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A NOTE ON PLANAR BROWNIAN MOTION

By STELLA BRASSESCO

Instituto Venezolano de Investigaciones Cientificas

The joint density of the total winding and the radius of a planar
Brownian motion is calculated, by solving the associated backward equa-
tion. An explicit expression for the distribution of the hitting time of an
angular barrier is shown; in particular, the behavior of the tail of the
distribution is determined.

1. Introduction. Consider a planar Brownian motion Z, = X, + iY,
starting at some point z, # 0. Let R, = |Z,| and 6, be the total winding of the
a.s. continuous path {Z_; s < ¢} about zero. The continuous process (R,, 6,) can
be thought of as a diffusion on the Riemann surface of the logarithm (since Z
does not hit 0 a.s.), identified with the half upper plane divided into vertical
strips of width 27. Each one of these strips is sent into R\ 0 via the map
(r,0) = (rcos 6, r sin 8), which introduces local coordinates. As discussed in
Theorem 1, (R,, 8,) is governed by 3A, which yields (in the given coordinates),
that the density

(1.1) p(¢,r,8;p,a) =P{R,€dr,6,€dOlR,=p,0,=0a}1/(rdrdo)

satisfies the equation
1 1 1
(1.2) du-= 5 2u + 70,u+ —daul|, t,r>0,0€ (—w,»).
r

As a first result (Theorem 1) we obtain p by finding a fundamental solution
of (1.2) by standard methods [with the aid of Gradshteyn and Ryzhik’s tables
(1980)]. Once this density is known, an application of the reflection principle to
6, permits computation of the joint distribution of (R,,6,) and T, [the exit
time of 6, from the region (0, B)]. This is done in Theorem 2. The asymptotic
behavior of P{T,; >t} as ¢ goes to infinity is determined as a corollary; in
particular, the result of Spitzer (1958) asserting that ET} is finite if and only if
B < /2 follows directly from it.

While we were writing this note, we learned of an article of Yor (1980),
where he shows, using martingale methods, that E{exp(iv(8, — 6,)IR, = r,
R, = p} = (I, (pr/t) /(I (pr/t)). [In fact, this formula has a longer history;
see Yor (1980) and Pitman and Yor (1986) for details and further references].
Since the distribution of R, is known, the joint density p can be deduced. We
think, however, that it has some interest to consider the extended equation,
since it is very simple and may be useful in other cases.
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2. Results and proofs. Our results will be expressed in terms of the
modified Bessel functions I,. Several representations of them are known. See
Gradshteyn and Ryzhik (1980) for a brief account, or Watson (1966) for
details. We write down some of them, just for easy reference.

Representations of the Bessel function I,. We shall only consider I,(x) for
x,v € R, x > 0. Then,

2.1 I L e h d
(2.1) (%) = " L_ﬂ exp(x cosh w — vw) dw.

Taking as the path of integration three sides of the rectangle with corners at
o — i, —i, wi and © + i, the previous expression yields

sin

1 us vt o0
(2.2) I(x) = —f e % cosvd do — f e xcosht—vt gy
a 70 0

m

Finally, the series expansion is

0 (x/z)v+2k

(2.3) I(=) = ,Eo ET(v+k+ 1)

Now, we can state:

THEOREM 1. The fundamental density defined in (1.1) is given by

\ pr

)[ cos v(6 — a)IU(—) dv.
0 t

r2~i—p2

2t

1
(24) p(t,r,0§P, a) = —exp(_
Tt

ProoF. The backward equation for p(¢, r, 6; p, a) is

1 9 1 1 9

(2.5) du = 5(3pu+ ;8pu+ ?Bau).
Indeed, the proof that the backward equation for the density of Z, is the heat
equation is based on a local argument about the initial point [see, for instance,
Feller (1971)] and yields, in polar coordinates, (2.5). But the argument still
applies if one considers the total angle instead of identifying points with equal
angle modulo 27. The periodic boundary conditions that arise in this last case
disappear and we are left with equation (2.5), for p > 0, and a € (—x, +©).

By symmetry, p is an even function of the difference v = 6 — a (that will be
denoted again by p). We shall consider (2.5) in this variable and a € [0, 27), so
it corresponds with the usual polar coordinate of the initial point of Z,. The
corresponding forward equation is (1.2), so p also satisfies

1/, 1 1,
(2.6) du = 3 dtu + ;a,u+ -;anu .

Let us call .#= (0,%) X (—»,®). Recall that the volume element that corre-
sponds to .# in our case is rdrdw. We shall find a fundamental solution of



1500 S. BRASSESCO

this last equation, that is, a function u(¢, r, w; p) € C”[(0, ) X .#] satisfying
it and such that for any given open set U C .#,

(2.7 lim | u(t,r,w;p)rdrde = 1y(p,0),
t10 Ju

where 1; denotes the indicator function of the set U. Now, denote a(t, r,v;p) =
[2-e"?u(t, r, w; p) dw. From (2.5) and (2.6),

L 1,01 v? 1(, 1 0
(28) oda,=— aru+;3,12——2u =3 ou+ —d0—- —u).

2 r p p

Performing the separation of variables & = T'(¢)F(r, p, v), one gets
(2.9a) 2T = A T,

1 v?
(2.9b) O2F + = d.F — ﬁF = A, F,

1 v?
(290) 33F+ ;3PF— _EF= /\oF,

p

where A, is the separation constant. Observe that [~ p(¢,r,w;p)dw =
27o(t, r, ; p) dw, where
2.10 t - LN
(2.10) ¢(’r’w’p)__2—? exp % ; cos w |,
that is, the density P{R, € dr, 6, € dw|R, = p, 8, = 0} 1/(rdrdw) 6, being
now the usual polar angle of Z,. Then, p remains bounded as ¢ — o (for fixed
positive r, p) which justifies taking A, = —A < 0. In this case, (2.9b) and (2.9¢)
are Bessel equations with solution of the form AJ (A/?r)d, (/\1/ p), where A
may depend on v and A. (Recall that p should be reg'ular as r,p — 0.) Putting
all this together, one obtains that

(2.11) [exp( )A(/\ v)J,(AY2r)d,(A%) dA

is a solution of (2.8), where A has to be determined from (2.7). But it is known
[see Gradshteyn and Ryzhik (1980), formula 6.615] that

p2+r2)

(2.12) f exp( )J (X/2r)d,(A%p) dA = ‘I( ) XP(_ 2t

Also, from the asymptotic expansion of I, [see Watson (1966)], one knows
that 2mpr/t)'/2I (pr/t)e "/t >, , 1, which yields that (r/t)I(pr/t) X
exp — (p? + r?)/2t -, , 8(r — p). Taking A(A,v) = 3, one finds (after in-
verting the Fourier transform) that the right-hand side (r.h.s.) of (2.4) is a
formal solution of the forward equation (1.2) satisfying (2.7). It is easily
checked that it is, in fact, a solution. Indeed, from (2.1) it follows that the r.h.s.
of (2.12) is C* as a function of ¢ and r; it is clear from the left-hand side
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(Lh.s.) that it solves in (2.8). Taking now as the path of integration in (2.1)
three sides of the rectangle with corners at « — wi, a — wi, a + wi and
o + i, for some positive a, it follows at once that I, (x) € L'(dv), for fixed
positive x. Fourier inversion is then justified. Moreover, v2[,(x) also belongs to
L'(dv), which permits us to conclude that we have a true solution. In order to
see that it is, in fact, the density p, it is enough to see that it is positive and
that it is the smallest elementary solution of (2.6). [See McKean, (1969).]
Now, the positivity follows from the formula

wav(x)cos vo dv
0
1 rcosw
(2.13) = 3e Ly (@)
__l_fooe—rcosht Tto + T @
2m /o (T+w)’+82  (m-0)’+82

which is obtained after some calculations from (2.2).
Also, it is known [see Gradshteyn and Ryzhik (1980), formula 8.511-5] that

! ( e Efcos[v(w+2k7r)]1( )

—e —
Tt P 2 hez

1 ( r2 +p? pr
= — exp +(—t—)cosw.

(2.14)

2wt 2t

Observe that the right-hand side is the density (2.10) (of the polar coordinates
of Z,), which is the smallest solution of (2.6) with periodic boundary condition
at [0, 27] and pole at (p, 0). Then the r.h.s. of (2.4) is the smallest elementary
solution of (2.6), as desired. O

REMARKS. From (2.13) we have for p a formula in terms of elementary
functions (recall that w = 8 — a):

; 1 r2 + p?
p(t,r,w;p) = — eXp %
(2.15) { ersel (o)

LY T+ w ™ W
[ e " cosh ¢ 5 + 5 dt .
2w (r+o)’+t2 (m-w) +¢
Also, the characteristic function E{e‘%:|6, = 0, R, = p} can be calculated from
(2.4):

E{e'6, = 0, R, = p}

(2.16) V2r p? p? p?
=P—4‘/; XP\ " 4 Ly-1)/2 4 + L+ 12 il
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This formula was deduced by Spitzer (1958) and from it, he concluded at once
that 26, /log t converges in distribution to a Cauchy random variable as ¢ goes
to . A simpler proof of Spitzer’s asymptotic law can be found in Section 3 of
Pitman and Yor (1986). Extensions, related developments and more references
on the subject are also contained in that article and in Pitman and Yor (1989).

Consider now 0 < @ < B and Ty = inf{t > 0: 9, & (0, B)}, where 6, = a. We
want to calculate

1

u(t,r,0;p,0) =P{T, > ¢, R,€dr,0,€d6lR,=p, 0, = a} (rdrdb)’

But, from the rotational symmetry of Z,, u can be obtained by applying
sucessive reflections in both barriers. This gives that

(2.17) u(t,r,6;p,a) = Y. p(¢,r,2kB + 0;p,a) — p(t,r,2kB — 8;p, ).
keZ

From Theorem 1, and after some manipulations of this last expression, one
obtains:

THEOREM 2.
u(t,r,0;p,a)
(2.18) 1 r? + p? pr\ . (kma\ (kw0
= Eexp(—T)kgzllk”/m(—t—)Sln(T)Sln(T).

Proor. The series in (2.18) is clearly convergent. From (2.17), the
r.h.s. of (2.18) satisfies (1.2), condition (2.7) and the boundary condition
u(t,r,0;p,a)=u(tr,B;p,a) =0 for all r,z> 0, so it must be the desired
density.

CoroLLARY. Consider the case a = B/2. Then,

(2.19) P{T,>¢} =4

e—PP/4t p? /28
( ) +0(¢7"/%) ast > .

72T (m/28 + 1/2) | 8t

Proor. Integration of (2.18) [see Gradshteyn and Ryzhik (1980), formula
6.618-4] yields

P{T, > tIR, = p, 6, = a}

pe P’ /4 sin[(2k + 1)ma/B]

(2-20) = (27”)1/2 kze:Z ok + 1 [I|2k+1|w/23—1/2(P2/4t)

o+ 1y 28+ 1/2(92/4t)] .
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Taking 6, = B/2 and replacing each Bessel function by its series expansions
(2.3), one obtains a double series that is clearly uniformly convergent for
p?/8t < 1, and (2.19) follows.
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