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SYMMETRY GROUPS OF MARKOV PROCESSES

By MinG Liao

Auburn University

We prove that if G is a subgroup of the (time-change) symmetry group
of a Markov process X, which is transitive and has a compact isotropy
subgroup, then after a time change, X, becomes G-invariant. The symme-
try groups of diffusion processes are discussed in more detail. We show that
if the generator of X, is the Laplacian with respect to the intrinsic metric,
then X, has the best invariance property.

1. Introduction. In this paper, a Markov process X, is assumed to be a
standard process. This is a strong Markov process with right-continuous paths
and quasileft continuity and with a separable locally compact Hausdorff state
space M. See [2] for the general theory of standard processes. Recall that a
Markov process X, is really a family {X}, x € M} of processes, where X/ is
the process starting at x. If g is a transformation on M, thatis, g: M -» M is
a homeomorphism, then g(X,) is also a Markov process. The transformation g
is said to be an invariance transformation of X, if the process g(X;) is
identical in law with X#™ and it is said to be a symmetry transformation of
X, if g(X7) is identical in law with X2 after a time change. We will give a
precise definition of time changes later. Both invariance transformations and
symmetry transformations form groups, which will be called, respectively, the
invariance group and the symmetry group of X,. The invariance group is
obviously contained in the symmetry group. It is also clear that if two Markov
processes differ by a time change, then they have the same symmetry group.
We will use the symbols Inv(X,) and Sym(X,) to denote, respectively, the
invariance group and the symmetry group of the process X,.

- The symmetry group was studied in Glover’s recent paper [3]; see also [4]
and [9] for related discussion. Among other things, he proved that if G is a
subgroup of Sym(X,), which is transitive on M and has a trivial isotropy
subgroup, then after a time change, X, becomes a process Y, which is
G-invariant, that is, G c Inv(Y,). Recall that a transformation group G is said
to be transitive on M if for any x,y € M, there is g € G such that g(x) =y
and the isotropy subgroup G, of G at some point p € M is the subgroup of G
consisting of transformations which fix p.

The present paper is motivated by the above result. QOur main result
(Theorem 1) extends Glover’s result to the case when the isotropy subgroup G,
of G is assumed to be compact instead of trivial. The extension makes possible
the application of the theorem to more interesting examples. We note here that
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564 M. LIAO

our technical assumptions (see the statement of Theorem 1) are stronger than
those used in [3]. This will enable us to avoid some difficult measure theoreti-
cal arguments.

Consider a family of Markov processes which differ from one another by
time changes. These processes have the same symmetry group and also the
same potential theory. A potential theory can be characterized by the total
collection of harmonic functions (see the next section for a precise definition of
harmonic functions). Note that two Markov processes have the same potential
theory if and only if they differ by a time change. This is a direct consequence
of the Blumenthal-Getoor—McKean theorem (see Chapter 5 of [2]). Thus, we
can talk about the symmetry group of a given potential theory. In the
probabilistic approach to potential theory, we study a Markov process which
has the desired potential theory. We have many choices for the Markov process
to be used. However, it seems that the best choice should be the one with the
best invariance property, that is, the one with the largest invariance group.
The question is whether such a process exists. By our result, if the symmetry
group is transitive on M and has a compact isotropy subgroup, then there is a
process in the family whose invariance group is the common symmetry group,
so it has the largest invariance group. We note here that the symmetry group
of a Brownian motion on a Euclidean space does not have a compact isotropy
subgroup, but we will see that its invariance group is still the largest among all
time-changed processes.

Some basic definitions are disposed of in the next section. In Section 3, we
state and prove the main result, Theorem 1, for the existence of invariant
processes. Section 4 contains several examples of invariant processes. We will
see that they may not be the processes with which we are most familiar.

In Section 5, we discuss symmetry groups of diffusion processes. This is
closely connected with the invariance theory of differential operators. Some
results may be known under a different context. We show that if the generator
of X, is the Laplacian with respect to its intrinsic metric, then X, has the
largest invariance group, provided that the dimension is not equal to 2 and the
metric is complete. The symmetry groups for Brownian motions on Euclidean
spaces, spheres and hyperbolic spaces are determined in Section 6.

2. Harmonic functions and time changes. Let D be an open subset of
M. A nonnegative function h defined in M is said to be harmonic in D if for
any x € D and for any compact subset K of D,

E{h(X*(Tk))} = h(x),

where Ty. is the first hitting time of K¢, the complement of K. For typograph-
ical convenience, we may write X(¢) for X,. Note that the harmonicity of A in
D may depend on its values outside the closure of D, since X, is not assumed
to be continuous.

Let H(D) be the space of all nonnegative functions on M which are
harmonic in D and let &# be the set of all homeomorphisms: M — M. Since
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two processes which differ by a time change have the same hitting distribu-
tions, by the Blumenthal-Getoor-McKean theorem (Chapter 5 of [2]), we
obtain the following characterization of the symmetry group Sym(X,):

(1) Sym(X,) ={g€ #;h-g e H(g YD)) for h € H(D) and any open D}.

Remark 1. If X, is a diffusion process on a differentiable manifold M
whose generator has smooth coefficients (see [6] for the definition of diffusion
processes on manifolds), then Sym(X,) contains only differentiable transfor-
mations. To see this, we observe that any open subset D of M with smooth
boundary has a smooth Poisson kernel. So any function % which is harmonic
in D is smooth in D. If g € Sym(X,), then A’ = h o g is harmonic in g~ (D)
and so is smooth there. For any fixed point x € D, by adjusting the boundary
values or even the open set D, we can obtain a harmonic & whose gradient at
x has any desired direction. This means that we can solve for g from a system
of equations &' = h - g. Hence, g is smooth.

Let us recall briefly the definition of time changes for Markov processes; see
[2], Chapter 5 for details. A real-valued process A, is said to be an additive
functional of X, if it is adapted to the filtration generated by X, and satisfies

Ayg=0 and A, =A,+A, -0,

where 0, is the shift operator associated with X,. In this paper, we will assume
that an additive functional has continuous strictly increasing paths. Let 7, be
the inverse of A, considered as a function of ¢. 7, is called a time-change
process of X,. It is easy to show that X(r,), which has the same physical paths
as X, but runs according to a different clock, is also a Markov process. A
Markov process Y, is said to differ from X, by a time change if it is identical in
law with X(r,) for some time-change process 7, of X,.

Let a(x) be a positive Borel function on M and A, = [{a(X,)ds. Then A,
is an additive functional and a(x) will be called the density of A,. Note that
the density a(x) of an additive functional A, is assumed to be strictly positive.
If 7, is the inverse of A,, then the time-changed process X(r,) is said to be
obtained from X, by the time change with density a(x). Sometimes it would
be convenient to write A} and 7 for A, and 7, restricted on the paths of X,
starting from x. If A, has a density a(x), then A} = [{a(X7)ds.

If g € Sym(X,), then the process g(X,) is identical in law with X(7£) for
some time-change process 7£. Precisely, this means that for any x € M, the
process g(X7) is identical in law with X&®)(7£ ™) where 787 is the restric-
tion of 7f to the paths of X7 (i.e., the paths of X, starting at y). Let A% be
the associated additive functional. If a(x) is the density of A%, it will be called
the time-change density of g for X,.

REMARK 2. Let G be a subgroup of Sym(X,). It would be useful to know
whether there is a positive continuous function a(x, g) on M X G such that
for each g € G, a(x, g) is the time-change density of g for X,. However, for
this to make sense, we need first to equip G with a topology.
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Let G be a transformation group on M. It is said to be a topological
transformation group on M if the maps (g, k) — gh from G X G into G, g —
g~ ! from G into G and (x, g) — g(x) from M X G into M are continuous. By
[1], if M is locally connected, then the compact-open topology on G is the
weakest topology on G so that G is a topological transformation group. When
M is a manifold, it may be possible to equip G with a manifold structure so
that it becomes a Lie transformation group (this means that the three maps
above are smooth). The topology of a Lie transformation group may be
stronger than the compact-open topology. There is at most one topology on G
to make it a Lie transformation group ([8)).

Let X, be a diffusion process on a manifold M. Assume that the generator
L of X, has smooth coefficients and for any x € M, there is f € C;, the space
of smooth functions on M with compact support, such that Lf(x) = 0. If G is
a Lie transformation group on M which is contained in Sym(X,), then there is
a positive smooth function a(x,g) on M X G such that for each g e G,
a(x, g) is the time-change density of g for X,.

To prove this, first observe that g(X,) is a diffusion process X, with
generator L¢ defined by

(2) Lef(x) = L(fog)(g™'(x)).

By the martingale characterization of diffusion processes (see Definition 6.1 in
Chapter IV of [6]),

E[ f(X*(T,))] - f(x)
E[T,]

Lf(x) = lim

and

E[f(X*(Ty))] - f(x)
E[T;] ’

LEf(x) = lim

where T, and T, are, respectively, the exit times of X, and X, from open sets
U, which shrink to x. Since X, and X, differ only by a time change,
E[ f(X*(T,)»] = E[ f(X'*(T,))]. By our assumptions, 3 f € C? with Lf(x) # 0,
and it follows that lim, E[T,]/E[T,] exists and is finite. On the other hand,
Léf'(x) # 0 for some f' € C?, so this limit is strictly positive. Now we can
define

a(x,8) = imE[T,1/B[T;] = Lf(x) /L¥f().

It is clear that a(x,g) is a positive smooth function on M X G whose
definition is independent of f < C . We have L€ = a(x, g)"'L.

For fixed g € G, let a(x) = a(x, g), A, be the additive functional of X,
with density a(x) and 7, be the inverse of A,. Check that 7, = [{a(X(7,))"'ds.
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Let Y, = X(7,). Then

F(Y,) = f(Yo) — fot(a‘lL)f(Ys)ds

= F(%) = f(¥) = [[LF(¥,) d7, = f(X,) = f(Xo) = ["LF(X,) ds

is a martingale. This implies that Y, is a diffusion process on M with
generator a(x) !L. Hence, Y, is identical in law with g(X,). Our claim is
proved.

3. Existence of invariant processes. Let X, be a Markov process on
M and G be a topological transformation group on M which is contained in
Sym(X,). We will say that G has a continuous time-change density for X, if
there is a positive continuous function a(x, g) on M X G such that for each
g € G, a(x, g) is the time-change density of g for X,. By Remark 2, if X, is a
diffusion process and G is a Lie transformation group which is contained in
Sym(X,), then G has a continuous time-change density a(x, g) for X,, which
is in fact smooth. We note that if G does not have a continuous time-change
density for X,, it may have one for X, after a time change.

For a topological transformation group G on M, the map ®: G - M defined
by ®(g) = g(p) for some fixed p € M is continuous. If G is transitive on M,
then @ is surjective and it induces naturally a continuous bijection &:
G/G, - M, where G/G, is equipped with the quotient topology induced from
the natural projection G —» G/G,. In general, ®~! is not continucus. It is
continuous if ® is an open map, that is, if ® maps open sets of G into open
sets of M. This is equivalent to saying that ® maps any neighborhood of the
identity element of G into a neighborhood of p. We will say that G is regularly
transitive on M if G is transitive on M and if ® is an open map. Note that
our definition is in fact independent of the choice of the fixed point p € M. By
[1], if G is a transitive Lie transformation group on a manifold M, then it is
regularly transitive on M. We note that if G is a regularly transitive topologi-
cal transformation group on M, then ®: G/ G, —» M is a homeomorphism.

THEOREM 1. Let X, be a Markov process and G be a topological transfor-
mation group which is contained in Sym(X,). Assume that G has a continuous
time-change density for X,, it is regularly transitive on M and its isotropy
subgroup G, at some point p € M is compact. Then there is a Markov process
Y, which differs from X, by a time change and whose invariance group Inv(Y,)
contains G, that is, Y, is G-invariant.

PrROOF. A point x € M is said to be trap of X, if P(V ¢, X} =x) = 1. It is
easy to see that if g € Sym(X,), then g maps the set of traps onto the set of
traps. Therefore, by restricting X, to the complement of the set of traps, we
may assume that X, has no traps. Then, by the strong Markov property, for
any x € M, the exit time of X from the single point set {x} is finite. Hence,
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we can find a sequence of open neighborhoods U, of x such that if T, is the
exit time of X; from U,, then P(T, < «) — 1.

Since G has a continuous time-change density for X,, there is a positive
continuous function a(x,g) on M X G such that for each g € G, a(x, g) is
the time-change density of g for X,. We will first prove the following formula.

(3) VxeMand g,h€G, a(x,gh)=a(g '(x),h)a(x,g).

If two processes X, and Y, are identical in law, we will write X, = Y,. Recall
that

h(X}T'@) = X5 (}o®),

where 7/»* is the inverse of A"* = [{a(X?, h)ds as a function of ¢. We have
X*(r8h%) = gh(Xth g“(x)) ~ g(Xg“(x)(Tth,g“(x))).

Since

g(XF @) = X*(£%),
if we let

, t

4, ['a(g™(X3p.), ) ds
and let 7; be the inverse of A/, then
(X< (et ) = 5(257).

Hence,

X"(‘rtgh'x) = X"(Tft’x).

Let Z, and Z; be, respectively, the left-hand side and the right-hand side of
the above. Fix an open neighborhood U of x and let T and u be, respectively,

the exit times of X7 and Z, from U. Then 78"* =T, so u = Agh ¥ Slmllarly,
if we let v be the exit time of Z, from U, then t8%(7)) =T, 7, = A" and
v =A(A%"). Since Z, = Z;, we have u =~ v and AZT =~ A(AS: *). But

AgT’“‘=f a( X?, gh) ds,
0
x AL - T _
A(A% )=f0 " a(gY(X%.x), h)ds—j a(g N (X7), h) dAS*

T
= [a(e7(X5), h)a( X, 5) dt.
Hence,
[a(X;,gh) ds = ["a(g (X5), h)a( X, g) ds.
0 0

Since a(x, g) is continuous in x and X, has no traps, we can find a sequence
of open neighborhoods U, of x shrinking to x and having the following
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property. Let T, be the exit time of X; from U,. Then P(T, < ») tends to 1
and

a(x,gh)T, + R, =a(g ' (x),h)a(x,8)T, + R,

where the random variables R, and R, satisfy R, < T,/n and R/, < T, /n.
The equation (3) follows from the above relation.
Next, we show that

(4) Vgeaq, a(p,g)=1.

Since G, is compact, there is a left-invariant finite Haar measure u on G,.
Integrating both sides of (3) with respect to w(dh) and letting x = p and
€ G,, we obtain

[a(p,R)u(dh) = [a(p,gh)u(dh) = [a(g7X(p), k)a(p, g)u(dh)

= fa(p,h)/.l,(dh)a(p’g)'

This proves (4).
Since G is transitive on M, for any x € M, 3 g € G such that g(p) = x.
Define

(5) a(x) =a(x,g), where g € G satisfies g(p) = x.

By (8) and (4), the definition of a(x) is independent of the choice of g. We
show that a(x) is continuous on M. The function c(g) defined by c(g) =
a(g(p), g) is continuous on G. Check that c(gh) = c(g) for g € G and & € G,
Therefore, ¢ induces naturally a continuous function ¢ on G/G, such that
c(gG,) = c(g) for any g € G. Letting o: G/G, > M be defined as in the
paragraph before Theorem 1, we see that a(x) = ¢ o ®~*(x). This shows that
a(x) is continuous on M.

Let A, = [¢a(X,)ds, 7, = A; !, the inverse of A, considered as a function of
t, and let Y, = X(7,). We claim that G < Inv(Y,).

Fix g € G. We want to show g(Y;*) = Y£® for any x € M. Since g(X}) =
X&@)(r££) we have

g(Y7) = g(X5) = Xg(x)(,,.flt:g(x)),
where 7, is the inverse of
4= [la(g (X% (o2 ))) s
Since Y™ = X&8)(7£®), it suffices to show
Xg(x)(q-f,t’g‘x)) = X6)(78@),
or equivalently, 78 8%)(7;) = 7). We have

788 () = 788 A]) = (Ag,g(x))“l(A't—l) = (Ao A8
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Since 8™ is the inverse of A4, it now suffices to prove A$® = A'(A%E™),

A(A455) = [ (g7 (X5 (a8:5))) ds = [a(g™(X2)) dag o
0 0

~ [(a(g H(X5®))a( X5®, g) du.
0
Let z = X£*) and choose h € G such that h(p) = g~1(z). We have
a(g7'(2))a(z,8) = a(g7'(2), h)a(z,g) = a(z, gh) = a(2).

Therefore,
A (485 = [‘a(XED) du = AF.
0

The theorem is proved.

ReMARK 3. The proof of Theorem 1 shows that the G-invariant process Y,
is obtained from X, by the time change with density a(x) which is given
by (5).

ReMARK 4. We will sketch a simpler proof of the above theorem when X, is
a diffusion process on a manifold M whose generator L has smooth coeffi-
cients and G is a transitive Lie transformation group on M which is contained
in Sym(X,) and which has a compact isotropy subgroup G,.

A point x € M is a trap of X, if and only if Lf(x) = 0 for any f€ C7. It
follows that the set of traps is a closed subset of M. Since a symmetry
transformation leaves the set of traps invariant, by restricting X, on the
complement of the set of traps, we may assume that X, has no trap point.
Then by Remark 2, there is a positive smooth function a(x, g) on M X G such
that for any g € G, a(x, g) is the time-change density of g for X,.

The differential operator L is said to be G-invariant if L2 = L for any
g € G, where L# is defined by (2). It is clear that X, is G-invariant if and only
if L is G-invariant. In order to find a G-invariant process Y, which differs
from X, by a time change, it suffices to find a G-invariant differential operator
L’ such that L' = bL for some positive function b, because then the diffusion
process Y, generated by L' is G-invariant and differs from X, by the time
change with density b 1.

For g € G, the generator of g(X,) is given by (2). Since g(X,) differs from
X, by the time change with density a(x, g),

VxeMandVge G, L(f-g)(g ' (x))=a(x,g) 'Lf(x).

Let x = p and g € G, and integrate the above equation with respect to a finite
left-invariant Haar measure u(dg) on G,. We obtain H(f) = CLf(p), where C
is a positive constant and H(f) is defined by [L(f ° A) p)u(dh). We can show
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that H(f o h) = H(f) for any h € G,, so that
VheG, L(f-h)(p)=Lf(p).

Now for any x € M, choose g € G such that g(p) =x. Define L'f(x) =
L(f - g)Xp). The operator L' is well defined. We check that L’ is G-invariant.
Since

Lf(x) =L(feg)(g7'(x)) = a(x,8) "'Lf(x),
we have L' = b(x)L, where b(x) = a(x,g)" ! and g € G is chosen so that
g(p) = x.

REMARK 5. We will not consider the uniqueness of invariant processes Y,
in general and will be content with a simple uniqueness result for diffusion
processes. In the sequel, a diffusion process is assumed to have a generator
with smooth coefficients. Let X, be a diffusion process on a manifold M and
let G be a transitive Lie transformation group on M which is contained in
Sym(X,). If Y, is a G-invariant diffusion which differs from X, by a time
change, then Y, is unique up to a time change with constant rate. This means
that if Z, is a G-invariant diffusion process which differs from X, by a time
change, then Z, differs from Y, by a time change with constant density.

Let L and L’ be, respectively, the generators of Y, and Z,. Fix p € M. We
have L'f(p) = ALf(p) for any f € C7, where A > 0 is a constant independent
of f, because Y, and Z, differ by a time change. The G-invariance of Y, and Z,
implies the G-invariance of their generators, so for any g € G,

L'f(g(p)) =L(f°g)(p) =AL(fg)(p) =ArLf(8(p))-

Since G is transitive on M, we see that Z, differs from Y, by a time change
with constant rate.

4. Examples of invariant processes. By Theorem 1, if the symmetry
group G = Sym(X,) is transitive and has a compact isotropy subgroup, then
there is a G-invariant process Y, which has the same potential theory as X,.
One may think that the processes which people are most familiar with should
already have this invariance property and Theorem 1 is not needed to produce
a process with better invariance. As we will see in Examples 2 and 3, this is not
always the case. The processes which one is most familiar with may not have
the best possible invariance. The processes which do have the best invariance
as guaranteed by Theorem 1 can be quite interesting.

ExampLE 1. Let S be the group of transformations on the Euclidean space
R? generated by translations, orthogonal transformations and dilations. A
transformation g on R¢ is called a dilation if it fixes some point p and maps
any other point x into p + c(x — p), where c is a fixed positive number. It is
easy to see that S is contained in the symmetry group of Brownian motion on
R?. We will see in Section 6 that it is in fact the symmetry group of Brownian
motion. If we let G = S, then G does not have a compact isotropy subgroup. If



572 M. LIAO

we let G be the group of Euclidean motions, that is, the group generated by
translations and orthogonal transformations, then G, is compact for any
p € R? and the process Y, obtained from Theorem 1 is just the Brownian
motion on R¢.

ExaMpLE 2. Let M = R? — {0}, where o is the origin of R? and let G be
the transformation group on R? generated by rotations, reflections and
dilations which fix 0. The action of G leaves M invariant, so G can be
considered as a transformation group on M. Let X, be either a Brownian
motion or a symmetric stable process of index « (0 < a < 2) on M = R¢ — {o}.
Note that the point o will never be hit by either a Brownian motion or a
symmetric stable process, so our processes on M are well defined. It is easy to
see that if g is a rotation or a reflection about o, then g(X,) = X,. By the
scaling property of Brownian motions and symmetric stable processes, if g is
the dilation x — cx for some constant ¢ > 0, then g(X,) = X(c®¢), where
a = 2 if X, is a Brownian motion. It follows that G is contained in Sym(X,)
and it has a continuous time-change density for X, which is given by

a(x,g) = llzl*/lg(x)I%,

where ||x|| is the Euclidean norm and a = 2 if X, is a Brownian motion.

The group G is a Lie transformation group which is transitive on M and
has compact isotropy subgroups. By Theorem 1, there is a G-invariant process
Y, which differs from X, by a time change. However, X, itself is not G-
invariant. Let a(x) be defined by (5) with respect to the fixed point p =
(1,0,...,0). We have

a(x) = llxll™.

By Remark 3, a G-invariant process Y, can be obtained from X, by the time
change with density a(x) defined above.

ExampLE 3. Let D be the unit disk in R? and let X, be the Brownian
motion in D which is killed upon reaching the boundary of D. The family of
harmonic functions of X, is just the family of the usual harmonic functions in
D. Let G be the group of transformations on D which transform harmonic
functions into harmonic functions. By (1), G = Sym(X,). If we regard D as the
unit disk in the complex plane, by the theory of complex analysis, G consists of
transformations of the following type:

z—a

1-az’

where 0 isreal,i = V— 1, a,z € D and @ is the complex conjugate of a. We
see that G is transitive on D and G,, which consists of rotations and
reflections about o, is compact. Note that the Brownian motion X, is not
G-invariant. In fact, Inv(X,) coincides with G,. By Theorem 1, there is a
G-invariant process Y, which differs from the Brownian motion X, by a time
change. By Remark 4, in order to find such a process, we need only to find a

g(z) =e”
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G-invariant differential operator L which differs from the Laplacian A by a
positive function factor. Then the diffusion process Y, generated by L is the
desired process. A direct computation shows that the operator

2
(6) Lf(2) = (1 = eI*) Af(2)
satisfies the requirement. The intrinsic Riemannian metric (see the next

section for the definition) is just the hyperbolic metric on D and the corre-
sponding process Y, is the Brownian motion on the hyperbolic disk D.

5. Diffusion processes. Let M be a differentiable manifold of dimension
d. Diffusion processes on M are defined in [6]. In local coordinates

Xy, Xg, ..., Xg, a diffusion generator is a differential operator of the form
i 92 d 3
(7) L= a;r(¥) + 2 b(x)5—,
jrer T Oxex, T oy

where a;,(x) and b,(x) are smooth functions and a,(x) form a nonnegative
definite symmetric matrix. If it is positive definite, L and the diffusion process
X, generated by L are called nondegenerate.

The invariance group Inv(X,) and the symmetry group Sym(X,) of X, will
also be called the invariance group and the symmetry group of L, and will be
denoted, respectively, Inv(L) and Sym(L). By Remark 1, both Inv(L) and
Sym(L) are contained in D(M), the set of diffeomorphisms: M — M. We have

(8) Inv(L) = {¢ € D(M); L*f = Lf for f € C7}.

To characterize Sym(L), we will say that two operators L and L' are equiva-
lent if L' = bL for some positive function b. It is clear that two diffusion
processes differ by a time change if and only if their generators are equivalent.
Therefore, two equivalent operators have the same symmetry group. We have

(9) Sym(L) = {¢ € D(M); L* and L are equivalent}.

In the remaining part of this paper, we will only state our results for
diffusion generators and omit the obvious conclusions for the corresponding
diffusion processes.

A Riemannian metric g on M is a smooth assignment of inner products
g(+, ) on the tangent spaces of M. See [7] for the concepts in differential
geometry. Let

d d
8in(x) =& Bx_j’ %, at x.

This is a positive definite matrix. Let g/* be the inverse matrix of &;x- The
manifold M becomes a Riemannian manifold if it is equipped with a Rieman-
nian metric. The Riemannian metric induces a metric space structure on M

which is compatible with the given topology.
The measure m defined by dm = VG dx, - dx,, where G = det(g,;), is
independent of local coordinates and is called the Riemannian measure. A
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differential operator L with local expression (7) is called the Laplacian if
a;, = g’* and L is symmetric with respect to m, that is, (Lf, g),, = (f, Lg),,
for f, g € C?, where (f, g),, = [fgdm. It follows that the Laplacian L has the
following local expression:

1 9 .
(10) Lf= gﬁ%(mg’kaf)-

If L is the Laplacian on a Riemannian manifold M, then Inv(L) is just the
isometry group of the Riemannian metric and Sym(L) is a closed subgroup of
the conformal group. It follows that both Inv(L) and Sym(L) are Lie transfor-
mation groups on M. Recall that the isometry group consists of transforma-
tions which leave the metric invariant and the conformal group consists of
transformations which do not change angles.

Let L be a nondegenerate differential operator with local expression (7).
The Riemannian metric defined by the inverse matrix g;, of a, is called the
intrinsic metric of L. L is said to be an intrinsic Laplacian if it is the
Laplacian with respect to the intrinsic metric. )

Assume L is an intrinsic Laplacian and L' = bL. Let m and m’ be,
respectively, the Riemannian measures of the intrinsic metrics of L and L'
We have dm’ = b~%/2dm and

(L'f,8)m = [(bLF)gb™4/2dm = (f,b?/*L(gb®=/%)),,.

Hence, L' is an intrinsic Laplacian if and only if b@~%”/2 is a constant. The
following proposition follows immediately.

ProPOSITION 1. Assume that L is an intrinsic Laplacian and L' = bL for
some function b > 0. If d = 2, then L' is also an intrinsic Laplacian. If d + 2,
then L' is an intrinsic Laplacian if and only if b is a constant.

Now we give a simple characterization for a differential operator to be
equivalent to an intrinsic Laplacian. A measure on M is said to be smooth if it
is absolutely continuous with respect to Lebesgue measure and has a positive
smooth Radon-Nikodym derivative. Although there is no natural way to
define Lebesgue measure on M, it can be defined using local coordinates. Our
definition of smooth measures is independent of local coordinates.

PROPOSITION 2. Assume that d # 2 and L is a nondegenerate diffusion
generator. Then L is equivalent to an intrinsic Laplacian if and only if L is
symmetric with respect to some smooth measure.

Proor. Let m be the associated Riemannian measure of L. For any
smooth function b > 0, bL is an intrinsic Laplacian if and only if bL is
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symmetric with respect to its intrinsic Riemannian measure, that is,
J(bLf)gb=2/2dm = [f(bLg)b=?/*dm.

This amounts to saying that L is symmetric with respect to the smooth
measure dn = b@~9/2dm. On the other hand, assume L is symmetric with
respect to dn = fdm for some smooth function f > 0. We can choose b > 0
such that f=b2-%/2 Then bL is symmetric with respect to its intrinsic
Riemannian measure b~%/2 dm so it is an intrinsic Laplacian. The proposition
is proved. O

ProposITION 3. If L is an intrinsic Laplacian, then for any ¢ € D(M), L*
is also an intrinsic Laplacian.

Proor. Let g and m be the intrinsic Riemannian metric and Riemannian
measure of L. They are transformed by ¢ in the usual way into the Rie-
mannian metric and Riemannian measure of L? and with respect to the latter
L? is symmetric. This can be verified by a simple computation using local
coordinates. Hence, L? is an intrinsic Laplacian. O

ProposITION 4. Assume d # 2. If L is an intrinsic Laplacian and ¢ €
Sym(L), then L*® = cL for some constant c.

ProoF. Since ¢ € Sym(L), L? = bL for some function b. By Proposition
3, bL is an intrinsic Laplacian, and by Proposition 1, b must be a constant. O

PROPOSITION 5. Assume d # 2 and M is compact. If L is an intrinsic
Laplacian, then Sym(L) = Inv(L).

ProOF. By Proposition 4, for any ¢ € Sym(L), L? = cL. So the transfor-
mation ¢ changes the distance on M determined by the intrinsic metric of L
by a factor ¢!. When M is compact, this is impossible unless ¢ = 1. O

A Riemannian metric is said to be complete if the induced metric space
structure on M is complete. It is said to be flat if all the sectional curvatures
with respect to the metric vanish. A transformation ¢ on a Riemannian
manifold is said to be homothetic if it transforms the given metric g into cg
for some constant c. By Lemma 2 of [7], page 242, if the Riemannian metric is
complete and nonflat, then any homothetic transformation is isometric. This
means that the constant ¢ above is equal to 1. The following proposition now
follows directly from Proposition 4.

PropOSITION 6. Assume d #+ 2. If L is an intrinsic Laplacian with com-
plete and nonflat metric, then Sym(L) = Inv(L).
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THEOREM 2. Let L be a nondegenerate diffusion generator with complete
metric. Assume that for any ¢ € Sym(L), L* = cL for some constant c. If L' is
equivalent to L, then Inv(L') c Inv(L). Moreover, if Inv(L) is transitive on
M, then Inv(L') = Inv(L) if and only if L is a constant multiple of L.

Proor. There is a function b > 0 such that L' = bL. Let ¢ € Inv(L') C
Sym(L') = Sym(L). We have L'*f = L'f, hence,

b(¢ 7 (x))L*f(x) = b(x)Lf(x).

By assumption, L?f = cLf for some constant ¢, so b(¢~(x))c = b(x) for any
x € M. We need to show ¢ = 1. If not, without loss of generality, we may
assume ¢ > 1. Fix x; € M and define inductively x,, = ¢(x,_,). Let p(x,y) be
the Riemannian distance between x and y, induced by the intrinsic metric of
L. Then

p(xn+17xn) = c_lp(xn’xn—l) = c_(n_l)p(xZ’ xl)'

We see that {x,} is a Cauchy sequence. If x, is its limit, then ¢(x,) = x, and
b(xy)c = b(x,). This is impossible if ¢ # 1. Hence, ¢ = 1 and we have proved
Inv(L') c Inv(L). Assume Inv(L) = Inv(L'). The above argument shows that
b(¢(x)) = b(x) for any ¢ € Inv(L). If Inv(L) is transitive on M, then b must
be a constant. The theorem is proved. O

The following corollary follows directly from Proposition 4.

COROLLARY 1. Assume d # 2. If L is an intrinsic Laplacian with complete
metric, then L has the largest invariance group in the sense that if L' is
equivalent to L, then Inv(L') is contained in Inv(L). Moreover, if Inv(L) is
transitive on M, then Inv(L') = Inv(L) if and only if L' is a constant multiple
of L.

6. Examples of symmetry groups. In this last section, we will deter-
mine the symmetry groups for the Laplacians on the Euclidean space R¢, the
sphere S¢ and the hyperbolic space H¢ for any dimension d. Recall that the
hyperbolic space H% can be modelled on the unit ball in R? and has constant
negative curvature. As we will see, the dimension 2 plays a special role. It
seems that these groups should be well known, but we are unable to find a
place where these facts are proved.

ExamPLE 4. Let L be the Laplacian on R¢. We will show that Sym(L) is
the transformation group generated by Euclidean motions and dilations on
R<. It then follows from Theorem 2 that for any dimension d, L has the
largest invariance group in the sense of Corollary 1.

Let S be the group generated by Euclidean motions and dilations. It is easy
to show that S c Sym(L). First assume d # 2. For any ¢ € Sym(L), by
Proposition 4, L? = cL for some constant ¢ > 0. Let ¢ be the dilation which
changes the distance by a factor of 1/c. We have L*/ = L, so ¢ € Inv(L) C S.
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This implies ¢ € S and, hence, proves Sym(L) = S. When d = 2, let G be the
conformal group of R2 Think of R? as the complex plane. By complex
analysis, if g € G, then g(2) is either f(2) or f(Z), where f(2) is an analytic
function. Since g is one-to-one from R?2 onto R2, f(z) must be a linear
function. It is then easy to show that G is generated by Euclidean motions and
dilations on RZ. Since Sym(L) C G, we can now conclude Sym(L) = G.

ExampLE 5. Let L be the Laplacian on the sphere S¢ or the hyperbolic
space H? with d # 2. By Proposition 6, Sym(L) = Inv(L), which is just the
isometry group on M. The isometry groups on S¢ and H¢ are well under-
stood. They can be naturally identified, respectively, with the orthogonal group
O(d + 1) and the Lorentz group O(d, 1) on R%*1,

ExampPLE 6. Let L be the Laplacian on the two-dimensional sphere S2. We
will show that Sym(L) coincides with the conformal group of S?2, which is
generated by rotations on S? and those transformations which correspond to
Euclidean motions and dilations on R? via the usual stereographic projection
o from S? minus the north pole onto R2, when S?2 is regarded as embedded
in R3? as the unit sphere.

The stereographic projection o is conformal in the sense that it does not
change angles. Let Con(R?%) and Con(S?) be, respectively, the conformal
groups of R? and S2%. We have seen in Example 4 that Con(R?2) is generated
by Euclidean motions and dilations on RZ2 Since ¢ is a conformal map,
o~ ! Con(R?)o as a transformation group on S? is contained in Con(S?). Any
¢ € Con(S?) has a fixed point because S? is compact. We can find a rotation
such that ¢y fixes the north pole. Then o¢yo~! is a conformal transforma-
tion on R2 so it is contained in Con(R?2). We have proved that Con(S?) is
generated by O(3) and o~ ! Con(R?)o. Note that O(3) is identified with the
group of rotations and reflections on S2.

Now we show Sym(L) = Con(S?2). Since the symmetry group is always
contained in the conformal group of the intrinsic metric, it suffices to show
Con(S?%) c Sym(L). If ¢ € Con(S?), then L? = bL + U for some function
b > 0 and vector field U. By Propositions 1 and 3, both bL and L? are
intrinsic Laplacians. This is impossible unless U = 0. Therefore, ¢ € Sym(S?).

ExampLE 7. Let L be the Laplacian on the two-dimensional hyperbolic
space H? The group G defined in Example 3 consists of transformations on
the unit disk D which transform harmonic functions into harmonic functions.
This is the symmetry group of the usual Laplacian A in D. Since D can be
identified with H? and L is equivalent to A by (6), we see that Sym(L) = G.
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