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EQUILIBRIUM BEHAVIOR OF THE SEXUAL
REPRODUCTION PROCESS WITH RAPID DIFFUSION?

By CHRIS NOBLE
Oberlin College

The sexual reproduction process is a reaction—diffusion type interacting
particle system which exhibits phase transition. In this paper an .upper
bound is given for the critical value of the reaction rate and the equilibrium
density is determined for all noncritical values of the reaction rate.

The method of renormalized bond construction is the basis of our proof.
Results for the hydrodynamic limit of the process are employed and some
results for the associated nonlinear partial differential equation are devel-
oped to build the elements of this construction.

1. Introduction. In this paper we consider a family of continuous time
Markov processes parameterized by a birth rate A and a scale parameter «.
The state at time ¢ is denoted &, C ¢Z. £,(x) will denote the indicator of the
event {x €_¢). We think of the points in £, as being occupied by a single
particle; other points in the lattice are vacant. The particles have independent
exponentially distributed lifespans. When two particles are in adjacent lattice
sites, they produce offspring at rate A; hence the process is called sexual
reproduction. The new particle is sent to either site adjacent to the parent pair
with equal probability. If the site of the birth is already occupied, then the new
particle coalesces with the particle occupying the site and the birth has no
effect on the state of the process. The particles move according to the laws of
the simple exclusion process, with “stirrings” at rate £¢~2 for each pair of
adjacent sites. At the time of a stirring the particles (if any) in the affected
sites jump to the other site in the pair. Although a stirring does not affect the
state of the process when both sites are oecupied, it will be useful to think of
the two particles as changing places in order to make use of properties of the
random walk. The result of the stirring is that each particle performs a simple
random walk with steps at rate 2¢72. Two particles are prevented from
occupying a site simultaneously, so the random walks are not independent.

With this choice of the lattice spacing and stirring rate, the process simpli-
fies considerably in the limit as ¢ tends to zero. This is the hydrodynamic
limit. The properties of this limit have been studied for a number of models.
This particular model is referred to as ‘‘binary production” in an overview of
hydrodynamic limits ([7]). As a consequence of Theorem 1 in [2], if the
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distributions of the initial configurations ¢, satisfy: (i) {x €_¢,} are indepen-
dent events; and (ii) P(x €,£,) = m(x) € C3 with bounded derivatives; then
for fixed ¢, when x, — x,

(1.1) lim P(x, €&} = m(s,%),
where m(t, x) is the unique solution of

5 am  ?Zm Am2(1
(1.) 797—327—7714' m(—m)

with m(0, x) = m y(x).

If ¢, satisfies (i) and (ii) above, then using PM to indicate product
measure, we will write
(1.3) o = PM(mo(x)).

The second derivative term in (1.2) is the result of the random walk of each
particle converging to Brownian motion. The —m appears because the number
of deaths is proportional to the population. The number of births is propor-
tional to the number of occupied pairs of adjacent sites with a vacant neighbor-
ing site. Because the simple exclusion process has product measure as its
equilibrium [9], in the limit as the rate of stirrings tends to infinity, the sites
are independent. Thus, the rate at which new particles appear is proportional
tozthe square of the density of occupied sites times the density of vacant sites:
m*(1 — m).

In this paper we will use the hydrodynamic limit results in [2] to prove a
theorem about the equilibria of the particle system with small positive ¢. The
most fundamental question we can ask about the asymptotic behavior of the
particle system is whether or not there exist nonzero equilibria. Since the state
in which all sites are vacant is absorbing, it is an equilibrium for all values of
the parameters. We will be concerned with the existence of other equilibria.

We call the process starting with all sites occupied ,£}. (_£3 = PM(1)). Since
the system is attractive, P{A c_ ¢!} is decreasing in ¢ for any set A, so it
converges. (See Chapter 2 of [8].) There exists a nonzero equilibrium if and
only if
(1.4) tlim P{x €,£} > 0.

When this is the case we say that the particle system survives. If it does not
survive then it dies out.

For each £ > 0, let A (¢) = inf{A: £} survives}. The following simple calcu-
lation will show that

(1.5) A(g) =22 forall e > 0.

The distribution of sites in £} is translation invariant. When each a, €
{0,1}, let

ut(a_m,...,a_l,@,al,...,an)

(1.6)
=P{é(x + ke) =a, for —-m <k <n}
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denote the finite-dimensional distributions at time ¢. Then

d A A
(1 7) E#I(l) = —/-Lt(l) + Eﬂ't(l’ 1, g) + _Z_”t(g, 1,1)

1
+ 527210 1) = 10, 1) + 1i(1,0) — 11, 0)].

Because the system is symmetric and translation invariant,
/“'t(g’ 1) = /"Lt(o’ l) = /“'t(l’ Q) = /"Lt(l’ 0)’

8 (11,0 = 1(0,1,1) = (0, 1,1) = p(1,1,0) forall ¢
Clearly
me(1) = py(1,1,0) +p,(0,1,1) = 20,(0,1,1).
So
(1.9) #(0,1,1) = pny(1,1,0) < zu,(1).

Combining (1.7), (1.8) and (1.9), we obtain

d A
E#t(l) < Mt(l)[_l + 5],

from which it is clear that if A < 2, then
0 = limp,(1) = lim P{x €,£}}.
t—>o t—oo

Through a comparison with the contact process, it is not hard to show that
A(g) < » for any & > 0, so the particle system exhibits a phase transition.
That is, the existence of a nonzero equilibrium depends on the value of the
parameter A. An immediate consequence of the theorem is

(1.10) limsupA () < 4.5.

el0
As the comparison with the contact process gives a uniform upper bound for
A.(¢) when ¢ is bounded away from zero, this result implies the existence of a
uniform bound on A (e) for all £ and the existence of nonzero equilibria for
sufficiently large values of A. Our result will also give an estimate for the
density of particles at equilibrium.

The key to the asymptotic behavior of the particle system for small ¢ lies in
the behavior of solutions of (1.2). We first examine solutions when m(0, x) is a
constant. It is easy to see that in this case the solutions are constant for all
time and (1.2) is reduced to

1.11 dm + Am?(1
(1.11) 5 = Mt aAm (1-m).
If A < 4, then dm/dt < 0 for all positive m and lim,_,,m(¢) = 0. If A = 4,
then 1 is a double root of the polynomial in (1.11) and if A > 4, then 0, p,, p f
will be, in increasing order, the values of m for which dm/dt =0. It is
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elementary to show that

Prs if m(0) > p,;

(1.12) limm(t) = {p,, if m(0) =p,;
t— oo

0, if m(0) <p,.

Although the occupation density of the particle system with small ¢ is
approximately m(¢) at finite values of ¢, our theorem will show that these
limits do not fit the asymptotic behavior of the particle system. As ¢ tends to
zero, the equilibrium density of the particle system approaches 0 or p,. But in
contrast to solutions of (1.11), 0 is the limiting density whenever A < 4.5.
Furthermore, in contrast with (1.12), for fixed A the equilibrium density of the
particle system is the same for all initial configurations with positive density.

THEOREM. Fix any 8 > 0 and let £, = PM(5).
G) If A > 4.5, then

lim iglf liminf P{x €,£} = p;.

t—>o
(i) If A < 4.5, then

lirr(l) limsup P{x €,.¢,} = 0.

t—o

In [3] results are obtained about the solutions of (1.2) which provide an
indication of why 4.5 is the critical value for A. They demonstrate the existence
of traveling wave front solutions of (1.2). These solutions take the form
m(t, x) = w(x — at), where w is a monotone function tending to p, at —o and
to 0 at + . They prove that the wave speed a has the same sign as

(1.13) /:f—x+)tx2(1—x)dx.

This expression is positive if A > 4.5 and negative if A < 4.5.

In [5], Fife and MacLeod go on to show that when the wave speed is positive,
the solution of (1.2) with initial value m(0,x) = p;1,_; ;{(x) converges to a
diverging pair of wavefronts if L is large enough. Similarly, if the wave speed
is negative and the initial value is m(0,x) = p[1 — 1,_; ;(«)], then the
interval on which the solution is less than & will expand with time for any
& > 0. In other words, only one of the steady states given in (1.12) is stable
under all compact perturbations. We will develop results for the differential
equation (1.2) with boundary conditions. Our results are inspired by the work
of Fife and MacLeod, but the proofs do not rely upon their results.

To prove part (i) of our theorem we show that when suitable time and space
scales are chosen, the process dominates oriented percolation with parameter
p close to one. Specifically, we show that if the particle system starts with a
large region in which the particle density is nearly the value of the stable state,
then with high probability that region will expand and produce two regions
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with higher density. The proof of part (ii) is similar, but the roles of vacant and
occupied sites are interchanged.

The second part of the theorem shows that if A < 4.5, then the density of
particles in equilibrium tends to 0 as ¢ tends to 0. Since the steady state of the
hydrodynamic limit is zero and the zero equilibrium is absorbing, it seems
unlikely that a very low but positive density could be stable when ¢ is small.
This leads us to the following:

CONJECTURE. liminf, ;A (¢) > 4.5.

Associated with this particle system is a dual process which is constructed
on the same probability space as the particle system. The dual will be used
extensively in our proofs. (See [6] for a general discussion of particle systems
and their duals.) In Section 2, we construct several varieties of the process and
its dual. Section 3 is devoted to developing useful results about the differential
equations. Those results are applied to the particle system and the main
Theorem is proved in Section 4.

2. Construction of the process and its dual. The basic idea for the
construction uses a graphical representation that allows the construction of
several versions of the process with any initial configuration on the same
probability space. We construct the process as follows. Independently, for each
x €¢Z, let 5, B, B. and o, .-, be independent Poisson point processes with
rates 1, A/2, A/2 and &2, respectively. These point processes represent the
times of deaths, births, and stirrings. For ¢ € §,, .£,(x) = 0. For ¢ € B, there
will be a new particle created at site x if it is vacant and the two sites to its
right, x + £ and x + 2¢, are both occupied. Similarly, births occur at x when
t € BL, x is vacant and x — ¢ and x — 2¢ are both occupied. A stirring occurs
at time ¢ € o, ,_,; the values of ,¢,(x) and ,£(x — &) will switch if they are
different. The Markov property of the Poisson point process ensures that ¢, is
a Markov process in the space of subsets of £¢Z. We will use ) for the space of
realizations of the point processes and w to represent an element of this space.
In [6], it is proven that the evolution of the process can be computed from this
construction for all initial configurations for almost all w.

The same construction will be used to formulate a dual process of the
particle system in the manner of [6]. For fixed T' > 0 and for each x € ¢Z, the
state of the dual process at time ¢ will be denoted ,£”. The state of the dual
process is a finite collection of finite subsets of ¢Z. Each set in the collection
represents a potential set of ancestors for a particle at the site x at time T'. If
B is a set among the collection ,£7 and each site of B is occupied at time
T — t, then the particles occupying these sites will produce a particle at x at
time 7T'. In other words, for every ¢t < T and for each realization w, the process
and dual satisfy

(2.1) x €,6p e Bc,ép_, forsome B e 57,
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Thus, for fixed g), it is precisely the initial conﬁgurations in wh1ch at least one
of the sets in £ 7 is occupied which give rise to the event (5T =1).

The dual is formulated as follows. We start with 3T ={x}. f T -t e B,
(respectively, By) then for each set B in ,£»T with y € B, we construct a set
B’ which is obtained from B by removing y and adding {y + £,y + 2¢}
(respectively, {y — £,y — 2¢}). So if either B or B’ is occupied at time (T — ¢)~,
then B will be occupied at time 7 — ¢. Thus ,£%7 is obtained from sgf’T by
adding the set B". If T — ¢ € §,, then £2T will be obtained from §~ by
removing all sets B containing y from ft" T, This is because a particle at site y
at time (T — ¢)~ cannot possibly contribute in producing particles after time
T —t. If y was a nonessential site for the existence of a particle at site x at
time T, then §" T will contain a set which does not contain y. Finally, if
y€BEe §;‘TandT—te¢ry or T —t € g, ,, then we will replace B with a
set B’ which is obtained from B by interchanging y and 2. Because of the
homogeneity of the point processes, the distribution of ,£#7 is independent of
the choice of T (= ¢t).

It is easy to see that as ¢ tends to zero, the dual process converges weakly to
a limiting dual which we denote by 7 7. In this dual, particles have indepen-
dent Brownian paths; they die at rate 1 and ‘“have parents” at rate A. In this
dual more than one particle at a time can occupy a point in space; so it will not
suffice to consider only the locations of particles. The state of this dual at any
time will be a finite collection of finite sets of particles, each particle having a
location in R. Analogous to the changes occurring in ,£>7, at the time of the
death of a particle, every set containing that particle is removed from 77, At
a birth time, for each set containing the ‘“‘child” particle, a new set is added to
75T in which the particle is replaced by the two parent particles. Both parents
initially have the same location as the child.

This limiting dual has a special relationship with the solution m(¢, x) of
(1.2). For f € C3: R - [0, 1], with bounded derivatives, we can think of f(x)
as the probability that site x is occupied at time 0. Then a set B is occupied if
all the points in B are occupied. It follows from the convergence of the duals
that when ¢, = PM(f(x)) and x, — x,

(2.2) lirg P{x, €.£) = Pthere exists B € 1‘: B is occupied}.
€l

Theorem 1 of [2] implies that the left-hand side of (2.2) is the solution m(¢, x)
of (1.2) with initial value m(0, x) = f(x). (The product measure condition on
£, satisfies all the hypotheses of that theorem in the most straightforward
way.)

Ultimately, the building blocks for the proof of the theorem will be events
which occur in a strip of the form J_ (L) = {(¢, x): [x — at| < L}. [We will write
s1mply J for o (L) when no confusmn will result.] We construct the duals
2,607 and ;777 just as we did £5T and 727 except that particles stick to
the boundary of J. That is, after a particle ﬁrst exits from J it no longer obeys
any of the rules established in the original graphic representation, but moves
deterministically, sticking to the border of J. Particles on the border
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of J never have parents nor die, so that once a set in the dual has such a
particle, it and all sets arising out of it will always contain a particle (or site) on
the border. The dual may have many particles in a single location on the
border of J.

We will construct two versions of the forward time process using ;
The first one will be denoted ; ,£7. In this process particles die at the tlme of
their first exit from oJ. In this case the border s1bes of J are never in ; £ . The
relation in (2.1) is satisfied by ; ,£%(x) and ; €7

In the second version of the process, the sites outside of J are always
occupied. So if a site outside of ¢ is involved in a stirring or a birth, the result
is the same as any other stirring or birth involving an occupied site. We denote
this process ; £} and once again the relation in (2.1) is satisfied.

The random elements used in the construction of ;777, Poisson point
processes and Brownian motions, provide a probability measure on the set of
duals. Let us denote the set of realizations of the dual ;7;* by ,;0, , and the
measure by u (suppressmg the parameters). For 6 €,0, ,, 6 will be all the
points in the union of the sets in 6.

For any dual 6 €,0, ,, the probability that there exists a set B € 6 which
is occupied at time O can be expressed as a polynomial p, in the variables
oc(y) = P{y is occupied at time 0} with y ranging over . We can see this using

xT

the inclusion and exclusion formula. If § = {A,,..., A}, then
Po= 2 ( I1 OC(y)) - Z( I1 OC(y)) +o (=" T oe(y).
i=1‘\y€A,; i#j \YEAUA; YE VA,

From the definition of p,, it is clear that p, must be increasing in each
variable when the variables have values in (0, 1).
We define the semigroup

(2.3) JTf(x) = [ po{f(3):y € Bu(do).

JVx,t
If m(0, x) is the probability that x is occupied, then

m(t,x) =,;T,m(0,x)

(24) . .
= P{there exists B € 77*: B is occupied}

satisfies (1.2) with constant boundary conditions on J. It is now easy to prove
monotonicity of solutions of (1.2).

Lemma 2.1, Ifu (¢, x), i = 1,2, satisfy (1.2) with constant boundary condi-
tions on J and u0,x) > uy(0,x) for all x, then u(t,x) > uy(t,x) for all
(¢, x).

PROOF. pgy{u(0,y): y € 6} = py{uy0,y): y € 6} for all § and the lemma
follows from (2.3) and (2.4). O
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3. The differential equations. In order to describe the behavior of the
particle system on the strips J (L), it will be useful to examine the solutions
of the limiting differential equation. The central issue will be whether or not
these solutions tend to zero as time tends to infinity. This will provide an
indication (and ultimately contribute to the proof) of whether or not the
particle system survives.

We start by examining solutions of (1.2) which are constant in time. To this
end, consider the initial value problem for the ordinary differential equation

d?u

(3.1) —5=f(w), w0 =b, w(0)=0,

where f(u) =u — Au?(1 — u). Let u,(x) be the unique solution of (3.1). In
our first lemma we will show that when A is large there exist choices of b such
that the shape of the solution of (3.1) is a simple hump which is positive on a
compact set.

Recall that p; = § + 1/ — (1/A) is the largest root of f when A > 4.

LEMMa 8.1.  If A > 4.5, then there exists pp € (0, p) such that if pp < b <
ps, then uy(xy) = 0 for some x4 > 0.

Proor. From (3.1),
wh - uly = f(uyp) - up.
Integrating both sides we obtain
3Huy(2)]* = F(uy(x)) - F(b),

where F(x) = [Ff(t)dt = (A /Dx* — (A/3)x® + 3x2

If we assume p, <b <p; (p, is the smaller positive root of f), then
f(b) <0 and u}(0) < 0. Since u}(0) = 0, this implies that for some & > 0,
u,(x) < 0 when 0 < x < 8. So in this interval,

(3.2) wy(x) = —y2F(uy(x)) — 2F(D) .

Now we choose py such that

ConDITION 1. F(x) > F(pp) when x < pg.
ConDITION 2. F is decreasing on (pp, py).

These criteria are realized by taking py > q = 5§ — /5 — (2/A), the unique
solution in (0, p;) of F(x) = F(0). Here we see the reason for the hypothesis
A > 4.5. Only when A > 4.5 can we choose pj to satisfy these conditions.
Now we can show that u/,(x) < 0 for all x > 0. If this were not the case, we
could let z = min{x > 0: u/(x) = 0}. Since u}(x) is continuous, z is well
defined unless u/,(x) < 0 for all x > 0. Now u(x) <0 if 0 <x <z, but this
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implies that u,(2) < u,(0) = b and (3.2) implies that u,(z) # 0. Therefore, 2
is infinity and u/(x) < O for all positive x.

The restriction of u, to the positive half line is a monotone function, so it
has an inverse, ¢,, which is defined on some interval of the form (a, bl:

1

%) = = () — 2R (8
Hence
3.3 - [ 9
(3.3) ép(a) —fb N OESOR

The integrand is bounded for y outside a neighborhood of b and near b it is
[2 f(bXy — b) + O(y — b)?1"1/2, which is integrable. Hence ¢,(a) < = for all
a < b and, in particular,

dy
< oo
) — 2F(d)

(34) x0=6(0) = [ o

Before proceeding with the next lemma, we will impose one more condition
on P F:

ConDITION 3.  f'(x) > 0 when pp <x <pg.

We see that this condition is satisfied if pp>r =% + 5 — (1/31), the
largest root of f'. Choosing py = max(q, r) will satisfy Conditions 1, 2 and 3.
In the next lemma we refine our description of the hump solution of (3.1). The
hump is a butte with a flat top. As b1 p, the width of the flat top increases
without bound, but the width of the sloping sides of the butte is bounded.

LEmMA 3.2. Given 0 <8 <p;— pp, forb € lpr + 8, pf):

() ¢,(b — &) is an increasing function of b;
(i1) lim,,“,f d(b — 8) = o
(iii) ¢,(0) — ¢,(b — &) is a bounded function of b.

Proor. For p;>b = pp+ 8, from (8.3) we have

1 b dy
b-68)=—+—=
Wb=2 = ) TR B

(3.5) 1 s dz

=7§‘fo VF(b—2) —F(b)
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So
dey(b - 6) 1 s f(b) —f(b—-2)dz

db 2¢§f<) [F(b—2) - F(&)[72 O

the last inequality being guaranteed by condition 3. Thus the interval on
which the solution is greater than & — § is increasing in width as b increases.
Now F(b — z) — F(b) = —2zf(b) + 224f'({) for some ¢ € (b — z,b). We let

S= suwp f(2)

Pr<{=ps

Then (3.5) yields
dz

b(b-8)> = ° ,
V2 Jo /= 2f(b) + 22(1/2)S

and an application of Fatou’s lemma gives (ii):

lim dy(b - 8) = [*~2 —
blrlﬂ,d”’( )Zj;)z—\@_—w
Finally, using (8.3) again, we have
1 -5 dy
(0) = dy(b = 8) = & [ s

Conditions 1 and 2 together imply that F(b — §) < F(y) when y < b — § and
condition 3 implies that F(b — 8) — F(b) is minimal when b = p/ so

1 e
V2 VF(p;—8) — F(p;) '

d5(0) — dp(b - 9) <

The solutions of (8.1) give us ‘‘stable’’ solutions of (1.2) with Dirichlet
boundary conditions on J(L) = [0,) X [—L, L], where L = ¢,(0) is given by
(3.4). By stable we mean that the solution viewed in o is constant in time. For
our present choice of J, this simply means that the time derivative is zero. As
a consequence of Lemma 3.2, for any given §, > 0, we can choose the initial
value b such that the solution u,(x) of (3.1) satisfies

(3.6) uy(x) > (ps—8) when |x| <L(1-34,).

The next step will be to demonstrate the existence of ““stable’ solutions of
(1.2) with Dirichlet boundary conditions on J (L) = {(¢, x): |x — at| < L} when
a is small. In this context, stable means that u(¢, x — at) = u(0, x) for all 2.
This usage agrees with the previous one in the case a = 0. First we observe
that if v satisfies

v v

v
(8.7) 792 % )
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with Dirichlet boundary conditions on J(L) = [0,) X [-L, L] and
(3.8) u(t,x) =v(t, x + at),

then u satisfies (1.2) with Dirichlet boundary conditions on J,(L). Further-
more, if v is a stable solution on Jy(L), then u is stable on J (L). A stable
solution, v, satisfies

(3.9) 0=1i—ab—f(v).

This equation can be expressed as a system of equations in 0, v and « as

o\ [av + F(v)
(3.10) (v) = B

0

We know that (3.10) has a solution for initial conditions v(0) = 0, v(0) = b,
a(0) = 0 when pp <b <p;. A standard result in the theory of differential
equations is that solutions of such a system vary continuously with the initial
data in the interior of the domain of the solution (see, e.g., Section 32.2 of [1]).
Therefore, the system will have a solution uniformly within §, of u,(x) on
[—¢(=8,), #(—38,)] for small enough «. We fix « sufficiently small that this is
the case. For simplicity we shift the solution v, of (3.9) so that the interval
over which it is positive is symmetric about 0 and let L(a, b) be the right
endpoint of this interval. We call this shifted solution v, and note that it is a
stable solution of (3.7) with Dirichlet boundary conditions on Jy(L(«, b)) and
is therefore also a stable solution of (1.2) with Dirichlet boundary conditions
on J, (L(a,b)).

Now that we have stable solutions, we would like to do a little better. In the
next lemma, we find solutions which are increasing in time.

a

LemMaA 3.3. Let v(¢, x) be a nontrivial stable solution of (1.2) with Dirich-
let boundary conditions on J (L). Let M > L and let u(t, x) be a solution of the
problem on J (M) with initial value u(0,x) = v(0, x). Then for all t > 0 and
s> 0, we have u(t + s, x + a(t + s)) > u(t,x + at) whenever |x| < M.

Proor. To simplify notation, let I = J (L) and let J = J_(M). There is a
joint realization of ;7° and ;7° such that every set A €;% 7 which contains
no boundary points of I is also in ;%'7. But with positive probability, ;77
contains a set entirely in I which is not a set in ;4*7. (This event requires
only that a Brownian motion move outside of I and back in.) Since (0, x) is

zero on the boundary of I,
u(s,x) = P{for some B €;7%*, B is occupied at time 0}
= P{for some B €,7*, B c I and B is occupied at time 0}

> P{for some B €;4*°, B c I and B is occupied at time 0}

P{for some B €;7%¢, B is occupied at time 0}

v(s,x).
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Since v is a stable solution, v(s, x) = v(0, x — as). But z and v have the same -
initial values, v(s, x) = u(0, x — as) and this proves the lemma in the case
t = 0. The generalization is straightforward. Since the particle system is
attractive,

u(t+s,x+a(t+s)) =;Tu(s,x+a(t+s))
>,;T,u(0,x + at)
=u(t,x + at). O

Furthermore, since u(t,x + at) is increasing in ¢, w(x) = lim, _,, u(t, x +
at) is well defined and

sTaw(x) = [ po{ limu(t,y + at) u(de)

JVx,s

[, lmpou(t,y+at)}u(de)

JGx,‘ﬁt“—)°°

limf po{u(t,y + at)}u(de)
t—oo J®x,s

lim ;Tu(t, x + at)
t— oo

lim u(t +s,x + a(t +s))

=w(x).

Hence w is a stable solution.

So far we have developed the differential equation tools which we will use in
proving part (i) of the theorem. In summary, we have constructed a solution to
(1.2) which is “tied down” to zero along the sides of J (M) and is strictly
increasing in time along each ray of slope 1/« inside the strip. In Section 4 we
will use this result to show that a large isolated clump of particles will, with
probability close to 1, produce a clump slightly shifted sometime later. For part
(ii) of the theorem we will need a similar result to show that a large, mostly
vacant region surrounded by particles will, with high probability, produce a
similar zone slightly shifted sometime later. For part (ii) of the theorem we
will need a solution of (1.2) which is “tied up” to 1 along the sides of the strip
and is decreasing in time. We start by again considering solutions of (3.1).

LEmMMA 3.4. If A < 4.5, then there exists a py > 0 such that if 0 < b < p,
then u,(x,) = 1 for some x, > 0.

Proor. The proof parallels the proof of Lemma 3.1. The conditions for
choosing pyr become:

ConpITION 1'. F(x) > F(pp) when x > pp.



736 C.NOBLE
. ConDITION 2'. F(x) is increasing on (0, pp).

If A < 4, then F is monotone and we can take py = 1. If 4 <A < 4.5, then
these conditions are satisfied by choosing pp less than or equal to g, the
unique solution in (0, p;) of F(x) = F(p;). This time u)(x) > 0 for x > 0 and
the end result of a set of computations identical to those in the proof of
Lemma 3.1 is

1 dy
(3.11) x, = dp(1) = [b TG 27 () <

The condition corresponding to Condition 3 is:

O

ConpiTioN 8. f'(x) > 0 when 0 < x < pp.

This condition is always satisfied when A < 3 and when 3 <\ <4.5, it is
satisfied by choosing py < r = 3 — /5 — (1/31), the smallest root of f".

We fix p; = min{q, r} so that Conditions 1', 2’ and 3’ are satisfied. Then the
solutions to (3.1) when A < 4.5 and b < pj look like basins. In the next lemma
we show that the width of the flat basin bottom increases to infinity as b tends
to 0 while the width of the sloping sides of the basin remains bounded.

LEMMA 3.5. Given 6 < pp, for b € (0, py — 8],

() ¢,(b + d) is decreasing in b;
(iii) ¢4(1) — ¢,(b + 8) is a bounded function of b.

Proor. The computations are identical to those in the proof of Lemma 3.2
with only typographic changes. b — 8 becomes b + & and equation (8.11) is
used in place of (3.4) so the inequality in (3.5) gets reversed. Throughout the
argument, p, is replaced by 0 and ¢(0) by ¢(1). O

Now we have “stable” solutions of (1.2) which are 1 on the boundary of
J(L). Given 8, > 0, we can choose b such that u,(x) satisfies

(3.12) uy(x) <8, when x| <L(1-3,).
As before we obtain a stable solution on J,(L(a, b)) and now this solution, v,

is equal to 1 on the sides of the strip. We continue by converting Lemma 3.3 to
suit our present objectives with:

LEmMMA 3.6. Let v(t, x) be a stable solution of (1.2) which is 1 outside of
J(L). Let M > L and let u(t,x) be a solution of (1.2) which is 1 outside
J_(M) and has initial value u(0, x) = v(0, x). Then for all t > 0 and for all
s> 0,u(t+s,x+alt+s) <u(t,x + at) when |x| <M.

ProoF. Let I =J, (L) and J = J,(M). We again use the joint realization
of ;7T and ;5®7. This time we note that for every set A in ,7;"", there is a
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set B in ;%*7 such that all y in B which are not boundary points of I are
also points in A. If {Al, .., A} are all the sets in ;7 corresponding in this
way to a particular B in ;%> 7, then P{for some i < k, A, is occupied} < P{B is
occupied}. Furthermore, w1th positive probability, ,nj‘ T contains a set B
(necessarily containing a point on the boundary of I) for which there is no
corresponding set A in ;7> 7. Thus,

u(s,x) = P{for some A €;7%*, A is occupied at time 0}
< P{for some B €,;7%° which has a corresponding A €,75°,
B is occupied}

< P{for some B €;7*°, B is occupied}

=v(s,x)
=v(0,x — as)
=u(0,x —as).

And
u(t+s,x+a(t+s)) =;Tu(s,x +a(t +s))
< T,u(0,x + at)
=u(t,x + at). o

4. The distribution of particles. This section will start with the proof
of part (i) of the theorem. After proving part (i) we will go back and indicate
the necessary modifications to give part (ii), but will avoid duplicating the
details of the arguments. For part (i) we use the results from the differential
equations to show that if A > 4.5, then with high probability, a large cluster of
particles will form two such clusters in a fixed amount of time. We will then be
able to use a result of Durrett for 1-dependent oriented percolation to show
that these clusters percolate on a lattice of appropriate scale. The lower bound
on the equilibrium density will follow from the percolation of these dense
clusters.

In the following definitions and lemmas we break up the strip J (M) =J
into substrips in such a way that both the number of lattice sites in each
substrip and the number of substrips tend to infinity as ¢ tends to zero. We
show that with high probability the density of particles increases over a fixed
span of time in every substrip when ; £, = PM(v,).

For definiteness we define the strip width M = (1 — §,)"'L(a, b). [L(«, b)
is defined in the discussion preceding Lemma 3.3.] The fixed time span will be
T > M /a, then the strips J (M) and J_,(M) slant in opposite directions and
at time T cover intervals which intersect in at most a point.

We will partition J into n (depending on &) substrips of equal width which
we call J,,...,d,. The choice of n will be determined later, but it will satisfy
n — o and ne - 0 as £ — 0. Each substrip J, is covered by a larger strip J,
which is the union of the J; which are a distance not greater than n~1/* - M
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from J,. The density of particles in the kth substrip at time T is given by

(Z{x: (T, x)e J,,)a‘fT(x))
C i, meanl)
If u(¢, x) is the solution of (1.2) with Dirichlet boundary conditions on J and

initial value v,(x) [the stable solution on J (a, b)], we let vy(x) = (T, x + aT),
the solution at T translated back over the initial interval of /. Let

(4.1) «Dr(k) =

é= inf lva(x) — v4(x)l
-y 2(x) — vy(x)

be the minimal separation between v; and v, over an interval containing the
support of v,, and let

b, = sup v(x) +8/4.
{x: (0, x)ed}}

The {b,} will be target values for ,D(k). It will later be important that these

densities dominate v,(x) over a region much wider than the width of the strip
J,. Since the width of J, shrinks to 0 as ¢ — 0, for sufficiently small ¢,

bk : l(x:(o,x)ef,,)(x) =< v2(x) - 6/2

In the proof of the next lemma we will use the following consequence of
Proposition 3.4 of [2]: When £, has any product measure, then for each ¢,

(4.2) Cov{,&(x),.£(y)} » 0 ase — 0uniformlyin {(x,y): x # y}.
We define
(43) ce(t) = Sup Cov{sgt(x)’eft(y)}‘
xX#+y
LEMMA 4.1. There exist constants n, such that

limn;l+en,=0
e—0

and such that when n_ is the number of subintervals,

(4.4) lim P{,Dy(k) > b, forall k} = 1.

ReEMARK. The conclusion lim, ,,n_! + en, = 0 will ensure that the num-
ber of subintervals and the number of sites in each subinterval tend to infinity.
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Proor. Let ¢ = 2M/en,, the average number of sites in a subinterval.
Then

Var{EDT(k)] =q_2 Z Varefr(x)
(T,x)ed,

(4.5)
+ Y Cov(.ér (1), .67(x2))

(T, %1),(T, x) €,
X1 #Xg

Since ,£7(x) has values in {0, 1}, it has variance not greater than §. Using the
quantities ¢ (¢) defined in (4.3), we obtain

1
Var(,Dy(k)} < — +¢(T).
4q
So by Chebyshev’s inequality,

o 1 ‘
P{,Dy(k) <b,} < [E{,Dp(k)} - b;] 1 + ce(T))-

Clearly

E{,Dp(k)} > inf E{&p(x +aT)).
{:Dr(k)} o {ér(x + aT)}

Applying the result in (2.2), we see that for ¢ sufficiently small,

é
E{ D.(k)} = inf - -
(Dr(k)} (x:(ol,I:)eJ,,){vz(x) 4}

(4.6) > inf {vz(x) - —8~}
{x: 0, x)eT}) 4
é
2 bk + "4".
Hence
5\7%( 1
P(,Dp(k) <by} < (Z) v cE(T));

and for ¢ sufficiently small,

5\7% 1 ‘
(4.7) P{,Dyp(k) > b, forall k} > 1 - ne(z) (ZE + ce(T)).

The proof will be complete if we choose n, so that the remainder term in
(4.7, n;! and en, all tend to zero as ¢ tends to zero. Recalling that
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q = O(1/en,) and that ¢ (T) — 0 as ¢ —» 0, we can see that it will suffice to
choose n, such that n_, e(n,)? and n_c,(T) all tend to 0. The choice

(4.8) . = min{exp(y/ = Tog ¢,(T) ), /2

satisfies these conditions. O

Let G (for good) be the set of configurations satisfying
(4.9) Do(k) > b, forall k.

In the next lemma we show that starting the process from any configuration in
G cannot be much worse for the survival of the process than having product
measure v; a short time later. In particular, we will compare PM(v,) with the
configuration at time 7 = n /2 of the process starting with a configuration in

&

G. The comparison is made over sets sufficiently small to be likely candidates

~

for sets in .£%7. Given y > 0, choose N such that P{the dual without deaths
has cardinality greater than N at time T} < 7.

LEMMA 4.2.

liminf{ inf  inf [E{ Jrjlsf,,(xk)kfo} - ﬁ vl(xk)]} >0,

e—0 £0€G {xy,...,x,,) E=1

where inf

..., x,) 1S taken over all m < N and all sets of m distinct points in
[-M, M].

Proor. Clearly we can assume that x; € [- L(e, b), L(a, b)], for otherwise
vix;) = 0. Let s4(2),...,s,(¢) be the positions of m particles moving accord-
ing to the simple exclusion process with s,(0) = x,. Then

m \
E{ I_I sg-r(xk)kg\
k=1 J

(4.10) > Pfs,(1) €,épfori=1,...,m}
— P{s;(¢) & J,(M) for some i and for some ¢ < 7}
— P{minimum of m exponential lifespans is less than 7}.

The last term is bounded above by N7. The second term on the right is
uniformly bounded for all {x,,...,x,} by a term of order N - exp(—7~1). Let
r#), ..., r,(¢) be independent random walks with r,(0) = x;,. From Proposition
3.4 of [3], if

sup IP{s(r)€A;i=1,....,m}-P{r(r)€A;i=1,...,m}l = E,,

A€E€eZ
XiyeeesXpm
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then lim, ,, E, = 0. Thus, for a new E, incorporating the error terms in
(4.10),

(xl, ,x )[ {]-:-[ f-r(xk)le§0} - kl:[lvl(xk)]

(4.11) z [ {r(r) €bpsi=1,...,m} - ﬁvl(xk)-Ee]

ﬁ P{r.(7) €,&) - ﬁ vi(x) — Ee].
k=1

(xl’ ’xm [ k=

For x, € J;,
P{ry(r) €60} = P["k(”) €, &olre(7) € jz} - P{"k(T) & ‘Tz}
This last probability is uniformly bounded for all x; by a term of order n /4
So for some new E,, the right-hand side of (4.10) is bounded below by
(4.12) inf | [T P{ry(r) €,.£lri(7) €J;} - E,
X | k=1
Now

P{rk(“') €,éolri(7) € jz} = Jinf:i P{rk(”') €, &olre(7) € Jj}’

J

and the conditional distribution of r,(7) in J; converges umformly in j toa
uniform distribution as £ — 0. So for any §, N 0, when ¢ is sufficiently small,

(4.13)  P{ry(7) €&l (7) €} 2 b, — 8y > vy(x,) + 6/4 — 8.

Thus, for 8, < 8/8, the expression in (4.11) is bounded below by §/8 — E,,
concluding the proof. O

In the next lemma we combine the results of Lemmas 4.1 and 4.2 to show
that if ; €0 € G, then at time T’ = T + 7, with high probability, , .£;. € G.
For convenience, we define L = aT", J = J,(L) and D,(k) will be the density
of particles in ; .7 in the % th subinterval of [0,2L]. The number of subinter-
vals is n, given by (4.8).

LEmMA 4.3. Given 8, > 0, for ¢ sufficiently small,

inf P{D (k) > b, forall kl; £} > 1 —8,.

7,:60€G
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Proor. For x € (0,L) and , ¢, € G,
P{x EJ,egT'lJ,a*gO} = P{for some B eJ,eé';"T" B CJ,sg-r'J,egO}

> P{IJ,Eﬁ‘"T'I <N and for some B€e; %7, B CJ’£§T|J’e§0}
> P{Ieé’T‘eT'I < N and for some B € {7,

(4.14) Byt 1506 = PM(vy))
> P{for some B €, T, B C; £, £ = PM(v,)}
- P{.&"1 > N}
> Plx €, &1l .60 = PM(vy)} — v
> vy(x) —8/8 — y.
If y is chosen less than 8/8, then the last expression in (4.14) is at least

vx) +386/4=b; +6/4 when x € J;. Thus E{,Dy(j)} = b; + 6/4 and our
choice of n, and Lemma 4.1 give the desired result. O

We have now shown that with high probability, a good configuration will
propagate through the tube J, and create another good configuration, slightly
offset in space, at time T''. This will be used in the theorem to show that good
configurations percolate on a large scale space-time lattice and finally to
estimate the equilibrium density of the process.

THEOREM [Part ()]. If A > 4.5, 8 > 0 and £, = PM(3), then

liminf lim inf P{x €.¢£,} > p;.

e—0 t—o

Proor. Let G(m, k) be the set of configurations at time AT’ such that the
Jth subinterval in [(m — 1)L,(m + 1)L] has density at least b, for j =
1,...,n. (Here n is as given in Lemma 4.1.) The main idea in the proof is that
the set of pairs (m, k) such that the process has a configuration in G(m, k)
will dominate a connected cluster in supercritical oriented percolation.

First, if (£, = PM(8), then for each m, .£, € G(m, 0) with positive probabil-
ity. The Borel-Cantelli lemma implies that with probability 1, .¢, € G(m,0)
for infinitely many m. Therefore we will assume, without loss of generality,
that ,£, € G(0,0).

We will be working in the oriented percolation lattice in Z2, with sites
(m, k), where m and %k have the same parity and with directed bonds from
(m,k) to (m + 1,k + 1). We choose configurations £7, ¢ € G(0,0) to mini-
mize the conditional probability of G(1, 1) [respectively, G(—1,1)] given _¢, =
¢ (respectively, ¢, = £'). For a given w € Q, we will let the bond (m, k) —
(m + 1,k + 1) [respectively, (m — 1,k + 1)] be open if and only if the
particle system restricted to the translate of the strip J (L) [respectively,
J_(L)] with £, = € + mL (respectively, ¢ + mL) has a configuration in
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G(m + 1,k + 1) [respectively, G(m — 1,k + 1)]. A site (m, k) in this lattice is
“lit up” if there is a sequence of open directed bonds connecting (0,0) to
(m, k). Let us call this event S(m, k). Because the particle system is attrac-
tive, it will stochastically dominate the lit up sites of the lattice in the sense
that for any collection of pairs (m, , k,),(m, 5, k), ...,(my 1, ky), ...,

(4.15) P{EgkiT, & () G(my k;) fori = 1,2,...} > P{ N S(m, . k,.)}.
J i,J

Whether or not the bond (m, k,) = (m,, k,) is open depends only on the
portion of the point processes in the strip connecting (m,L,k,L) to
(myL, kyL). Hence the states of two such bonds are independent unless the
strips overlap. In other words, {(m,, k,) = (m,, k,) is open} and {(m g, k;) >
(my k,) is open} are independent events unless (m,,k,) = (mg, ks) or
(my, ky) = (my, ky). The lit up sites dominate a cluster in the 1-dependent
oriented site percolation model. If we choose ¢ sufficiently small to satisfy
Lemma 4.3 with 8, = 337, then the results of [4], Section 10, indicate that
with positive probability the lit up sites form an infinite cluster. Since an
infinite number of sites are lit up at time zero, percolation occurs with
probability 1.

To obtain the limiting density, we need another result about supercritical
oriented percolation. Let (). be the event that the cluster of sites connected to
(0, 0) by a sequence of open directed bonds is infinite. If the probability of an
open bond is 1 — ¢, then

(4.16) ’}im P{(m, k) is lit up |Q,} = v(&,)
and
(4.17) lim »(so) = 1.

801,0

For x € [(k — 1)L,(k + 1)L],

liminf P{x €,£,,., )

n—>oo

(4.18) L
> liminf P{G(n, k)} - P{x €,£,1,£, € G(0, k)}.

From Lemma 4.2, the last term is at least v,(x — kL) — E,, where lim, |, E, =
0. Thus

lim inf P(x €,&,7..} = [{os(x — EL)} = E,]u(e).

But the process is homogeneous in space, so the limit is independent of x and
llm lnf P{x etsfnT’+-r} = [max{vl(x)} - EE]V(&’) .
n—o
By the choices of b and a made in Chapter 3, max{v,(x)} can be made
arbitrarily close to p;. So

(4.19) liminf liminf P{x € _£,7...} = p;.

-0 n—o
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Our choice of T (and hence of T') was arbitrary, provided it was sufficiently
large. P{x €_£,} is a continuous function of ¢. These two facts combined with
(4.19) imply by an elementary argument that

(4.20) liminf liminf P{x €_.¢,} > p;. O

e—0 t—o o

THEOREM [Part (ii)]. If A < 4.5, then

lim limsup P{x €&} = 0.
el0 t—> o

REMARK. Because the system is attractive, it will suffice to prove the
theorem when ¢, = ¢Z (= PM(1)).

Proor. For this part of the theorem, v,(x) is a stable solution of (1.2)
which is 1 on the sides of J. Define v,(x) and & as before and let b, =
inf, . 7. vi(x) — 8/4. Then corresponding to equation (4.4), we have

(4.21) lir% P{.D;(%k) < b, for all k} = 1.
€l
The steps of the proof are exactly the same as before, and the same choice of
n, suffices.
Now of course the good configurations satisfy
(4.22) Dp(k) <b, forall k.

Corresponding to Lemma 4.2, we have

lim inf{ inf inf ﬁ vi(x) — E{ ﬁ Eff(xk)Lfo}
k=1 k=1

e—0 £0€EG (xy,...,x,

}>0.

Since vy(x;) = 1 if |x;| > L(a, b), we again assume |x;| < L(a, b). Then (4.10)
becomes

B [1.6.Ga)

(4.23) <P{sy(1) €&y fori=1,...,m}
+ P{s;(¢) & J (M) for some i and for some ¢ < 7}
+ P{minimum of m birthtimes is less than 7}.
The same computations may be carried out to yield
(4.24) P{ry(r) €.&lru(7) € ;) < vy(x,) — 8/4 + 8,

in place of (4.13).
Corresponding to Lemma 4.3 we have for small ¢ that

inf P{De(k) < bk fOI‘ a.].l kIJ efo} > 1 - 60.
J,:60€G ’

The proof follows the same computational steps with inequalities reversed and
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plusses and minuses interchanged to yield

P{x €, &rl; Lo} < b, —d/4

when x € J;.

The final steps of the proof use the same lattice and the percolation of the
sites G(m, k). The inequality in (4.18) gets reversed. b and a can be chosen so
that min{v,(x)} is arbitrarily close to 0 and (4.20) becomes

lim sup limsup P{x €.} < 0.

e—0 too

This completes the proof of the theorem. O
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