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A stochastic flow is a family of random mappings ¢, ,, 0 <s <t <T,of R d
(or other space) into itself, satisfying the composition relation ¢, , > ¢, , = ¢, ,
if s <t < u. There are interesting cases with coalescence, but most treatments
have dealt with homeomorphic or diffeomorphic flows. Then ¢ defined by
by, =d,, for s<t and ¢,,=(¢,,)""! for s >¢ is a flow satisfying the
composition relation for 0 < s, ¢t < T. If ¢,, t > 0 is a homeomorphism-valued
process, then ¢, , = ¢,°(¢,)"", 0 <s,t < T is a flow. If ¢ is a flow defined
for 0 <s,t < T, the restriction to s <t is called a forward flow, and is
usually considered for fixed s. The restriction to s > ¢ is a backward flow. We
speak mostly of forward flows, but there are parallel backward results, and the
interplay between the two is important. ¢, denotes ¢, ;.

In an important case ¢, ,(x) is continuous in s, ¢ and x, and s; < ¢; < s, <
ty < --- implies that ¢, ,,¢,, ,,... are independent mappings; such flows
are called Brownian. For Brownian flows with some regularity conditions, the
paths of a set of 2 points are a dk-dimensional diffusion. In the time-homoge-
neous case, the law of ¢, depends on ¢ — s.

It is known that Brownian stochastic flows arise as solutions of It6 systems
in RY:
dol (%) = ¥ 0i(ds, (x),t) AW, + bi(o, (x),¢)dt, t>s;

(1)

Le(x)=x', 1<i<d.

Here the W’s are independent Wiener processes in R!. The ¢’s and b’s satisfy
familiar conditions. If we change o without changing oo?, the one-point
motions are unchanged but in general the flow will be different. However, the
flow is determined by the two-point motions, or alternatively by the infinites-
imal mean (drift) b(x, t) and the infinitesimal covariance matrix:

a(x,y,t) = %015(35,75)0{(.3’,':)
(2) = }‘ilﬁE{(#u(x) = x')(¢uy) — 7))}/ (u — 1),
bi(x,t) = li{r}E{q&ﬁu(x) —-x'}/(u—t).
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a'’ is nonnegative definite, considered as a function of the two variables (i, x)
and (j,y). a"(x, x,t) is the diffusion matrix of the one-point motion. It is
through a and b that our intuition best relates to the flow.

In the case of temporally homogeneous Brownian flows we can use the
treatment of Baxendale (1984), based on reproducing kernel theory, to go from
given a and b to stochastic equations. Here
(3) a’(x,y) = L Vi(x)Vi(y)

l<a<wx
in the sense of reproducing kernel theory. The flow is then given by the
(usually infinite) system

@ eix) ==+ [[TVIb(x) dW(s) + [ (,(x)) ds.

Although in a sense the theory of Brownian flows is the theory of (possibly
infinite) Itd systems, the flow theory puts much emphasis on the behavior of
¢, (x) as a function of x, and one is also concerned with the effect of the
mappings ¢,, on the shapes or measures of subsets transported by the flow.
The reviewer will not try to cover the history of the subject, which owes much
to Kunita and, to cite a few more researchers, Baxendale, Bismut, Carverhill,
Elworthy, LeJan, Malliavin, Ruelle and Watanabe. The pioneering work on
stochastic differential equations by It6, Stroock and Varadhan, and others
must be kept in mind. There is a section of historical remarks at the end of the
book.

Before following Kunita into the general mathematical framework of flows,
Brownian and non-Brownian, we observe that there are jump-type or piecewise
smooth flows which have limiting Brownian flows. A few examples:

(a) Solutions of systems of ordinary differential equations with random
coefficients. A few examples are the papers of Wong and Zakai (1965), Kesten
and Papanicolaou (1979) and Kunita (1984). In a frequently treated case,
certain of the input functions become white noise in the limit.

(b) ““Stirrings” or other jump-type processes: randomly selected transfor-
mations applied more and more frequently to R at random times and places
[Harris (1981), stimulated by the symmetric simple exclusion process of Spitzer
(1970); Matsumoto and Shigekawa (1985)]. A randomized modification of the
idealized nonrandom stirring of a fluid in Aref (1984) has a limiting Brownian
stochastic flow in R?\ {0} [Jakel (1989)].

Although Brownian flows do not have velocities, the infinitesimal covariance
matrix for a Brownian flow resembles mathematically the ‘“correlation tensor”
of velocities in the statistical theory of turbulence [Monin and Yaglom (1975)].
In each case, incompressibility and isotropy are related to properties of the
matrix, and if isotropy and spatial homogeneity are present, a decomposition of
@'/ into potential and solenoidal parts [It6 (1956)] is useful [Baxendale and
Harris (1986) and LeJan (1985)]. Morris (1989) has given conditions under
which a similar decomposition holds for spatially homogenous nonisotropic
flows.
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To appreciate the mathematical framework of the book, go back to (1) and
put (fixing s = 0, say)

Fi(x,t) = ¥ [oj(x,r) dW(r) + [bi(x,r)dr,
j=1 0 0

t>0,i=1,2,...,d.

F(x,t) is a vector-valued semimartingale, the Itd terms on the right side of (5)
giving a vector-valued local martingale. Write (1) in the form

(6) ¢(x) = bo.(x) =x + ['F(d,(x), dr).

F is the (Itd forward) random infinitesimal generator (r.i.g.) of ¢.

Now start with any R%valued semimartingale process F(x, t) continuous in
(x,t) € R? x [0,») and satisfying additional regularity conditions. Following
LeJan and Watanabe (1984) and Kunita, we define for R%valued predictable
processes g(r) = g, a vector integral of the It6 (resp., Stratonovich) type,
denoted by

(7 fOtF(g,,dr) (resp., fotF(g,,odr)),

which is consistent with the usual definitions when F is as in (5). Thus thé
first (resp., second) integral in (7) is a limit of sums [put g; = g(r;)]

Y [F(gi ris1) — F(gism)], L <riip

[resp., (1/2)L[F(g; 1, i1y — F(gi 11, 1) + F(g;, 1y, ) — F(g,;, r)1] Then there
is a unique forward flow (not in general Brownian) satisfying (6), that is, for
which F is the r.i.g. Conversely, given a flow, we can find a unique semi-
martingale F for which (6) holds. Using [{F(&,(x), 0 dr) as the integral in (6),
F is the Stratonovich forward r.i.g. There is also a backward r.i.g. for each
type of integral.

Suppose an R<valued semimartingale F(x,t) with a filtration F, has the
form F(x,t) = M(x,t) + B(x,t), where, for fixed x, M(x,t) is a continuous
local martingale and B(x, #) is continuous and of bounded variation on finite
t-intervals. Assume that the joint quadratic variation of M,(x, - ) and M,(y, - )
can be written in the form A, (x,y,t) = [ja*/(x,y,T) dr while B (x ) =

tbi(x, r) dr, where the a’/ and the b’ are predictable as functions of r. [More
generally dr may have to be replaced by A(dr), where A is a continuous
increasing process.] Then a(x,y,t) and b(x,t¢) are by definition the local
characteristics of F. Almost surely, for the corresponding flow ¢,

(8) b(x, 1) = BmE(#] (%) ~ =1} /(u ~ 1),
©)  a(x,y,0) = WmE((6(x) —=)(¢1u(2) ~ 3 IF/(u = ).

The Brownian case arises exactly when these limits are nonrandom. In this
case (6) becomes an Itd system like (1), except that in general a countable

(5)
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infinity of Wiener processes is required. Non-Brownian flows arise naturally as
backward Brownian flows, or by composition of Brownian flows [LeJan and
Watanabe (1984)].

A number of technical problems have to be solved in the above treatment.
In particular, a generalized It6 formula is required to express functions of the
form F(g,,t), where g, is a continuous semimartingale with values in the
space of x. Bismut (1981) and other researchers have contributed here.

Kunita and others have shown that if the r.i.g. is smooth enough, the
solution of () is jointly continuous in s, ¢ and x, has continuous partial
derivatives of several orders in x, and is homeomorphic or diffeomorphic. A
thorough treatment of such results is given in the book. On the other hand,
nonsmooth correlations may lead to flows with coalescence [Harris (1984) and
Darling (1987)].

As is known, a diffusion may have an explosion time. For flows, the
situation is rather complicated. For example, a flow can be constructed in
R?%\ {0} such that for fixed x, the path starting at x is a.s. defined for all ¢, and
on each finite -interval stays outside some random open ball containing the
origin; but for fixed ¢ > 0 there are a.s. points y € R2\ {0} such that the path
starting at y enters every open ball containing {0} during [0, ¢]. Both global and
local existence results are given in the book.

How does a Brownian flow {¢,} behave as ¢ » «»? One approach is to
study the effect of {¢,} on a nonrandom Borel measure Il in R? Define
(¢, 'TIXB) = TI(¢,( B)). Under certain conditions ¢, 'II = II. (II-shrinking and
[I-expanding flows are also considered.) If II is Lebesgue, the flow is called
incompressible. A necessary and sufficient condition for incompressibility is
that the divergence of the Stratonovich r.i.g. is 0; similar results are given for
the preservation of other measures. Thus a Brownian flow in R? with the
Stratonovich r.i.g.

(10) F(x,t) = Y A(x)Wy

a=1

is incompressible if and only if div A (x) = 0. In R? this implies existence of a
scalar random stream function G(x, t) which, in a limiting sense, describes the
transport across the segment Ox during the time-interval [0,¢]. [See Pei,
(1991).] .
Suppose the one-point motion has an invariant probability A and a strictly
positive definite covariance matrix a*/(x, x). Then almost surely ¢, 'A con-
verges weakly (as a measure) to a probability measure A, such that EA(B) =
A(B). Unless a special divergence condition holds, the measure A, is a.s.
singular with respect to A. Other related results are given. LeJan [e.g., (1984,
1987)] has done much on this subject.
“The asymptotic behavior of a flow for large ¢ may be studied through the
Lyapunov exponents, which are frequently defined in terms of the linearized
flow. In the present book Lyapunov exponents are introduced in terms of such



BOOK REVIEW 585

quantities as
lim sup log I1($,( B))/t

t—o0
for measures II and Borel sets B. One would like to have more on the
relationship of this approach to the usual one.

Fundamental to the analysis of flows is a study of convergence of a family of
flows {¢, = ¢.(x,t), € > 0} or a sequence {¢,} to a flow ¢. The joint conver-
gence of a family of flows ¢, and their r.i.g.’s F, is considered. Denote the
mappings x — ¢(x,¢) and x —» F(x, t) by ¢(¢) and F(¢), respectively; similarly
for ¢.(¢) and F.(¢). We have weak convergence as flows of (¢,) to ¢ if the joint
law of the process (¢.(#), F(¢), 0 <t <T) converges weakly to that of
(¢(2), F(¢)). Various choices may be made for the spaces of mappings. For
example F.(¢) may be in the space of C*-mappings and ¢_(¢) in the space of
C*-diffeomorphisms. A less stringent convergence “as diffusions’ occurs when
all finite-point processes ¢ — (¢ (x1,8),...,0.(x,,8); F.xy,0),..., F(x,,t)
converge weakly to the corresponding process for (¢, F).

The limit theorems are of great generality, and include some types studied
earlier by various authors. An interesting case is the system of random
ordinary differential equations

r
(11) dx/dt = Y Fy(x,t)vi(t) + Fo(x,t),
=1
where the F,(x,t) are continuous R?-valued nonrandom functions and the v{
are processes with mean 0 whose time integrals tend to Wiener processes B,(¢)
as ¢ 0. Under appropriate additional conditions, the solution tends to the
stochastic flow determined by

(12) dg, = lf: Fy(,,£)0dBy() + Fo(,) dt.
=1

Under other conditions, there may be a more complicated limiting equation.

A section about flows on manifolds establishes the fundamentals, discusses
the action of a flow on a tensor field and treats Kunita’s earlier work on
compositions and decompositions of flows.

The book concludes with a treatment of stochastic partial differential
equations. A special case of the results in the book shows the intimate
relationship between such equations and stochastic flows. Let ¢, be a
stochastic flow in R? generated by the semimartingale —F(x, t):

(13) dé,,= —F(¢,,,0dt), t >s, s fixed.
Let
(14) Us,p = (d)‘s,t)_l’ L2834, = o,

For s fixed, {¢,, ¢ =>s} is a backward flow. If f is a smooth function
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R% - R an extension of It&’s theorem to backward flows gives
(1) f(i(x) = F(x) + T [Fi(x,0dr)(2/ox")(f = 4,)(x).
Putting u(x,t) = f(y(x)), (15) ’;ecomes

(16) u(x,t) = f(x) + ;f(}tFi(x,odr)(a/axi)u(x,r).

In other words, the solution of the integrated linear stochastic PDE (16) is
exhibited in terms of the backward flow ¢,. Equations of this type have been
treated by Ogawa (1973) in connection with wave propagation in a randomly
fluctuating medium. The book also treats quasilinear and nonlinear first-order
equations, where more involved methods are required.

Besides their physical applications, first-order equations have applications
to the solution of second-order equations. The second-order form considered is

u(x,t) = f(x) + [Lu(x,r)dr+ iftFi(x,odr)
(17) 0 i=170
“du(x,r)/dx" + j:Fd“(x,odr)u(x,r),

where L, is a second-order operator on x. Applications of this linear equation
to nonlinear filtering are treated. To give a taste of Kunita’s probabilistic
method, consider a very special case in R!, which however is too special for the
filtering application.

Let Lh(x) = (1/2)0%(x)d?h(x)/dx?, F(x,t) =W, F¢*1 =0, so (17) be-
comes

(18)  u(x,t) = f(x) +f0t%0'2(x)u”(x,r)dr+fotu'(x,r)odW(r).

We introduce a semimartingale X(x,t) = o(x)W, — (1/2)o(x)a’(x)t, where W
is independent of W. The local characteristics of X are a(x,y) = o(x)o(y) and
b(x) = —(1/2)o(x)o’(x). These are picked so that a(x,x) = o*(x), while
—(1/2)a(x)o’'(x) is the drift of the diffusion associated with L (here 0) minus
the “Stratonovich correction term” associated with a(x, y).

Let ¢ be the flow having the Stratonovich r.i.g.— W, — X(x,¢) and put
¥, = (¢o,) . Using the previous result on first-order equations, it is shown
that the solution of (18) is

(19) u(x,t) = Ef (¥(x)),

where E is conditional expectation with W given.

The reviewer has very few complaints about the book. The exposition is well
ofganized and goes deep. The inclusion of additional easy special cases as
examples would assist the reader. Since the conditions for some of the theo-
rems are necessarily quite technical (e.g., a certain process is required to be a
backward and forward semimartingale), it would help to state readily verifiable
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sufficient conditions for some of the theorems. Little is said about the geomet-
rical aspects of flows associated with work on Lyapunov exponents. This has
been treated thoroughly elsewhere, but a brief discussion here would help the
reader appreciate this important aspect of flows.

Taken as a whole, the book is an admirable and impressive treatment of the
foundations of stochastic flow theory, with a wide enough framework to handle
many applications.
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