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RADEMACHER’S THEOREM FOR WIENER FUNCTIONALS

By O. ENcHEV! anD D. W. STROOCK 2

Boston University and MIT

Given an R-valued, Borel measurable function F on an abstract Wiener .
space (E, H, u), we show that F is uniformly Lipschitz continuous in the
directions of H if and only if it has one derivative in the sense of Malliavin
and that derivative is an element of L*(u; H).

1. Formulation of the main result. Let H be a separable, real, Hilbert
space with scalar product (-, - )y, |l - || a measurable norm on H (cf. [1]), and
(E, H, 1) the corresponding (in the sense of Gross) abstract Wiener space.
Next, let (¢, w) denote the pairing between an element w of E and an element
Z of the dual space E*, denote by & the algebra of functions ¢: E — R of the
form

(1.1) d(w) =p((Z,w),...,{4,w)), w€EE,

for some n € Z*, polynomial p: R* - R, and (¢,,..., Z,) € (E*)", and take P
to be the vector space of maps ®: E — H which can be expressed in the form

(12) ®(w) = ¥ oi(0)

for some choice of n € Z*, (¢y,...,¢,) € P" and (¢,,...,7,) € (E*)". For
/€ E*, we define the lowering operator 3. #— &P and the raising operator
3. P P, respectively, by

d
[0,6](w) = a(ﬁ(a) + t/)Lo,

[05¢](w) = ¢(w)(Z,0) — [0,6](w),

and recall the integration by parts formula

d
SEAF (o + t0)9(@))| = E[F)[26](0),

which holds for every /€ E*, ¢ € & and F € L% E, u) (note that there is no
smoothness requirement of any kind for F'). Finally, we define the operators
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2: P B and 9T B> Z by

a
[29)(0) = L 5((4y @), (4 0)) s

i=1 2
[21®](w) = ~-i1[32¢i](w)’

when ¢ and ® are given by (1.1) and (1.2), respectively. Clearly, the integra-
tion by parts formula can be expressed in terms of 2 and 2" as

EL([2¢](0), 2(0))u} = Efd(0)[270)(0)}, ¢E€FPand® e,

and using this relation one can show (see [2] or [3]) that the adjoints of 2 and
97 coincide, respectively, with the minimal closures of 27 and 2 as operators
on L*(u; H) » L%(u;R)and L%*(u;R) —» L%(u; H), respectively. Thus, if W2(R)
is the completion of & with respect to the norm

¢~ (Bl o)) + (E1261) ),

then W2(R) can be identified as a subspace of L%(u;R) and F € L%*(u;R) is an
element of WA(R) if and only if

||E#{F[.@T<D]}| < C”(I)”Lz(,u;H), de SB’

for some C € [0, »), in which case | DF || 2, my < C. From now on we will use
2 and 9" to denote their own closed extensions.

The mapping F: E — R will be said to be H-Lipschitz continuous with
constant C € [0, ») if it is Borel measurable and

| f(o +h) —f(w)| <Clkllg, wE€Eand h e H.

We will say that F is p-a.e. H-Lipschitz continuous, if there is a u-ae.
modification F of F (i.e., F coincides with F' outside some u-negligible set),
which is H-Lipschitz. In the latter case we define

. 1 5 ~
Lipy[F] = esssup sup ————|F(w +h) —F(w)l .
wek  nemyo \ Al

Notice that, as a consequence of the quasitranslation invariance of w in the
directions of H, the right-hand side above does not depend on the particular
u-a.e., H-Lipschitz continuous modification F. Also, as our result will show,
one can always find an u-a.e. modification F, which is H-Lipschitz continuous
with constant C = Lipy[F]. Finally, we say that F: E - R is locally
H-differentiable at w € E if there is F'(w) € H such that, for each & € H,

F(o +eh) — F(w) —e(F'(w),h) g =0,(¢),
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where the error term o,(¢) is such that (1/£)o,(¢) — 0 as ¢ — 0, uniformly on
compact subsets of H.
Our main result is the following:

THEOREM. Let F € L%(u,R). Then the following three conditions are equiv-
alent:

(i) Fis u-a.e. H-Lipschitz continuous;
(i) F has a p-a.e. modification F which is locally H-differentiable at
u-a.e. 0w € Q and F' € L(u; H);
(iii) F € WAE) and 9F € L™(u; H).

In fact, (1) implies (i) with | F|| Lo 1) = Lipy[F, (i) implies (iii) with
9F = F' u-a.e., and (iii) implies that F admits a u-a.e. modification F which
is H-Lipschitz with constant | DF || L= i)

REMARK. Our interest in the preceding result stems from its applications
to the analysis of anticipating S.D.E.’s. A paper containing such applications is
in preparation. In the meantime, we will content ourselves with the applica-
tion given at the end of this article, and we take this opportunity to thank
R. Leandre for leading us to this application.

2. Proof of the main result. Much of what we do will turn on the
following simple lemma.

LEMMA . Let { be a finite dimensional subspace of E* and denote by & *
the orthogonal complement of & as a subspace of H. Then the orothogonal
projection map Py, of H onto & admits a unique continuous extension as a map
from E onto . Furthermore, if P¢-=1— Py, Ey.=Pg (E), and pg.=
we Pg~1 then Eg. is the completion of {* with respect to |||} &+ and
(Eg.,R", ugy.) is an abstract Wiener space. Finally, if g = po Pg?, then the
mapping

is @ homeomorphism which takes the measure p onto the measure pg. Xpug.
In particular, if F: E — [0,%) is Borel measurable and Fy: & — [0, ®] is the
Borel measurable function given by

Fo(2) = fE Fo¥il(wgs, s )pugs(dwgy),
E.L

then
IE#[FI%] =Fg°Pg m-a.e.

"Proor. To see that Py admits a continuous extension to E, choose a basis
(¢y,...,¢,) for £ so that (£, ¢)y =9, ;, and define Py = L1{¢, w)¢; for
o € E. Next, note that, because of continuity, Ey. is closed in E and can
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therefore be identified as the completion of £+ with respect to || - ||} £+ ; and
obviously ¥, is a homeomorphism. In addition, use of characteristic func-
tions shows that (Eg., 2", ug.) is an abstract Wiener space and that u =
(ng1 Xug)o ¥y. Finally, because F is Fy-measurable if and only if F = Fo Py,
the last assertion is an immediate consequence of the preceding ones. [

2.1. () implies (ii) and (i) implies (iii). Suppose that F € L%(u;R) is
H-Lipschitz continuous with some constant C € [0, x). Given <€ E* \ {0}, let
£ be the linear span of {¢} and set

F'(wBL s t) = F(wBL +t/) for wet € ERJ. and t € R.
Obviously, for each wgy., t € R — F(wg.,t) € R is an absolutely continuous
function and, as such, has the property that the set I (wg.,¢) of ¢ € R for
which the derivative
. F(wg.,t+¢) — Fwg.,t)

lim

-0 €
exists has full Lebesgue measure. Hence, if &/(<) denotes that set of w € E
for which the limit

Glw, ) = lin(l) Flo + s/e) F(w)
exists, then, by our lemma and Fubini’s theorem, we know that u(A(<)¢) =0
for every /= E*. We extend G(-, ¢) to the whole of E by making it vanish off
of A(¢). Obviously, |G(w, ¢)| < C||Z|lg for all (w, ¢) € E X E*.
Next, select an orthonormal basis {e,);_; for H consisting of elements from
E*, and set

o= U o,
n=1
where

o, = { Y aser:{as)yo CQwith ¥ af = 1}
k=1 k=1

and Q stands for the set of rational numbers in R. For every /= Y} _,a,e, € &,
and every ¢ € &, we have

{ﬁ(w +e/) — F(o)

E{G(,¢)¢(0)} = lim E, ¢(w)}

= E{F(0)[0l¢](w)} = élgk[ﬁ#{ﬁ(w)[agﬁ](w)}

n
= Y a,limE,
k=1 20

- E,L{ 3 akG(w,ek)qb(w)}
k=1

Fa) € —Fw
[EALSELC I
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and so we now know that, for every /€ &7,
G(ow,?) = i (¢,e,)nG(w,e,) foru-ae w€e€E,
k=1
and therefore that the set
B= {w S a A(e,): G(w,?) = i (¢,e,)uG(w,e,) forall /e .Q/}
k=1 k=1

has full 4 measure. In particular, for each w € B and all /€ 7,

Y (4, e)uG(w,e,)| =|G(w, )| < Cll4la,
k=1

from which it is clear that

Y G(w,e,)’<C?<w® forall w € B.
k=1

Finally, define

G(w,e,)e, € H, forweB,
G(w) = | B, e

0, for w & B.

Clearly |G(w)llgz < C for all @ € E. In order to complete the proof that
() implies (ii), let w € B be chosen and fixed, and define the mapping
¥v: /- C(-1,1],R) by

F(o + ¢l) — F(o)
[¥()](e) = —(G(w),4)u, foree[-1,1]\ {0},

€

0, for e = 0.

After observing that
I[¥(£)](e) = [¥()](e)|<2Cle"— 2y for ¢,/ € o and e € [-1,1],

we conclude that ¥ admits a unique continuous extension to the whole of
S(H) = {h € H: ||hllg = 1}. We again use ¥ to denote this extension and
remark that, for every A € S(H), we have, on the one hand, [¥(4)}(0) = 0
and, on the other hand,

F(o + ¢h) — F(w)

Thus, (i), with F’ = G, follows immediately from the fact that ¥ is uniformly
continuous on compacts. Furthermore, because there is one u-negligible set off
of which

—(G(@),h) g = [¥(R)](e) fore e [-1,1]\{0}.

F(o +eh) — F(w)

€

forall h € H,

(G(w),h) 5 = lim
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it is clear that

|Gl z=u; 1y < €sssup  sup |F(w + k) - F(w)|)

w€E heH\(O}( ”h”H

Turning to the implication (ii) implies (iii), assume (ii) and observe that, just
as before, we have that

EfF(w)[01¢](w)} = E{(F(),¢)yé(w)} forall /€ E* and ¢ € 2,
or, equivalently, that
E{F(0)[2®](0)} = E{(F'(0),(v)),} foraldc .
Hence, because F' € L*(u; H)c L%(u; H), we have now proved both that
F € W2(R) and that DF = F' € L*(u; H).

2.2. (iii) implies (i). Choose {e,};_; € E* to be an orthonormal basis for
H, let &, be the linear span of {e;,...,e,} in E*,anduse E;", ¥,, u,, and u;
to denote, respectively, the associated quantities Eg., Vg, mg, and ugy
described in our lemma. Then the set B, of ¢, € £, for which

wtr€El—>Fo¥ Yo);,4,)ER
is wi-square integrable has full u, measure; and if f,: R® — R is defined by

fulx) = [ Fow (o 4(2))uz (doy)

when ¢ (x) = Lix,e; € B, and f,(x) = 0 when /,(x) & B, then
EfFIF) =f.° 4, P, wn-ae,

where (cf. the lemma) %, = % and P, = P, . In particular, because the
Borel field over E is contamed in'the /.L-completlon of VT%,, we know that

F=lim f,0¢, .p,, w-almost surely.

n-—>ow

We next examine the functions f,. For this purpose, let ¢: R* » R" be a
smooth function with the property that

x € R" — ¢(x) = (2m)" % /2y (x)

is a vector-valued function with polynomial coefficients. If div(y) denotes the
Euclidean divergence of ¢, then an easy computation shows that

[ ) [@iv(w)] (x) dx = [ F(0)[2'®)(@)n(dw),
R” ' E
where ® € % is given by

(w) = %(mo/;lo ())er.
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Hence,

[ A @] () di| = [ (9F(0), 0(0)) )

< ”gF”Lw(,u;H)”q)”Ll(,u;H) = HQF”L“’(;L;H)”'J’”LI(R";R")’

from which it follows that the distributional gradient of f, is given by a
function Vf € L*(R"; R") with [|Vf, |l z<@n ey < | DF |l 1=, 1) In particular, f,
can be modified on a set of Lebesgue measure 0 to obtain to an f, € C(R";R)
which is Lipschitz continuous with constant || 2F|| =u; o). Hence, if

B= {w €E: F(w) = limsup f, ol 1P (0) € R},
n—oo
then, for all (w,h) € E X H, w € B if and only if @ + h € B, and so the
extension of F obtained by taking F = 0 on E\ B is H-Lipschitz continuous
with constant | DF |1+, ). Thus, since F = F y-almost surely, we are done.

3. Concluding remarks and an application. The familiar Rademacher
theorem, from which our title derives, translates into the language of this
article as the statement that, when F is H-Lipschitz continuous, then there is
an F’ € L*(u; H) with the property that

F(o +h) — F(w) — (h, F’
R(H) lim (e ) () ~ ( (@))u =0 foru-ae. wekE.
Illzz—0 Al

However, so far as we know, this theorem has only been proved when
dim(H) < «, in which case S(H) is compact and therefore the assertion
follows immediately from our result. On the other hand, when dim(H) = 00,
we have been unable to decide whether R(H) follows from Lipschitz continu-
ity; although we tend to believe that it does not. Indeed, we suspect that the
best that one can do in this direction is replace R(H) by
F — _ !’
RE) lm 0D F@ (G @)oo pae wck.
I<llg=—>0 11l g

Because, when dim(H) < », E* = H = E, R(H) and R(E*) are equivalent in
the finite dimensional setting. However, in infinite dimensions, R(E*) is much
weaker than R(H) and, in fact, by our result, does follow from the assumption
that F is H-Lipschitz continuous.

To see this latter statement, it suffices for us to show that the closed unit
ball B(E*) ={¢: ||/llgx < 1} is relatively compact in H. For this purpose,
recall that B(E*) is bounded in H and sequentially weak® compact in E*.
Thus, all that we have to do is show that if {¢}; ¢ B(E*) is weak* convergent
to /€ B(E*), then ¢, > ¢ in H. However, because

Ef(, o)} = 8l21%, <€ E*,
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we see that {(Z,,, w)°); is uniformly u-integrable, and therefore that
1 = 21 = E{ (¢4 0) = (£, 03)) = 0

follows immediately from the fact that (£, ) = (¢, w) for every w € E.

Although we have been unable to settle the question raised above, the
search for an answer led to discussion with Leandre in which we stumbled
onto the following curious application to our version of Rademacher’s theorem.
Namely, let K denote a weak* compact subset of the dual space E*, consider
the function Fy: QO — R given by

Fx(w) = sup{<, w).
/€K
Obviously Fy does more than satisfy condition (i) in our theorem, and there-
fore, we know that there exists a Ay € %, of full u measure and a %,-mea-
surable Fg: O — H such that
Fy(w +¢eh) — Fp(ow
lim 2K )~ Fiew) _ (Fi(w),h)y forall (w,h) € Ag X H.

-0 €
On the other hand, a simple computation shows that, for all (w, 2) € Q X H,
Fr(w +eh) — F(o
[D*F(w)] (k) = lim i ) =H©) _ p(h,w),
EN

£

where
Fy(h,w) = max{({Z, h): /€ K such that (¢, 0) = Fx(w)}.
Hence, for w € Ay,
heH - Fg(h,w») islinear,

which is possible only if: For each w € A, there is a unique £ (w) € K with
the property that {/y(w), w) = Fx(w). For example, when applied to the
standard Brownian motion on the line, this result leads immediately to the
observation that almost every Brownian path achieves its maximum value
precisely once on each closed time interval. In fact, if K denotes any weak*
compact set of signed Radon measures A on [0, ®) and if

sup (1 + 8)Al(dt) < oo,
r€K “[0,)

then almost every Brownian path o will have the property that there is
precisely one Agx(w) € K for which

’ _/;O’w)w(t)(AK(w))(dt) = Iax f[o’m)w(t))t(dt) < o,

This is not the first time that such results have been discovered (cf. [4]), but it
is probably the first time that they have been derived by this sort of analysis.
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