Aw(a)) > x} = P{l(a) > 6}

= Plw*, +vr, > utg+uty,, + o Futy)

(10) =P{(w’i9—w’5) - (A;'0 — w§) + vE,

>£( =AY

i=1

Hereafter, we denote S; , = Zf=j+1 XF, —o<k,j<cw
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Then, for any integer %, £ > 0 (¢ may be a random variable), we have the
following relations:

w§ = max( max S;,, sup S; 0)
—k<j<0 7 o p 7

(11)
=max{ max S;,,S_,,+ sup S, _ ),
(—ksjso 5077k, 0 js—l-)k Sk
(12) wp = 1S_4 0l < _max Sjo+ sup S; _, <2wi +1S_, o,
<j=<0 Jj<—k

wi —w*, = max( max S;, - w*,, S_k,o)

-k<j<0 )
(13)
— max(2 Sio— S0+ sup S, ), 8. )
max( —}ensa;‘xso 4,0 —2153?(50 4,0 jssu_pk ik k.0
and
J (k2]
(14) maX Sj,O = ma.x 2 Xfi+1 = Sup Z Xfi‘i’l'
—k<j<0 O<j<k;_; O<t<li=1
Furthermore, we have the following relations:
0
(15) Ve ¥ (ur = A7h) = Uya),
i=1
0 ~ -~
(16) \/C_S—o',o = Ve XX, =V(2) - U,(2) — c*?,
i=1
[6¢]
Ve max Sio= Ve sup Y X*,.,
(17) —0<j=<0 Ost<1l;=1
= sup (Vi(at) - Ui(at) - c*/?[o1]),
0<t<1

- - t
(18) cw§ = sup (Vb(t) - Uy(¢) - az[?]), where b = a2,

O0<t<w

(19) Veky < veul' + (&),

where ¢,(t) = V(2t), ¢ > 0, and w,, with & > 0, maps D[0,x) into R as
wp(x) = supg ., . ,lx(¢) — x(¢ — )|, for x belonging to D[0, ).
Now let us notice that

(20) sup |V () = V() < Vevk + w,(V,) and
0<t<d

(21) sup |U,(¢) — U,(¢)l < Veul + w,(U,).
O0<t<bd

Since w;,, b > 0, is measurable and continuous on the set of continuous
functions, that is, on C[0, ©) (see, e.g., [8], Property 1), then by assumption (6)
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we get w,(V,) =, 0 and w,(U,) -, 0 as a 10, for any b > 0. That and the
inequalities (20) and (21) give

(22) d(V,,V,) »,0 and d(U,,U,)~,0, asa?0.
Further, by assumption (6) we get
1. 1., 1. 1.
(((—TIVG, ;;Ua), (;;Vb, 0—2Ub)) -, (#,7;), asa?0,whereb =a?
and next

1 . 1 . - -
((—Va’ _Ua)’Vb - Ub) _)D(%/l’al%,l - 02%,2)’

(51 gy

(23)
as a 10, where b = a2,

where ¥, = (#,,, #1,,) and #; = (¥, 1, #; ;) are mutually independent two-
dimensional Wiener processes.
Now let

X(t) = al%,l(t) - 02%,2(t) -t t= 0’ Y= %/1’

- - t
X, () =V, (8) - Uy (t) - bn[b—], t > 0, where b, = a?,

n

1 1
Y, = (—\{, ,—U, ), fora,10as n — .

g o, "
Of course (X,,Y,) —»p (X,Y) as n — «. Moreover, X(t) > — ae. as t = x,
while the convergence X,(¢) > —x a.e. as ¢t — =, for each n > 1, follows from
assumption (3). Thus we have

P{ sup X,(¢) < 00} = P{ sup X(¢) < 00} =1 and X,(0)=0 a.e.
0<t<owo 0<t<o
Since (v*(a),u*(a)) is stationary for each a <0, X, has stationary incre-
ments for each n > 1. This implies that X, satisfies condition (5) in [9].
Independently of this, condition (4) in Theorem 1 and Lemma 1 from [9] give
the tightness of the sequence {supy.;<. X,(¢), n > 1} which, in view of
Lemma 3 in [9], gives (8). Hence, and by Lemma 2, we get

1 . 1.
(24) (cwﬁ, ;—Va’ ;—Ua) -p(M, %/1,1’ %/1,2)’ asa10,

2

1
where M and (¥, ;, #; ;) are mutually independent and
M= sup (01731(t) — 0275,2(8) — t).

0<t<x
But (1/0 X0, ¥#; , — 02%; 5) is distributed as a one-dimensional Wiener process
¥, which gives that (1/0)M is distributed as sup, ., ... (#(¢) — ¢/0). Hence,
M is exponentially distributed and P{M > x} = exp(—2x/c?), for x > 0. Now
using the relations (16)-(19) and (24), then the random time change and



LITTLE’S FORMULA IN HEAVY TRAFFIC 799

properties of w, and, finally, the continuous mapping theorem (see [1], theo-
rem 5.1) we get the convergences

(25) Vev*y—>, 0, asa?0,

((cwﬁ),\/ES_o,o,\/_ max S )

<0 70
(26) ap(M,alffl,l(AM) ~ 0y o(AM),

sup (0%, (AMt) —0-2%/1’2()¢Mt))), as a 10.

0<t<1

Now the inequalities in (12) and the convergence (26) lead to
27 Ve max SJO+1/_supS - ®, asa?0,

p
—-0<j<0 j<—6

which in view of (13), (26), (27), (22) and the continuous mappmg theorem
gives the convergence

(Ve (w§ — w*,), Uy(2))
=p (171 ,(AM) — 0,7, 5(AM), 02%1,2(AM)), asa10.
Finally, using (10) and then the convergences (25), (26) and the relation
A — Ve <Ve (A7 —wh) <A

as well as the continuous mapping theorem, we get the convergence

P{Vc (I(a) — A,w(a)) > x} - P{oy#; (AM) < —\x)

= P{o,#; (AM) > A"}, asa?0.

But Aoy ¥#; (AM) is distributed as A*20,YM N, which finishes the proof of
Theorem 1. O

Nore 3. Theorem 1 holds for GI/GI/1 queueing systems with generating
sequences (v(a), u(a)) = {(v,(a), uy(a)), k> 1}, a <0, such that a =
Evy(a) - Eul(a)TO Ay = (EBuya) >, 0 < A < ®, Var v(a) - o},
Var u(a) - o2, where 0< 0y,0, < ®wand o = o + o3, and

sup(E(vl(a)) + E(ul(a))2+6) <, forsome § > 0.

In this situation the Wiener processes #; ; and #; , in (6) are independent,
that is, oy , = 0.
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