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THE A.S. BEHAVIOR OF THE WEIGHTED EMPIRICAL
PROCESS AND THE LIL FOR THE WEIGHTED TAIL
EMPIRICAL PROCESS

By Joun H. J. EINMAHL!

Eindhoven University of Technology

The tail empirical process is defined to be for each n € N, w,(¢) =
(n/k,) %, (tk,/n), 0 <t < 1, where a, is the empirical process based on
the first n of a sequence of independent uniform (0, 1) random variables
and {k, ), _, is a sequence of positive numbers with k,/n — 0 and &, — «.
In this paper a complete description of the almost sure behavior of the
weighted empirical process a,a,/q, where g is a weight function and
{a,),-1 is a sequence of positive numbers, is established as well as a
characterization of the law of the iterated logarithm behavior of the
weighted tail empirical process w,/q, provided k,/loglog n — ». These
results unify and generalize several results in the literature. Moreover, a
characterization of the central limit theorem behavior of w,/q is pre-
sented. That result is applied to the construction of asymptotic confidence
bands for intermediate quantiles from an arbitrary continuous distribution.

1. Introduction. Let U, U,, ... be a sequence of independent uniform
(0, 1) random variables and for each n € N, let

n
F(¢) = n=t Z 1[0,t](l]i)’ 0<t<1,
i=1

be the empirical distribution function based on the first n of these random
variables. The uniform empirical process will be written as

a,(t) = nV2(Fy(t) —t), 0<t<l.

Let {k,)°_, denote a sequence of numbers such that foralln € N, 0 < 2, < n,
k,/n — 0 and k, — ». Now define the tail empirical process in terms of the
sequence {&, ) _,, by

w,(t) = (n/k,) %a,(tk,/n), 0<t<l.
Let Q be the class of weight functions defined by
Q = {q:[0,1] - [0,%): g continuous and strictly increasing} .

The aim of this paper is threefold. First, we will present a complete
description of the almost sure behavior of the weighted empirical process
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a,a,/q, where ¢ € Q and {a,};_; is a sequence of positive numbers. Second,
under the additional assumption that k,/loglog n — », we will characterize
the almost sure behavior of (2loglog n)~'%w,/q, q € Q; that is, we will
obtain necessary and sufficient conditions for the law of the iterated logarithm
(LIL) for the weighted tail empirical process. Both results, which may be
considered as final, unify and generalize several results in the literature. The
method of proof, which is similar for both results, is classical: it consists of
using a sharp exponential inequality in conjunction with a maximal inequality.
This method is new, however, in this type of theorem. Third, necessary and
sufficient conditions for the central limit theorem (CLT) for w,/q, ¢ € Q, are
presented. That result easily yields asymptotic confidence bands for intermedi-
ate quantiles from an arbitrary continuous distribution.

The statement and proof of the result for a ,«,/q are deferred to Section 2.
The strong and weak limiting behavior of w,/q are presented in Sections 3
and 4, respectively. All the results are followed by a thorough discussion.

2. The a.s. behavior of the weighted empirical process. In this
section the subject of our study is the process a ,«,/q. Introduce a subclass of
Q by

Qo = {g € Q: ¢/I'/? nonincreasing},

where I denotes the identity function. Furthermore, write

A(q) = foe'e1/(q2(t)1oglog(1/t))dt

and || fIl = supy ., ; If(#)| for a function f: (0,1) - R. The following law of
the iterated logarithm is well known.

Facr 1 [James (1975)]. Let g € Q,. If A(g) < », then almost surely the
sequence {(2loglog n)~'/2a,/q)_, is relatively compact in B with the set of
limit points equal to {f/q: f € F}. Conversely, if A(q) = «, then

limsup (2loglogn) 1/zllazn/qll = a.s.
(Here B denotes the space of bounded real-valued functions on [0, 1] with the

sup-norm and F denotes the set of absolutely continuous functions f € B such
that £(0) = f(1) = 0 and [}(f'(¢)?dt < 1))

Fact 1 gives a complete description of the almost sure behavior of a,«,/q
as long as A(q) < «: we immediately have that a,(loglog n)'/?2 — 0 implies
lim, . a,la,/qll = 0 as. whereas a,(loglog n)'/2 - « implies
limsup, . a,lla,/qll = © as. So for the present investigation we may and
will restrict ourselves to the case A(g) = « and because of the converse part of
James’ result we will assume in addition that a ,(loglog n)'/? — 0.

Now we are prepared to present the results of this section. For notational
convenience we set b, = ¢~ '(a,/n'/?) and work with the sequence {b,)_,.
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Define the following conditions:

(2.1) n'/%q(b,)(loglog n)"/* >0, n - «,
(2.2) nb, |,
(2.3) n°b, 1t for some (large) ¢ > 1,

(a) q/I'*7 and q/I|

(24) or
(d) q/I'?}, and q/I"t for some n > 0.

THEOREM 1. Assume q € Q and A(q) = .
@) If b, = © and (2.4) holds, then

(2.5) limsupn'/?q(b,)lle,/qll =« a.s.
Gi) If b, < » and (2.1)-(2.4) hold, then
(2.6) '}i_r)linl/zq(bn)lla,,/qll =0 a.s.

CoroLLarY. Ifq € Q, A(q) = », (2.1), with b, = (n(log n)***)~1, holds for
any ¢ > 0 and (2.4) holds, then

—log nq_l(—le——))
n'?|a,/qll

lim sup =
n—oo loglog n

DiscussioN. Theorem 1 has been proved in the literature for various
special choices of the sequence {b,)_; or the weight function q. Csaki (1975,
1982) proved the result for ¢ = 1'/2, Shorack and Wellner (1978) for ¢ = I and
Mason (1981) for ¢ =1%, 1/2 < a < 1. Moreover, Lai (1974) and Wellner
(1977, 1978) established the theorem for a, = n~'/2, Andersen, Giné ar.d Zinn
(1988) for a, =nP"'/%2 0 <B <1/2, and Einmahl and Mason (1989) for
a,=nP"12/(loglog n)?, 0 < B < 1/2. However, the general result, that is,
leaving both {b,};_, and ¢ arbitrary, seemed inaccessible. Note that it is
pointless to consider the process a,a,/q itself instead of a,lla,/ql, since it
follows from the theorem that no proper standardization of the process is
possible. It is also pointless to consider weight functions which are ““infinitely
smaller”” than the identity function I, since lim, 109(t)/t = 0 trivially implies
lla,/qll = =. Finally, note that the most interesting and hardest part of the
theorem concerns the weight functions satisfying (2.4b) and A(g) = ». These
weight functions bridge the gap between James’ (1975) LIL and Cséki’s (1975,
1982) theorem. The corollary is the appropriate generalization of Corollary 3.2
in Csaki (1975).

Before we present the proof of Theorem 1 we state, for convenient reference
later on, a number of facts.
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Facr 2 [Cséki (1975, 1982)]. Let {b,}); _, be a sequence of positive numbers,
with ¥ b, < « and nb, |, then

lim (nb,)"?lla,/I'%| =0 a.s.

Fact 3 [Shorack and Wellner (1986), page 446]. Let 0 <a <b/2 <b <
1/2. Then for q € Q,

P( sup la,(t)l/q(t) > 1)

a<t<b

b 1 ~22 q%(t) (Aq(t)
*Pl 128 " ¢ nl/%

[
(Here y: [0, ) — (0, ) is defined by
(x) = 2x"2{(1 + x)log(1l + x) — x};
we will use the properties: (a) ¢ |, (b) x > 10 implies y(x) > (log x)/x.)
Facr 4 [cf. James (1975) and Einmahl (1987), page 20]. Write n, = 2*,

keN; let 0<a<b<1l/2 and q € Q,. Then we have for all 2 € N and
A > (8b)'2/q(b):

P( max  sup le,(¢)l/q(¢) = A) < 2P( sup la,, (H)l/q(t) = )\/81/2).
b

ny<n<npi1g<t<hd as<t<

Proor oF THEOREM 1. (i) Assume YL b, = « and (2.4). We have for any
>0, P(U, <8b, i.0.) =1and

n*?q(b,)lle,/qll = n*/?q(b,) /(2n*?q(U,)).

Hence

limsupn'/?q(b,)lle,/qll > limsupq(b,)/(2q(8b,)) =67 "/2 as.
n—o n—o
Letting 6 | 0 completes the proof of this part.
(ii) Assume L b, < « and (2.1)-(2.4). It is easily seen, since ¥ Mb, < « for
any M > 1 and since q/I |, that it suffices to show for some K € (0, «),

limsupn'/?q(b,)lle,/qll < K a.s.

n—ow

Note that P(min, _;_, U, < 2b, i.0.) = 0. Hence

12

n

2b
lim supn'/?q(b,) sup la,(¢)l/q(t) < limsupng(b,)
n—o 0<t<2b, n—w q(zbn)

< limsup2nb, =0 a.s.

n—ow
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So it remains to prove that

limsupn'/?q(b,) sup le,(¢)l/q(t) <K as.

n—w 2b,<t<1

First assume (2.4a) holds. Then

lee, ()] 1172
n/%(b,) sup la(1)l/a(t) <n'/%q(b,) sup A T

2b,<t<1 L <t<l
1/2
< (nb,)"*la, /1.

An application of Fact 2 completes the proof for this case.
Now assume (2.4b) holds. Because of (2.1) and Fact 1, it suffices to show for
some small § > 0,

limsupn'/2q(b,) sup la,(¢)l/q(¢t) <K as.

n-—o 2b,<t<é

From Fact 4 and the Borel-Cantelli lemma, it is enough to prove, for n, = 2%,
that

(2.7 %P( sup la,, (t)/q(¢) = K/((Snkﬂ)lﬂq(bnk))) < o,

2b, <t<é8

Rk+1

Now we use Fact 3 to obtain sharp upper bounds for the probabilities in (2.7),
assuming that k is large. We get

P s lan, (01/a(0) 2 K/(6na)Va(52,)
2b

npy SESS

<8f's —ex( —Kq*(t) Ka(®) dt
- . p\1024nk+1q2(b"k)t 82n;.,1q(b,,)t '

Define ¢, € (0, 6] by Kq(tk)/(81/2nk+1q(b )t,) = 10 V e!/7; if no solution in

(0, 8] exists set ¢, = 6. We then have, if K is such that K?2 2(é)‘)a/;(lO Vel/m) >
3 - 20486,

51 ~KZ%*(t) Kq(2) &
/, ¢ &P 1024nk+1q2(bnk)t¢ 8120, ,1q(b,, )t

k
51 [ -K%o)overn| 1 3
< - < log — € e VIR
ftk t © P\ T 2048n,47%(0,,)0 1 TP\ nud?(0,,)

< log n, exp(—3loglog n,) = (log n,) 2,

which is summable.
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Finally, consider

[+ g K2 Kq(t) y
xP 1024nk+1q2(bnh)t¢ 82n,,.q(b, )t

t Kq(t) Kq(2)
</ (512 ON) lo g( 81/2nk+1q(bnk)t)) dt.

From q/I" 1, we see that

Br+1

(2.8)

q log on (0,¢%,].
81/2"k+1‘1(bn,,)1 *

Hence, using (2.3) and (2.4b) and taking K large enough, the right-hand side
of (2.8) is bounded from above by

t

f 1dt -K \ K
- ex (o}
b £ T\ 512272 8| (8- 29) Pn, b,

Rk+1

1 2
< ].Og b (nk+1bnh+l) .

Np+1

So it remains to show that this last expression is summable in k. Using (2.3),
we see that it suffices to prove that

% k(n,zb,,k)2 < oo,

Observe that ¥ ,b, < » and b, | imply ¥ ,n,b, <. But ¥,n,b, <~ and
nyb,, | imply knkb — 0, k = «, and hence k(nkb > < nyb,, for large k.
This completes the proof m]

PROOF OF THE COROLLARY. Apply Theorem 1 with b, = (nlogn)~! and
b, = (n(log n)**¢)~1, ¢ > 0. Letting ¢ | 0 gives the desired result. O

3. The LIL for the weighted tail empirical process. In this section
we will deal with the process (2loglog n)~'/2w,/q. For the sequence {k,);_,
define condition

(©) O<k,<n, k,/nl0, k,? and £k,/loglogn — .
For the unweighted process (g = 1), the following is known.

Fact 5 [Mason (1988)]. Let {&,})_ 1 satisfy condition (C). Then almost
surely the sequence {(2loglog n)~ /2w Z J2_, is relatively compact in B with the
set of limit points equal to K. [Here K is the non-tied-down version of F, i.e.,

apart from f(1) = 0, K satisfies the same conditions as F does.]
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It is the purpose of this section to establish the analogue of James’ (1975)
LIL for the tail empirical process, that is, to give necessary and sufficient
conditions for the LIL for the weighted tail empirical process. For ¢ € Q define
the following condition:

for any M > 0 and n large, the function

. loglogn % q
q log k. T

attains, on

3.1) 1 M 2loglog n
' ¢ (k,loglogn)?)]” 'k, |

its minimum in one of the two endpoints;
moreover, if this is the right endpoint, then for large n,

1
-1 >n"¢
7 ((knloglogn)l/z)

for some (large) ¢ > 1.

TuEOREM 2. Let {k,},_, satisfy condition (C) and assume q € Q,.
W If
k

M
__1 -1 <w
Lo ((knloglogn)”“’)

for all M > 0 and (3.1) holds, then almost surely the sequence
{2loglog n) 2w, /q¥:_, is relatively compact in B with the set of limit
points equal to {f/q: f € K}.

G If .

k. M
Y 7‘1_1( 1/2) =®

(k, loglog n)

for some M > 0, then almost surely the sequence {(2loglog n)~ 2w, /q}:_,
fails to be relatively compact in B.

The theorem has the following neat corollary.

CoroLLARY. Let {k,)._, satisfy condition (C), let ¢ € Q, and assume in
addition q/I" 1 for some n > 0.
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@ If

k 1
_n.-1 < o,
Lo ( (%, loglog n)”z)
then almost surely the sequence {(2loglog n)~'?w,/q},_, is relatively com-
pact in B with the set of limit points equal to {f/q: f € K}.
i) If

k 1
_n -1 = o
L1 ((k,,loglogn)”z) ’

then forany 0 <6 < 1,
limsup sup {2loglog n) Y w, (1) /q(t) == a.s.

n—owo 0<t<é

DiscussioN. Theorem 2 is the generalization of Corollary 5 in Mason
(1988) to arbitrary g; of course, it also generalizes Theorem 1 in Einmahl and
Mason (1988). It is striking that in Theorem 2 the class of weight functions for
which there is a functional LIL depends on the sequence {k,);_,, whereas in
its weak analogue (Theorem 3 in the next section), the class of weight
functions for which the functional CLT holds does not depend on {% ,};_,. On
the other hand, under the assumption of the corollary, it is easily shown that
the summability condition does not depend on {%,);_; for the special, but
interesting, choice k, = n%, 0 < a < 1. In fact, from some analysis it follows
that in this case L(k,/n)q~*(k, loglog n)~1/?) < « is equivalent to the old
James condition A(g) < » (see Fact 1). Finally, it should be noted that the
weight functions (log(1/I))™#, B > 0, satisfy the first part of condition (3.1)
and that, if B < 1, L(k,/n)q”(M(k, loglog n)~'/?) < », all M > 0, for all
{k,)°_, satisfying condition (C). Loosely speaking, this shows that Theorem 2
works on the whole range of sequences {k,};_,, that is, from sequences
slightly smaller than n, down to sequences slightly larger than loglog n. .

Proor oF THEOREM 2. This theorem is an easy consequence of the follow-
ing proposition combined with Fact 5. O

ProposiTION.  Let {k,):_, satisfy condition (C) and let ¢ € Q,. If

(3.2) Y L M forall M > 0
. —q < o fora >0,
nd (%, loglog n)l/2

and (3.1) holds, then for every € > 0 there exists a 0 < 8 < 1 such that
(3.3) lim s ln ()
. imsup sup
now o<t<s (loglogn)'?q(t)

If the summation in (3.2) is infinite for some M > 0, then for any 0 <8 <1
the limsup in (3.3) is greater than or equal to 1/(2M) a.s. If, in addition,
lim, , , t'/2/q(¢t) > 0, then for any 0 < & < 1 the limsup in (3.3) is infinite a.s.

<€ a.s
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Proor. Write

n

k M
34) r,=r(M)=-—"q! and v, = -—r,.
(3.4) (M) n q ((kn loglogn)1/2) Z,

We first prove the second part. We have P(U, < r,(M)i.0.) = 1 for the M for
which the summation in (3.2) is infinite. Hence for any 0 < § < 1,

i . lw, ()l
imsup sup
now 0<t<s (loglog n)*?q(2)

() euton

n

= limsup sup -
n—oo 0<s<dk,/n (loglogn)l/zq(sz—)

1/2
_n_) ae L
y k, 2n 1.
= = .S.
- n,?_?:olp 1/2 M oM **°
(loglog ) (k, loglog n)'/?

Note that the last statement of this part is easy, since in that case ¢ < cI'/?
for some ¢ > 0, which implies

limsup sup en ()
now o<tzs (loglogn)'/?q(t)

la,(s)l

> lim sup sup =0 a.s.
n—ox  (O<s<(nlogn)™! (CIOgIOg n)1/231/2
Now we prove the first part. Assume (3.1) holds and X r,(M) < » for all
M > 0. Note that P(min,_;_, U, < 4r, i.0) = 0. Hence, since q/I'/? |,

limsup sup |w,(2)|
imsup su
now 0<t<dv, (loglog n)l/zq(t)

( Zn_ ) 1/2|ozn(s)|

= limsup sup - ~
n—o 0<s<4r, (loglogn)l/zq(s—)

(3.5) k,
n 1/2 nl/2g
< limsup| ———— sup ————
n—>°°p(kn IOgIOgn) 0<s<p4r,, ( _n_)
qls
k,
I 4nr, 0
< = s,
< 11':1_?:p i a.s

where for the last equality it is used that r, | and X r, < .
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Hence it remains to show that for every small ¢ > 0 there existsa0 < § <1

such that
() )
JE— o t__
k, "\ n
(3.6) limsup sup

n—oo 4u,<t<8 (IOglogn)l/zq(t) B

Note that L g~ (n loglog n)~/?) < », since ¢~ '/I®’?, and hence
q~4¢)/t2 > 0, ¢ |0, which in turn implies q(¢)/¢'/% > =, ¢ 0. We will use
this several times. From the change of variables t&,/n, = s, we see that (3.6)

is equivalent to
n \1/2
. 76: la n( s ) |
lim sup sup

n
n—ow 4r,<s<8k,/n (loglogn)1/2q(s—

<¢g a.s.
i)

n

Applying Fact 4, we obtain from the Borel-Cantelli lemma that it suffices to
prove for n; = 27,

la,, () loglog n;\"2( ®n ., \'"*
3.7 L P sup s \Zs( i ’) ( Chi < .
j 4r, <s<ok,/n; ( n; 8
J+ J’ q s—k—J

nj

Nji1

Now we use Fact 3 and take j sufficiently large. The probability in (3.7) is then
bounded from above by

nj
—¢2loglog njknj+1q2(sk——)

ok /n; L n,

8 —
f,. s e 10247, , s

ny41

X ds.

8

( nj)

q|s7—

P ((loglognj)knlﬂ)l/z L
s

Nj+1

From the change of variables sn;/k n, =t We obtain as an upper bound

1 —&2loglog n ;q?(¢ loglog ;)" q(t
8f6 ! o glogn;q*(¢) | (log gl,z) 9 || 4.
v, t 2048t k%t
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Define ¢; € (0, 8] by (loglog n ;)'/?q(¢; )/(k,l/fltj) = 10 for large j, and observe
that for 8 small enough,

— exp

f,s 1 ( —&?loglog n;q%(¢) !/'( (loglog nj)l/zq(t) )) @t

,t 2048t kL% ¢
J+1
1 —&2loglog n ;q?(8)
(3.8) il J
< [t — dt exp 50185 ¥(10)

log — (1 2<q 2
< og;(ognj) < (log n;)
J

We also have for large j,

[tj lex —&%loglog n;q?(¢t) (loglognj)l/zq(t)~ &t
(loglog nj)/k,,j t 2048t k}l{flt
—&%(loglog n;)"q () 1/
[ 1 [z (oglogn;) g (t)ky] og 10) at
(3.9) (loglog nj)/k,,l t 2048

R, —&?(loglog n; )Vzkl/2 o 10 loglog n;
= 8| loglog n, | P 2048 (log10)q k.

<logn;exp(—3loglogn;) = (log nj)—2

From (3.8) and (3.9) it follows that the proof is complete if we show that

(3.10) [ -

J+1

(loglognj)/k,,ll . —&2loglog njqz(t) (loglog nj)l/zq(t) &
2048t kl/ 2

j+l

is summable in j. The expression in (3.10) is bounded by

4096

v

1/2
(2loglog ., )/k, .| 1 [ _SZ(IOgIOg nj) k};ﬁﬂ(t)
J ? exp

ny+1

L1/2

j+1

1/2
10,



692 J. H. J. EINMAHL

For large M this expression is in turn bounded by [use (3.1)]

1 —&*(loglog n,;)"/ kY2 M

nj+1

exp —
Un 4096k}1§fl(loglog nji1) 4

log

log (loglog nj+1)l/2M
kY2 ky/? (loglog njH)l/Zv,,j+1

njy1 N

—£%(loglog nj)1/2k}lﬁ1 (loglognj+1)1 10)
og

4096 k

LTS

Ve log nj+1exp(

| 1 ~82M1 M
= Ogv exp 8192 8 Njiiln;,,

Njy1
Velogn;,, exp(—3loglogn;,,)

2 -2
< 108 ——(ny01,,)" V log 70r)

nj+1
Since the second term is easily seen to be summable in j, we restrict our
attention to the first term. Observe that we may assume without loss of
generality r, > n~2, which reduces our problem to showing that * j(n j rnj)2 <

o, The proof can now be completed as the proof of Theorem 1. O

PROOF OF THE COROLLARY. (i) Observe that
Y (kn/n)q‘l(M(kn log log n)—l/z) <o forall M > 0,since g~ 1/IV" .
Moreover,

. loglogn\'? ¢ 2loglog n
alog| (=% —) 7|t O |

n

and hence (3.1) is satisfied. Applying Theorem 2 completes the proof of part (i).
(ii) Note that now X (k,/n)q” "(M(k, loglog n)~1/2) = o, for all M > 0.
Hence, letting M | 0 in the second part of the proposition yields part (ii). O

4. The CLT for the weighted tail empirical process and confidence
bands for intermediate quantiles. Here we present, without proof, the
weak analogue of Theorem 2. This result may be viewed as the Chibisov—
O’Reilly theorem for the tail empirical process. The sufficiency part follows
easily from Corollary 4.2.1 in Csorgd, Csérgs, Horvath and Mason (1986). Also
a direct proof (with the aid of Fact 3) of that part is rather straightforward.
The proof of the necessity part is standard. Note that the conditions on {%, ) _,
are milder than those in Theorem 2.
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THEOREM 3. Let {k,),_, be as in Section 1 and let q € Q. If

(4.1) llexp(_—/\%—z(L))

; dt <o forall A >0,
0

then there exists a sequence {W,};_, of standard Wiener processes such that
(4“2) ”(uM ‘.“Q)/ﬂ“'*P 0 asn — .

Conversely, (4.2) holding true for some sequence {W,),_, of standard Wiener
processes implies (4.1).

This theorem has an interesting application to the construction of asymp-
totic confidence bands for intermediate quantiles. The result is given in the
following corollary, but first some notation has to be introduced. Let X, X, ...
be a sequence of independent random variables with common distribution
function F. For 0 < ¢ < 1 define the quantile function @ by

Q(¢) = inf{x: F(x) > t},
and for each integer n > 1 and 0 < ¢ < 1 the empirical quantile function by
Q.(t) =X, ,, (k-1)/n<t<k/n, k=1,...,n,

where X, , < -+ <X, , are the order statistics based on Xj,..., X,. For
t <0,set @, t) = —oo.

COROLLARY. Let F be continuous, {k,):_, as in Section 1 and let ¢ € Q. If
(4.1) holds, then we have for any 0 < a < 1,

ool 58] <ol ) oo

- 1—-—a asn — x,

where, with W a standard Wiener process, ¢ = c(a, q) is defined by

P( sup IW(t)l/q(t) > c) = a.

0<t<l1

DiscussioN. It should be emphasized that continuity is the only condition
on F which is needed in the corollary. Usually results of this type are
established under additional (mostly extreme value type) conditions. Recall
that even for the definition of the standardized quantile process, which is often
used to generate confidence bands for quantiles, one has to assume that F' has
a density. See, for example, Corollary 3.2 in Einmahl (1991), where asymptotic
confidence bands for intermediate quantiles are derived along the above lines.
Hence the present corollary improves the results there as far as the conditions
on F (and also on g) are considered.
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PROOF OF THE COROLLARY. From Theorem 3 it follows that with probability
tendingto 1 —a, n > o,

n tk, tk,
_CSW(Fn(—)—T)/q(t)<C, 0<t<l.

n
Rewriting this yields
tk, cq(t) tk,, tk, cq(t)
(43) T(I_W)SF'L(T)<T(1+W , 0<t<l.

Let @, [set @,(s) =0 for s < 0] be the uniform quantile function and
observe that for 0 < s, < 1 we have

{Fy(t) <s}={Q.(s) >t}
Hence (4.3) can be written as

(4.4) Qn(%"—(l - ft%%zl)) < thn <Q,L(t—knl(1+ ft%%))), 0<t<l.

r

Now assuming without loss of generality that X; = Q(U,) and noting that
@, = @°Q, and that @ is strictly increasing on (0,1) (F is continuous), we
see that (4.4) is equivalent to

tk, cq(t) tk, tk, cq(?)
Qn(?(l‘zk—y—z'))SQ(7)<Q"(7(“W))’ prrst

This completes the proof. O
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