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FRECHET DIFFERENTIABILITY, p-VARIATION AND
UNIFORM DONSKER CLASSES!

By R. M. DupLEY
Massachusetts Institute of Technology

Differentiability of functionals of the empirical distribution function is
extended. The supremum norm is replaced by p-variation seminorms,
which are the pth roots of suprema of sums of pth powers of absolute
increments of a function over nonoverlapping intervals. Fréchet derivatives
often exist for such norms when they do not for the supremum norm. For
1 < g < 2, classes of functions uniformly bounded in g-variation are uni-
versal and uniform Donsker classes: The central limit theorem for empiri-
cal measures holds with respect to uniform convergence over such a class,
also uniformly over all probability laws on the line. The integral [FdG was
defined by L. C. Young if F and G are of bounded p- and g-variation
respectively, where p~! + ¢~ > 1. Thus the normalized empirical distri-
bution function n'/%(F, — F) is with high probability in sets of uniformly
bounded p-variation for any p > 2, uniformly in n.

1. Introduction. Classically, a statistical functional is defined on a space
of distribution functions F' on the real line with the supremum norm. The
values may be real or themselves functions such as the quantile function F~1.
Nonlinear functionals are studied via their derivatives. This paper and a
related one [Dudley (1991a)] will show that the differentiability properties
originally proved by Reeds (1976), also treated in Fernholz (1983), can be
improved substantially.

Differentiability of functionals is defined in general as follows. Let (X, || - |
and (Y, | - |) be two Banach spaces. Let U be an open set in X and u a point of
U. A function T defined on U with values in Y is said to be Fréchet
differentiable at u if there is a bounded linear operator A from X into Y such
that

|T(x) — T(u) —A(x —u)| = o(llx — ull)
as x = u. Equivalently, for every bounded set B in X,
sup{|T(u + tv) — T(u) — tA(v)|:v €B}/t >0 ast—0,

where ¢ is a real variable. If ¢ is a collection of subsets of X, T" will be called
¢-differentiable at u if “‘every bounded set” is replaced by “each set in €.”
Then if € is the class of all compact sets for a topology, T is said to be
compactly or Hadamard differentiable at u for the given topology, which in
past work has usually been, but need not be, that of a norm.
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Reeds (1976) and Fernholz (1983) showed that once the domain and range
of functionals are suitably specified, in several cases functionals of statistical
interest are compactly but not Fréchet differentiable at some points. To my
knowledge, most if not all such examples were for the sup norm | - |l. in R,
where ||F|l, = sup,|F(¢)|. Although Fréchet differentiability holds in some
other useful cases [e.g., Fernholz (1983), Proposition 6.1.3, page 72, Corollary
6.1.4, page 75, and Hampel, Ronchetti, Rousseeuw and Stahel (1986), page 54],
many statisticians have been convinced that in general it is too strong [e.g.,
Huber (1981), page 37, Gill (1989), page 101, and Serfling (1980), page 220].
But Serfling (1980), page 218, mentions the ‘“choice of norm”: A larger norm
increases the chances for Fréchet differentiability, and will work well if
probability limit theorems still hold for the larger norm.

This paper expands on the ‘‘choice of norm.” It will be shown that in
p-variation norms for suitable values of p, defined in Sections 2 and 3, uniform
central limit theorems still hold. In this paper, the result will be applied to the
bilinear functional (F,G) — [FdG (Section 4). Another paper [Dudley (1991a)]
will treat the inverse operator F — F~! and composition (F,G) — FoG.

In a nonseparable normed space, specifically D[0, 1] with | - ||, compact sets
are very small compared to open, bounded sets. If F is a continuous dis-
tribution function and K is a compact subset of D[0,1] for the sup
norm, the probability that the empirical distribution function F, € K, or
n'/%(F, — F) € K, is 0! So there are technical problems in applying norm-com-
pact differentiability. The problems have been treated by modifying empirical
distribution functions to be continuous [e.g., Fernholz (1983), pages 32-42].
Or, the definition of compact differentiation can (also for very general sample
spaces and norms) be modified to hold ‘‘tangentially to a subspace” [Gill
(1989), page 102, and Pons and Turckheim (1989)]. Compact differentiation
can also be applied to almost surely convergent realizations. At any rate, no
such modification is needed when we have <-differentiability for a class ¢ of
sets of functions such that n'/?(F, — F) satisfies a tightness condition for sets
in ¢, as will be shown in Proposition 8.7 and Corollary 3.8 for classes of
bounded p-variation for p > 2.

For a probability measure P and observations X;, X,, ..., iid. with law P,
we form the empirical measures P, == n~1(§ x, + ** +9x ) and the empirical
process v, = n'/%(P, — P). If ¥ is a class of measurable functions and v is a
signed measure, let |[v]l &= sup({l/fdvl: f€ &}. Here a class of measurable
sets can be identified with the class of indicator functions of the sets. The ‘“‘sup
norm’’ or “Kolmogorov norm” of the empirical process is the supremum of its
absolute value over the family &# of all sets (half-lines) ]— o, x], so || - |l =
|| -l . # is taken into itself by all nondecreasing transformations of R and is
taken one to one and onto itself by all strictly increasing, continuous transfor-
mations of R onto itself. It is known that a central limit theorem holds in the

, sup norm for all probability laws- P on R, at a rate which is uniform in P. On
extensions to general sample spaces and classes %, see Dudley (1987) for the
“universal Donsker” property and Giné and Zinn (1991) for the uniformity
in P. '
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The sup norm is defined by a relatively small and quite tractable class 5# of
sets, while it also encompasses larger classes of functions: Let BV1 be the class
of all functions f from R into itself of total variation at most 1, with f(x) —» 0
as x —» +x. Let DE1 be the class of nonincreasing functions in BV1. Then

Il - e =1l llpEx < I - lBV1 < 2l - lIDEL
[e.g., Dudley (1987), proof of Theorem 2.1i], although BV1 and DE1 are in
many ways much larger than . So it is not surprising that the sup norm has
long been considered as the main norm for empirical processes and differen-
tiability on R. But p-variation norms, besides their other advantages, are also
preserved by any continuous increasing function from R onto itself.

I suggested [Dudley (1989b, 1990)] that statistical functionals might be
Fréchet differentiable for norms || - ||&# for universal Donsker classes % other
than #. It will be seen that classes of functions of uniformly bounded
g-variation for 1 < ¢ < 2 are universal (and uniform) Donsker classes % on R.
Via the duality theory in Section 3, this is equivalent to n'/%(F, — F') being
with high probability in sets of uniformly bounded p-variation, p > 2.

Compact differentiability for || - ||, implies Fréchet differentiability for || - || &
directly if all bounded sets for || - | &+ are compact for || - ||l... But matters are not
quite so easy, since no such % is a universal Donsker class.

ProposiTION 1.1. There is no universal Donsker class & of Borel-measura-
ble functions on R such that all bounded sets of finite signed measures for
Il - |l &+ are compact or even separable for || - |l.

Proor. Any universal Donsker class % is uniformly bounded up to addi-
tive constants [Dudley (1987), Proposition 1.1]. Thus the set B of all differ-
ences 8, — 9, for x and y in R is bounded for || - ||&. But if x # 2, 16, — 8, —
(6, = 8)lly=1, so B is not separable for the supremum norm || =

-1l O

This paper does not treat inverse or implicit function theorems and M-
estimators, on which I hope to complete a separate paper [Dudley (1991b)].

The present paper is organized as follows: Section 2 reviews p-variation and
proves a uniform central limit theorem (Donsker property) for classes of
functions of bounded p-variation, p < 2. Section 3 treats Young’s duality
theory of r-variation spaces W,,W, via (F,G) -~ [FdG, Fe W, Ge W,
1/r + 1/s > 1. Section 4 treats differentiability of the functional (F,G) —
[FdG and compares it with the results of Gill (1989).

2. Functions of bounded p-variation and Donsker classes. A func-
tion f from an interval J C R into R has p-variation defined by

v(_f,P) =v(f,p,J) =sup{ 3 |f(x;) —f(x- )i xg <2, < - <x, €,
‘ i=1

xOEJ,n=1,2,...}.
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For p = 1, this is the usual total variation. Apparently the notion of p-varia-
tion was first defined by Wiener (1924), who treated mainly the case p = 2,
“quadratic variation.” For p # 2, the first major work, including the duality
theory (Section 3), was done in the late 1930s by L. C. Young, partly with E. R.
Love; see Young (1936) and Love and Young (1937). More recently, Bruneau
(1974) treats p-variation, mainly in a different direction (‘‘fine” variation).
There are recent applications in probability theory [e.g., Bertoin (1989), Xu
(1986, 1988) and Pisier and Xu (1987, 1988)]. Apparently p-variation for
empirical processes was not previously addressed explicitly, but see the discus-
sion after Theorem 2.2 below. The following will be proved.

THEOREM 2.1. For any (bounded or unbounded) interval J C R, any p with
0<p<2andany M <o, & ,:={f J R, v(f,p) <M} is a universal
Donsker class.

PrOOF. Recall the notion of Kolchinskii-Pollard entropy log D® for the
L? norm over finite sets, where [i(log D®(¢e, ))'/2de < © and some measur-
ability conditions imply that % is a universal Donsker class by a theorem of
Pollard (1982), stated with more general measurability conditions in Dudley
(1987), Theorem 2.1h.

We can assume without loss of generality that M = 1.

For any fe ¥:= ¢, we have diam f:=sup f — inf f satisfying
(diam f)? <1, so diam f < 1. So & is uniformly bounded up to additive
constants and in proving the universal Donsker property we can replace the
functions f in & by the functions f — inf f, so that we can assume 0 < f < 1,
f € % [cf. Dudley (1987)].

We can assume p > 1and J = R. Given f € &, let h(x) = v(f, p,]—, x]),
the total p-variation of f up to x. Then A is a nondecreasing function. For
any x <y, If(y) — f(x)P < h(y) — h(x), so [f(y) — f(x)| < (h(y) — h(x))/P.
Thus f is a function of h, f(x) = g(h(x)), for a function g which satisfies a
Hélder condition |g(u) — g(v)| < |lu — v|'/? for all u and v in the range of h,
as was known [Love and Young (1937), page 244, and Bruneau (1974), page 3].
Since 0 < 1/p < 1, e(u,v) *= |lu — v|*/? is a metric, and the ranges of g and A
are included in [0, 1], so we can assume g is defined and satisfies the same
Hélder condition on all of [0, 1] into [0, 1] by the Kirszbraun-McShane exten-
sion theorem [e.g., Dudley (1989a), Theorem 6.1.1].

Let G be the set of all functions from [0, 1] into itself satisfying the given
Holder condition. Then there are constants C, and C, such that for 0 <¢ < 1,
there is a set G, C G, dense within ¢ for the supremum norm and containing
at most C, exp(Cye ~?) functions [Kolmogorov and Tihomirov (1959), Theorem
XIII].

Let H be the set of nondecreasing functions from R into [0, 1]. Then H is
- included in the set of sequential pointwise limits of convex combinations of
members of the set H; of all indicators of half-lines, l[a »( e.g., Dudley (1987),
proof of Theorem 2.1(a), and since an open half-line is a countable union of
closed half-lines). For any probability measure @ on R (such as one with finite
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support), for 0 < ¢ < 1 there is a set of at most 2/¢? members of H,, dense
within £2 in H, in the LY(Q) norm and so dense within ¢ in H, in the L*( @)
norm. Thus, for any ¢ > 1, there are constants C; and C, such that for
0 <& < 1thereis aset H, C H, dense in H within &” in the L*(@) norm and
containing at most C;exp(C,e ?*) functions [Dudley (1987), Theorem 5.1].
Choose ¢ so that pt < 2. A

Now take any f€ &. Then f=goh for some g € G and h € H. Given
0 <e<1,take y € G, with suplg — y| <e and 6 € H, with ||h — 0ll; < €?
for @. Then

[ f—=(ye0)le<ligeh —yohlz+llyeh —yobl.
<e+llych —yobl2.
Next,

[(reh =v20)"dQ(x) < [I(h ~ 6)(x)["” dQ(x)

1/p

< (/|(h —0)(x)|PdQ(x)| < e/P =¢2

So || f— (y<8)lls < 2¢. So we have found a set %, dense within 2¢ in & for
the L%(Q) norm, where for some constants C and D, the number of functions
in % is at most C exp(De ). This implies Pollard’s entropy condition. So it
will be enough to show that the image admissible Suslin measurability condi-
tion holds.

Any function f of bounded p-variation is in the set E(R) of real functions
on R having right limits on [ — o, [ and left limits on ] — o, «]. Let D(R) be the
set of all right-continuous functions in E(R). Let cy(R) be the set of all
functions A from R into R such that for each ¢ > 0, {x: |h(x)| > &} is finite.
Then h is 0 .except on a countable set.

Given f <€ E(R), let g(x) = f(x+) := lim{f(y): y | x} for all x. Then since
f € ER), we have g € D(R), and f is continuous except at most on a count-
able set C, so g(x) = f(x) for x & C. Let h == f — g. For any ¢ > 0, f can only
have finitely many jumps of heights larger than &, so & € cy(R).

Now & € ¢y(R) if and only if there is a sequence {x;} of distinct real numbers
and a sequence y; — 0 such that h(x) = Z,y;1{x = x;}. The set of such se-
quences {x,;} is a countable intersection of open sets {x; # x;}, i #j, in the
product topology, so it is Polish [e.g., Dudley (1989a), Theorem 2.5.4]. The set
of sequences {y,}, y; = 0, is a Banach space with supremum norm. Then
evaluation of & is jointly measurable, so c¢,(R) is image admissible Suslin.

Let ~(T) be the smallest o-algebra on a set of real functions with domain
including T such that evaluation at each point of T is measurable. For
feD[0,1], let f(x):=f(k/n) for (k —D/n<x<k/n, k=1,...,n,
£.(1) = f(1). Then f,(x) — f(x) for all x, and (x, f) — f,(x) is jointly measur-
able for the Borel o-algebra in x € R and the o-algebra #(T), where T is the
set of rational numbers. Since the given o-algebras are Borel o-algebras of
Polish spaces, the same holds for (x, f) = f(x), so D(R) is image admissible
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Suslin, and so by addition E(R) is image admissible Suslin. In this class, the
set of functions of p-variation bounded by 1 is the image of a Borel set, since
we can consider the p-variation on finite sets of rationals or points x; for A in
co®). O

Now it will be shown that &, ), is not only a universal but a uniform
Donsker class, in the sense that the central limit theorem for empirical
measures for uniform convergence over &, u also holds uniformly in P. Giné
and Zinn (1991) gave a general, natural definition of the uniform Donsker
property in terms of dual-bounded-Lipschitz metrics, and found a striking
Gaussian characterization. Here, a different property will be defined, closer to
the traditional uniformity over distribution functions on R.

DerFINITION. Let & be a class of real-valued measurable functions on a
measurable space (X, &7). Then % is a dominated uniform Donsker class if
there is a law A on (X, &) for which % is a Donsker class, and for every law P
on (X, &) there is a measurable function f, from X into itself such that the
image measure A f5 ! = P, and such that the class % o f, of all compositions
fefy € &, isincluded in &

When the condition just defined holds, other definitions of uniform Donsker
class could be verified, but the details will just be sketched here. If A, are
empirical measures for A, then A, o f5 ! have all the properties of the empiri-
cal measures P,, so n'/ 2(P P) can be written as n'/ 2(A,, — Ao fp L. For a
class & of functlons we then have by the image measure theorem

:fe?}

”n1/2(Pn _ P)||57= nl/2 sup{‘/fd(/\n — Ao fp!

#su[[fe fpdr, - 0] e )

R

Moreover, for the limiting Gaussian processes Gp and G,, for any & c .Z%(P),
f— G\(f° fp) has the same distributions as Gp on & since it is Gaussian
with mean 0 and the same variances and covariances. It then follows, for
example by existence of almost surely convergent realizations [Dudley (1985)]
that the convergence in limit theorems for P, for any P is at least as fast as
for A,,.

For the classes in Theorem 2.1 we have the following theorem.

THEOREM 2.2. Each &, ), on R for 0 <p < 2 and M < « is a dominated
- uniform Donsker class. '

Proor. Let A be Lebesgue measure on [0,1]. Let P be any probability
measure on R with distribution function F. For 0 <y < 1, let F~(y):=
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inf{x: F(x) > y}. Take fp as the function F~! Then the image measure
Ao(F~1)~! = P as desired. If f€ &, ,/, then for any nondecreasing function
G, such as G =F~!, we have foG € % , since for any y, < -+ <y,,
letting x; .= G(y,) gives

Z1F(G)) — F(Gi)) = T 1F(x) — (=)l
i=2 i=2
which (with Theorem 2.1 for A) completes the proof. O

Gilles Pisier, in a letter dated September 3, 1991, has kindly pointed out the
following: The work of Pisier and Xu (1987) and Xu (1986, 1988) easily implies
at least a fact close to Theorem 2.2, which I will call Theorem 2.2/, where
convergence in distribution of v, is replaced by boundedness in L%
supp sup,, Ellv,||% < » for F= o M-

3. Duality inequalities for r-variation spaces. For 1 <r < » and
—o<a<b< to, let W, := W/[a,b] be the class of all real-valued functions
f on [a, b] with finite r-variation v(f,r) = v(f,r,[a, b]) < ©. For any f € W,,
we have the seminorm | |l == v(f, )/, which is 0 only for constants. If f
has finite r-variation on an open interval la, b[, then it has a limit as x — a or
b respectively, even if @ = — or b = +, in which case f(—») or f(+®) is
defined as the corresponding limit.

For f€ Wla,bl, let | fll; ==l flle + Il fll¢y, where || fllo := sup,|f(x)|. Then
Il -l is a norm on W,. It is not hard to show that W, is complete for || - ||,
and so W, is a Banach space.

To define integrals [FdG, first consider the Riemann-Stieltjes integral
defined as follows: Given an interval [a, b], a partition will be a finite sequence
Xg=a<x, < '+ <x,=b.A Riemann-Stieltjes sum for F,G and the given
partition will be any sum X}_, F(¢,XG(x;) — G(x;_,)), where x;_, < ¢, < x; for
i = 1,...,n. Then the Riemann-Stieltjes integral [’F dG exists and equals c
if for every ¢ > 0 there exists a partition 7= = {x,, x,,..., x,} as above such
that for all partitions 7 including 7 and all Riemann-Stieltjes sums S
based on 7, |S — c| <& [This is one of two definitions most often given
in the literature, and is sometimes called the Moore-Pollard definition.
The other definition requires convergence of sums S to c¢ as the mesh
max(x; — x;_,) = 0.] When the integral exists, we say F € Z(G).
Hildebrandt (1938) is a survey on Riemann-Stieltjes integration, with refer-
ences to earlier sources for most results.

Riemann-Stieltjes integrals have been considered mainly when one of F
and G is continuous and the other is of bounded variation. The theory of
p-variation provides a class of cases, to be given below, where neither F nor G
is of bounded variation. .

" The integral [F'dG will not be defined as a Riemann-Stieltjes integral, even
if both F and G are of bounded yvariation, if they are discontinuous on the
same side of the same point [Hildebrandt (1938), 4.13, “o”’ case; for one
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example, see Rudin (1976), page 138, Example 3]. So the integral has to be
defined otherwise. For a function h and point x, let 2(x—) = lim,,, . A(y) and
h(x+) =lim  , h(y). If h € W,[a,b] for any r < », then h(x+) exists for
a <x < b and h(x—) exists for a < x < b. The following is known [Hildebrandt
(1938), Theorem 5.32].

LemMA 3.1. The Riemann—Stieltjes integral [PF dG exists if G is of bounded
variation and right continuous [G(x+) = G(x), a < x < b] while F is left
continuous [F(x) = F(x—), a <x < b] and has right limits F(x+) for a <
x < b.

The Young’s or (Y;) integral
(v) [*FdG = [*F(x+) dG(x-)

+ X (F(x) = F(z4))(G(x+) - G(x-))

a<x<b
+(F(a) = F(a+))(G(a+) - G(a))
+F(b)(G(b) — G(b-))
will be so defined if [?F(x+)dG(x—) exists as a Riemann-Stieltjes integral,
and in the sum, the summands are 0 except for at most countably many values
of x and the series is absolutely convergent. Here in the integral, G(a —) is
replaced by G(a) [and F(b+) by F(b), which does not matter since x —

G(x—) is left continuous at b]. Note that if F' is continuous from the right,
F(x) = F(x+), the (Y;) integral becomes

f:F(x)dG(x—) + F(b)(G(b) — G(b-)).

W. H. Young (1914) contributed to defining extended Riemann-Stieltjes
integrals. L. C. Young (1936), pages 263-265, shows that (Y,)[?FdG exists if
F e Wja,b] and G € W[a,b], where p~' + ¢! > 1. [Hildebrandt (1938)
distinguishes different integrals by putting symbols such as N, Y and/or o
before the integral sign.

An alternate definition of integral is obtained by applying the defini-
tion of the (Y;) integral to the interval in the reverse order, taking
—(Y)[Z¢F(—x) dG(—x). The resulting integral, which will also be called a
Young integral, is here defined as

(Y,) ['FdG = [*F(x-) dG(x+)
+ X (F(x) - F(x-))(G(x+) — G(x-))

a<x<b
+ F(a)(G(at) - G(a))
+(F(b) -~ F(b-))(G(b) - G(b-)),
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which will, as with the (Y;) integral, be said to exist if the integral on the right
exists as a Riemann-Stieltjes integral and the sum is absolutely convergent,
and here G(b+) is replaced by G(b) in the integral [and F(a—) by F(a),
which does not matter since x —» G(x+) is right continuous at a]. The
inversion x — —x shows that the (Y}) integral likewise exists for F € W, and
G € W, with p~! + ¢~! > 1. The two integrals actually agree when defined,
as follows.

THEOREM 3.2. Suppose that F and G are two bounded real functions on
[a, b] having right limits on [a, bl and left limits on la, b]. Then if both of the
integrals (Y))[°F dG and (Y,)[°F dG exist, they are equal.

Proor. Since the Riemann-Stieltjes integral I, :== [’F(x+)dG(x—) ex-
ists, for any ¢ > 0 there is a partition 7 given by a = x, <%, < -+ <x,=0
of [a, b] such that any Riemann-Stieltjes sum S for I, based on a partition
which is a refinement of 7 differs from the integral by at most ¢. Here
S =X F(y,+)IG(x;—) — G(x;_,—)] for any y, in the interval [x;_ ., x;],
replacing @ — by a and b + by b. The same holds for I, :== [?F(x—) dG(x +),
so taking a common refinement of the two partitions, we can assume 7 is such
that it holds for both Riemann-Stieltjes integrals. Also, 7 can be chosen to
contain enough of the points of discontinuity of F and G such that the sums
in the definitions of the (Y;) and (Y,) integrals over all other points are at most
¢ each.

For the given partition 7, consider refinements formed by adjoining points
u; at which G is continuous with x,_; <u; <x; for i =1,...,n. [Since
G(x—) and G(x+) exist for a < x < b by assumption, G is continuous except
at most on a countable set.] We can then form Riemann-Stieltjes sums for I;
by evaluating F at x;_, + for [x;,_,,u;] and at x; — (a limit of points x + as
x 1 x;) for [u;,x,;]. In forming sums for I,, we can evaluate F at the same
places, interchanging the reasons for the lower and higher of the two intervals.
Then I, — I, differs by at most 2¢ from

i:lF(xi—)[G(xi—) ~ G(x; )] + F(x;_1H)[G(x;1+) — G(x;_17)]

n—1
=R(a,b) + Y [G(x;+) — G(x;O)][F(x;+) — F(x;-)],
i=1
where
R(a,b) = F(a+)[G(a+) - G(a)] - F(b-)[G(b) — G(b-).
So if we subtract the (Y,) from the (Y;) integral, all the terms in the
approximating sums cancel so the integrals differ at most by 4¢. Let € [0 to
complete the proof. O
- When G has bounded variation, Young’s integrals are equal to
Lebesgue-Stieltjes integrals, as has been known at least under some condi-
tions [e.g., Hildebrandt (1938), page 275; Young (1936), page 266].
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LEMMA 3.3. Let F be a function on [a, b] which has left and right limits at
all points. Let v be a finite signed measure on la,b] with G(x) = v((a, x]),
a <x <b. Then [PFdv = (Y,)[’FdG.

ProorF. Since G is right continuous, G(x+) = G(x), and G(x) —
G(x—) = v({x}), which is 0 by assumption if x = a. We can write G = G, + G,
where G, is continuous and G, is the distribution function of the purely
atomic part v, of v, G, (x) = v,(Ja,x]) = X, _,_ . »({y}). Then the sum in the
definition of (Y,,) integral (with the x = a, b terms) is [?F(x) — F(x —) dv,(x).

The next fact follows directly from Billingsley (1968), page 110, Lemma 1,
interchanging the sides on which intervals are closed and functions are
continuous.

LEmMMmA 3.4. A function F from a closed interval [a,b] into R is left
continuous with right limits if and only if F is a uniform limit of step functions
which are finite sums of the form Y;c;1,, ., for some real ¢; and left open,
right closed intervals la;, b;].

Each step function as in Lemma 3.4 is left continuous with right limits and
so in Z(G) with [1,, ;,dG = G(d) — G(c), a <c <d <b. Also, clearly, a
uniform limit of functions in #(Q) is in #(G) and the integrals converge
[e.g., Hildebrandt (1938), 5.41]. So under the conditions of Lemma 3.3, since
x — F(x—) is left continuous with right limits, we have [’F(x—)dv(x)=
(Y,)[’F(x—)dG(x). For any ¢ > 0, |F(x) — F(x—)| > ¢ for at most finitely
many values of x, so F(x) — F(x—) is a uniform limit of functions with finite
support, and its integrals for dG and dv equal those for dG,, and dv,
respectively. Lemma 3.3 then follows. O

If G(a—) is defined, let
(Yz)fb_FdG = (Y,) [’FdG + F(a)(G(a) - G(a-)).

For this integral, Lemma 3.3 extends to the case where v has an atom at a,
with G(a—) = 0 and G(a) = v({a)).

TuEOREM 3.5 (L. C. Young). Suppose on an interval [a, b] we have f € W,

and g € W, where s :==1/p +1/q > 1. Then (Y)/bfdg is well defined for
i=1,2, and for any ¢ in [a, b],

<1+ LI fllplglgy, i=1,2,

(%) [(f(x) = £(£)) de(x)

- where { is the Riemann zeta fuﬁ'ction {(s) =X, n"% Also,

< (L+ 2N flipllglgy, i=1,2.

() [*F(x) dg ()
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Proor. The first inequality is given in Young (1936), pages 264-266, for
the (Y;) integral, and follows for the (Y,) integral by the transformation
x = —x. The second inequality then holds, since for any ¢,

fabf(§) dg(x)

< If(&)l(sup — inf)(g) < flllgll- =

As s |1, the constant 1 + {(s) goes to +«. Young (1936), Section 7, shows
that this is inevitable: For s = 1, 1 + £(1) cannot be replaced in Theorem 3.5
by any finite constant. But there is a converse inequality, as follows. For § > 0,
let v(f,r,[a,bl, ) be the supremum of all sums Y7_,|f(x;) — f(x,_I", where
a<xy<x,< - <x,<b,and where x; —x,_; <dforalli=1,...,n. For
1<r<ow let CF:=CHa,b] be the set of all functions f in W, such that
v(f,r,la,b],8) - 0 as §0. Clearly, each function in C} is continuous.
[Young (1936), page 261, defines the class W*[a, b] of functions in W, such
that lim; , , v(f, r,[a, b], §) equals the r-variation coming from the jumps of f.
Then C} is the set of continuous functions in W,*.] A dual norm will be defined
with respect to C;: For any linear functional A on C}, let

IRl = sup{lh( f)I: f€ CH N flly < 1).

THEOREM 3.6 (Love and Young). Let 1 <s <« and let L € (C}). Then
there exists a function g € W, where r~* + s~ = 1 such that L(f) = [*fdg,
the Riemann—-Stieltjes integral existing for all f € C¥, and where gl <
22 V7| Ll

Proor. Love and Young (1937), page 248, give this fact except for using
the norm || fllip,a; = If(a)l + || flipy in place of || - |l;,; and having a factor of
2'*1/7 The conclusion follows since |f(a)l < flle < I fllip,ap 50 I fliip,a) <
”f”[p] < 2”f”[p,a] fOI‘ all f O

Now given any finite signed measure v on the Borel sets of [a, b], let G be
the distribution function G(x) := v([a, x]). Then [fdv = [fdG, where the
Riemann-Stieltjes integral. on the right exists for all continuous f [by Lemma
3.1, or, e.g., Kolmogorov and Fomin (1970), page 368]. Since G is of bounded
variation, we also have [|Gll;) < « for 1 < ¢ < o,

Suppose [fdv = [fdg for all fe C* where g€ W, r"'+s ' =1. For
a < ¢ < b, consider the functions f,(x) = max(0, min(1,n(c — x))) on [a,b].
Then f,1 f=1, 4 and f, are uniformly of bounded variation. Let c(n) =
¢c—1/n and d(n) == c — 1/n% Then as n — x,

b c(n) d(n) ¢ :
[f,,dg=(f + [T )fndgﬂg(c—)—g(a),
a a c(n) d(n)

- because the first integral on the right equals g(c,) — g(a) which converges to
the given limit, the third integral goes to 0 since 0 < f,, < 1/n on [d(n),c],
~and the second integral goes to 0 since the r-variation of g on the half-open
interval [c(n), c[ goes to 0 while the 1-variation of f, remains bounded by 1,
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so Theorem 3.5 applies. It follows that g(c —) — g(a) is uniquely determined
by v. Likewise, taking h, |1, ., so is g(c+) — g(a), and clearly g(b) —
gla) = [P1dg.

By adding a constant to g, we can take g(a) = 0. Then on the set of
functions g € W [a, b] with the same g(x—) for a < x < b, the same g(x+)
for a < x < b, the same g(b), and the same [fdg for all fe CZ*, ligll, is
minimized when g is right continuous at x for ¢ < x < b, because for such a
g and x, in any r-variation sum, if x appears, it can be replaced by x + & for
8 | 0 such that g is continuous at x + 8, so that the supremum of such sums is
the same as the supremum of sums in which x does not appear. A different
value of g(x) could only make the r-variation larger.

Also considering f, in CJ with f, |1, and [If,lls) = 2, we get [v({a})] =
lim,, ., [f, dvl < 2llvliis;. So we obtain the following result.

ProrosITION 3.7. If v is a finite signed measure on [a, b], G(x) = v([a, x]),
l1<s<wands '+r-l=1,then

IGlliry < 227 wllisy and  11Gly < (2277 + 2)lIvllis).

Note that conversely, by Theorem 3.5, for any & > 0,
, 1 1
iy < |1+ ¢ = + —— | |lIGllr-e).-
s r-—e

CoOROLLARY 3.8. For any r with 2 <r <« and ¢ > 0, there is an M <
such that for any distribution function F on R and its empirical distribution
functions F,, Pr{lln'/*(F, — F)ll;,;, > M} < e forall n.

Proor. ||F, — Fl|,, is a measurable random variable since in both ||F, —
Fli- and ||F, — Fll. one can restrict to the rational numbers. Let P be the
law with distribution function F and P, its empirical measures. Apply Propo-
sition 3.7 to v:=v, =n"* (P, — P), a= —», b= +o and s :=r/(r — 1).
Then 1 <s < 2, and we can treat ||v,ll;; in place of [[n'/*(F, — F)l|;,;. The
unit ball of C, being a subset of that of W,, is a dominated uniform Donsker
class by Theorem 2.2, and the result follows. O

CoROLLARY 3.9. Let T(-) be a functional on some open set Uin W., r > 2,
such that T is Fréchet differentiable with derivative L(-) at some distribution
function F € U with respect to |- ||, Then for the empirical distribution
functions F,,

T(Fn) = T(F) + L(Fn — F) + Op(n_l/z) asn — o,
where the 0,(n~'/?) is uniform in F.

Proor. By definition of Fréchet diﬁ'erentiability, the remainder is o(||F, —
F|l;;p), which is uniformly o,(n~'/?) by Corollary 3.8. O
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Some functionals with the differentiability stated in Corollary 3.9 are the
inverse operator F — F~! and the composition operator (F,G) — FoG with
respect to F, while G varies in L”, under suitable conditions [Dudley (1991a)].

Corollary 3.8 also follows directly from:

(a) the results of Pisier and Xu, discussed after Theorem 2.2 above, and
(b) again, the Love and Young (1937) duality.

There is still another proof of Corollary 3.8, by martingales [Dudley (1991c)].

4. Bilinear operations and Young integrals. Let X, Y and Z be
three Banach spaces and let B be a function from X X Y into Z which is
bilinear, so that B(-, y) is linear on X for each y € Y and B(x, - ) is linear on
Y for each x € X. Then B provides its own partial derivatives with respect to
each variable, since

B(x +u,y) — B(x,y) =B(u,y) and B(x,y+v) — B(x,y) =B(x,v).
The remainder in differentiating with respect to both variables is
B(x +u,y +v) — B(x,y) — B(u,y) — B(x,v) = B(u,v).

So B is jointly Fréchet differentiable from X X Y into Z if ||B(u,v)| =
o(llull + llvl) as llull - 0 and |lvll = 0. If B is a bounded bilinear form in the
sense that for some K < o, [|B(u,v)|l < Kllullllvll for all « € X and v €Y,
then B is jointly Fréchet differentiable. If X, Y and Z are Banach spaces,
boundedness is equivalent to joint continuity, and even to separate continuity,
where B(x,y) is continuous in x for each fixed y and in y for each fixed x
[e.g., Schaefer (1966), page 88].

Functionals of the form B(F,G) := [FdG are bilinear. Such functionals are
basic in the duality theory of functions of bounded p-variation as in Section 3.
On the other hand, for empirical distribution functions F,, and G,, [F,, dG,, is
(up to normalization) a two-sample Wilcoxon statistic. Gill (1989), Lemma 3,
page 110 shows that B is compactly differentiable for supremum norms at
F,,G, on D[—,o] X E, if E; is the set of functions in D[—, «] of total
variation at most C for some C < «, and F, has bounded variation. Gill
(1989), Lemma 1, page 105, then gives an extension, compactly differentiable
for sup norms, of B to D[— o, ®] X D[—, ], at (F,, G,) of bounded variation.
But this extension simply deletes the remainder term B(f, g) in

B(F, +f,Go +g) = B(Fo,Go) + B(Fy,8) + B(f,G) +B(f,8)

if G, + g & E,, in other words, if G, + g has total variation greater than C.
The resulting function is no longer bilinear, and is discontinuous even along
lines. As Gill notes, for any probability distribution functions G and G + g
suchas G +g=G,, if C>1, then G and G + g are both in E,, while if
'C > 2, then also g € E|, so the extension makes no difference.

Young’s p-variation duality theory (Section 3) provides an alternative ap-
proach.
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THEOREM 4.1. The integrals (F,G) — (Y,)[FdG, i = 1,2, are Fréchet dif-
ferentiable, on W. X W, for || - I, | - llsy whenever r=! +s71 > 1.

Proor. By a theorem of Young (the latter part of Theorem 3.5 above), the
integrals are bounded bilinear forms for the given norm and seminorm, so they
are Fréchet differentiable. O

Corollary 3.8 and Theorem 4.1 cannot be applied directly if F and G are
both replaced by empirical processes, since we cannot take both r > 2 and
s > 2. On the other hand, it may sometimes be useful that empirical processes
do have sample functions in r-variation spaces also for 1 < r < 2, without the
uniformity of Corollary 3.8.

In this case [unlike the composition and inverse operators treated by Reeds
(1976), Fernholz (1983) and Dudley (1991a)], the derivative need not be taken
at F, or G, having stronger smoothness properties; neither of them has to be
of bounded variation. While the || - ||,j norm for f is stronger than the sup
norm, recall that compact sets for the sup norm are small while bounded sets
for || - l;-; can be quite large (nonseparable) for the sup norm as well as for the
Il - ll;-) norm itself.

Acknowledgments. I thank Richard Gill, Evarist Giné, Jose Gonzalez-
Barrios, Gilles Pisier, Aad van der Vaart, Jon Wellner and the referee for
helpful comments on this paper and the subject generally.
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