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STRONG APPROXIMATION FOR SET-INDEXED
PARTIAL-SUM PROCESSES, VIA
KMT CONSTRUCTIONS II

By EMMANUEL RIo
CNRS, Orsay

Let (X;);cz2 be an array of zero-mean independent identically
distributed random vectors with values in R* with finite variance, and let
 be a class of Borel subsets of [0, 1]%. If, for the usual metric, ./ is totally
bounded and has a convergent entropy integral, we obtain a strong invari-
ance principle for an appropriately smoothed version of the partial-sum
process {Z; <, s X;: S € »#} with an error term depending only on . and
on the tail distribution of X;. In particular, when ./ is the class of subsets
of [0,1]% with a-differentiable boundaries introduced by Dudley, we prove
that our result is optimal.

1. Introduction. In this paper, we continue the research started in our
previous paper 1. So, the purpose of this paper is to establish strong invariance
principles for partial sum processes indexed by a family of subsets of the unit
cube [0, 1]%. As motivation and potential application for our results, we refer
the reader to Pyke’s review (1984). The context of the problem is as follows.
Let (X;);cz¢ be an array of iid. R*-valued random vectors with mean zero
and finite variance. If ./ is any collection of Borel subsets of [0, 1]¢, we define
the smoothed partial-sum process {X(vS): S € .} by

(1.0~) X(vS) = Y AM[i-1,i]1n vS) X;,

iezd

where 1 =(1,...,1),[i — 1,:]is the unit cube with upper right vertex i, and
A is the Lebesgue measure on R?.

When d = 1 and /= {[0,¢], ¢ € [0, 1]}, where (X)), . is a sequence of i.i.d.
R-valued random variables with a finite rth moment, Komlés, Major and
Tusnady (1975, 1976) proved that a sequence (Y}); ., of i.i.d. Gaussian vari-
ables may be constructed in such a way that, denoting by Y, the partial-sum
process associated with (Y})

i>1
sup | X(»S) — Y(¥S)|=o(»¥") as.
Se/
Moreover, if the moment-generating function of X, is finite in a neighborhood

of 0,
sup | X(»S) — Y(»S)| = O(logv) aus.
Se”
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It is worth noticing that the rates of strong approximation appearing above are
optimal: This comes from Breiman’s remark (1967) when the rth moment is
finite and from Bartfai (1966) when the moment-generating function is finite.
Recently, Einmahl (1987, 1989) extended these results to R*-valued random
vectors and to more general moment conditions.

Our aim is to obtain optimal rates of convergence in strong invariance
principles for multidimensionally-indexed partial-sum processes. The general
approach is analogous to that introduced by Komlés, Major and Tusnady
(KMT). In the spirit of Massart (1989), the methods are then extended to
obtain strong invariance principles for multidimensionally-indexed processes.
Recall that Massart (1989) obtained optimal rates in the strong invariance
principle for real-valued set-indexed partial-sum processes, when . is not too
large (i.e., . is a Vapnik-Chervonenkis class or . fulfills a suitable condition
of entropy with inclusion). However, he had to assume the existence of the
moment-generating function of the random variables. Recently, we generalized
Massart’s results for Vapnik-Chervonenkis classes of sets to R*-valued ran-
dom vectors and weaker moment conditions. Here, using the modification of
KMT’s dyadic scheme previously introduced in Part I, we study the rates of
convergence in the strong invariance principle for partial sum processes
indexed by classes . of sets having an integrable entropy with inclusion and
fulfilling some uniform smoothness condition on the boundaries of elements of
. Due to the largeness of these classes, it is necessary to consider a smoothed
version of the partial sum process. In this case, Bass (1985) and Alexander and
Pyke (1986) obtained recently a functional LIL and an uniform CLT, when
only the second moment of X, is assumed to be finite. In a slightly more
general context, the uniform central limit theorem of Bass and Pyke (1984),
and the strong invariance principles with rates of convergence of Morrow and
Philipp (1986) required that X, satisfy a moment condition which becomes
more restrictive as the size of .~ increases. By contrast, the strong invariance
principle proved in this paper requires only that the second moment of X, be
finite.

Now, we discuss further the scope of results: We need an extra condition on
the boundaries of the elements of .. Given a norm | - | on R? and a subset S
of R?, we set

(0S)° = {y € R%: |y — 2| < € for some z € 4S}
and we make the following standing assumption on
(1.1)  sup A((dS)°) < Ke® for any € €]0, 1], for some 5 €]0, 1].
Se”
When & = 1, this condition is the uniform Minkowsky condition previously
used by Massart (1989) and Bass and Pyke (1984). Let H(e) be the entropy

with inclusion of ./ related to the pseudometric d, on . defined in Section
2. Let us define the entropy integral function I(-) by

I(x) =f:(H(u)/u)1/2du.
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This function is an upper bound on the modulus of continuity of the Brownian
process W indexed by . with mean zero and covariance Cov(W(A), W(B)) =
A(A N B)Var X,, which is the limit of the normalized processes {r ~¢/2X(vS):
v € /} as v = +o [see Dudley (1973) for more about Gaussian processes].

When .~ satisfies (1.1) and has an integrable entropy with inclusion, and
E(|X,|") < +o for some large enough r, we obtain an almost sure strong
invariance principle with rate of convergence O(I(v~?)). Moreover, when .7 is
the class of sets with a-differentiable boundaries introduced in Dudley (1974),
we prove in Section 4 that this result is optimal.

On the other hand, when . is not too large and r is closer to 2, we prove
that the rate of approximation is of the order of o(v?/7~1/?) and this result
still is optimal.

2. Definitions and results. Throughout this paper, the probability space
) is assumed to be such that there exists an atomless real-valued random
variable, defined on (), which is independent of the observations. Let . be a
family of Borel subsets of the unit cube [0,1]¢ satisfying the smoothness
condition (1.1) for some positive 8. In order to get nice asymptotic properties
for a normalized version of the smoothed partial-sum process {X(»S): S € ./}
defined by (1.0), we have to put some additional conditions on .. Let us define
the pseudometric d, by d,(A, B) = A(A AB), where A is the Lebesgue mea-
sure on R?. We shall assume that . is totally bounded with inclusion and has
a convergent entropy integral with respect to d,. This means that, first, for
every positive ¢ there exists a finite collection (called an e-net) /(&) such that
for any S in ., there exits S* and S~ in A(¢) with S¢S cS* and
d, (87, 8%) < ¢, and second, that the minimal cardinality of such a collection
/(&) which we denote by N;(e, ) satisfies

(2.1) [(e M log Ny(e, )" de < +.
0
Define
x4 1/2
H(s) = log Ny(s, ) and I(x)=f(s Ny(e, 7)) ds.
0

We may, by enlarging the class . a little if necessary, assume that H(e) >
[log &| for any & in ]0, 1[. In order to get a strong invariance principle when only
the second moment of @ is assumed to be finite, we shall assume that .~ is
contraction closed. This means that

(2.2) forall ¢t €]0,1[, forall S € .7, tS € /.

In many cases of interest, there is no loss of generality in making this
assumption, because if the approximating collections .#(¢) satisfy (1.1) for
some constants 6 and K, and if .#* = {#£S: S € ./, 0 < ¢ < 1} has an entropy
function H*(e), then it is obvious that .#* is totally bounded with inclusion
and satisfies H*(e) = O(H(g)).
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Now, let us state our main result, which provides an invariance principle
with an error term depending only on the moment of the r.v.’s X; and on the
entropy with inclusion of .. As Einmahl does, let us introduce more general
moment. functions. Let Lx = log(x V e) and LLx = L(Lx). Let  be a map-
ping from R* onto R* such that:

@) f{/f(lxl)dQ(x) < +o, and x 2y(x) is a one to one
continuous, increasing mapping from R* onto R*.
(2.3) (ii) There exists r > 2 such that x~"y(x) is nonincreasing.

(iii)) Furthermore, if there does not exist s < 4 such that
x~*yY(x) is nonincreasing, then (x2LLx) 'y (x) is nonde-
creasing.

Throughout, ¢ ~! denotes the inverse function of . Note that, when @ has a
finite second moment, such a mapping ¢ exists [see Major (1976)]. We also
need to introduce the following notations. Let H,(¢) = ¢ 'H(e) and let H; !
be the inverse of H,, that is, H; (x) = y if and only if H(y") <xy < H(y")
for any positive y. For any positive nondecreasing function f, let

(24) bz, F) = [ Fu %) (H{ (u) + w2 1(u?)) du.
1
Our main result is the following.

THEOREM 1. Let .” be a family of Borel subsets of [0,1]%. Assume
that 7 is a class satisfying (2.1), (2.2) and (1.1) for some & in ]0,1]. Let @ be
a law on R* with mean zero and positive definite covariance matrix, and let i
be a mapping satisfying (2.3). Let (X)), 24 be an array of independent
random vectors with common law Q. Then, there exists an array (Y;);cz¢ of
independent N(0, Var @)-distributed random vectors such that

(a) Ssu¥3/J X(vS) - Y(VS)| = Op(b(vd,(//_l)),
where b(-) is defined by (2.4), and setting
e(x) = 1//'1(x)sup(1, (x'lLLx)l/zdf‘l(x)),
(b) sup | X(vS) - Y(vS)| = 0(b(»?,¢)) a.s.
Se/
CoMMENTS. When E(|X,|’LL(|X,|)) < +, there exists a mapping ¢ such
that (x2LLx)~'(x) is increasing. Then, ¢(x) = O(y "X (x)) as x — + and (b)
of Theorem 1 holds with rate O(b(v%, ¢ 1)) a.s.

Note that vu H; ((u) = O(I(H; (%)) and H; N(u) = o(u"Y?) as u — +c.
So, when d > 1 or § < 1/2, we have

(2.5a) Hi'(uw) + u™V2I(u™%%) = O(u™Y?I(u™%%)).
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On the other hand, when d = 1 and § > 1/2, it is easily seen that . is totally
bounded with inclusion and that its log-entropy H(-) satisfies H(e) =
O(e'~1?|log ¢|) and then

(2.5b) Hi'Y(u) +u2I(u%) = O(u™I(u"?log ul’)).

Theorem 1 does not provide a uniform CLT when only the second moment
is assumed to be finite in the general case: For example, if ¢(x) = x2(Lx)?, the
uniform CLT requires 8 > 2. So, in order to get optimal results, we need to
put additional conditions on . and on the law . Hence, throughout, we
assume that either @ has a finite rth moment for some r > 2 or ./ has an
entropy exponent ¢ in [0, 1[. Recall that this means

(2.6) lim sup |log( H(¢))/log | = {.
e—0

If . has an exponent of entropy ¢ in [0, 1[ and if the moment of @ is between
2 and 2d(d — 8(1 — ¢))~!, Theorem 1 and (2.5) provide a strong invariance
principle with a rate depending only on . The following corollary then
generalizes results of Einmahl (1987, 1989) to the multidimensional case.

COROLLARY 1. Let . be a family of Borel subsets of [0,1]%. Assume
that 7 is a class satisfying (2.1), (2.2) and (1.1) for some & in 10, 1]. Assume
7 to be totally bounded with inclusion and to have an exponent of entropy { in
[0,1[. Let @ be a law on R* with zero-mean and positive definite covariance,
and let  be a mapping satisfying (2.3) for some r < 2d(d — 8(1 — {))"*. Let
(X});c2¢ be an array of independent random vectors with common law Q.
Then, there exists an array (Y));cz¢ of independent N(0,Var @)-distributed
random vectors such that

(a) sup | X(»S) — Y(v8)| = 0p(¢v~1(v%))
Se/

and, if we assume furthermore that x~*/"¢(x) is nondecreasing,
2 g

(b) sup | X(vS) — Y(»S)| = o(¢(v%)) a.s.
Se/”

CoMMENTS. Clearly, this is sufficient to obtain a construction of the arrays
such that (a) and (b) hold with respective rates Op(y = (»?)) and O(e(»v?)) a.s.

Note that Corollary 1 provides a rate of the order of v~¢/%)~%(»?) in the
uniform CLT of Alexander and Pyke (1986).

Part (a) of Corollary 1 is a weak invariance principle in the sense of Philipp
(1980) while (b) is a strong invariance principle where the function x — x2LLx
plays an important role. In fact, Corollary 1 yields two different results
according to the monotonicity of the function x — ¢(xXx2LLx)~!. When
x — Y(x)(x?LLx)~! is nondecreasing, ¢ = O(y 1) and (b) of Corollary 1 holds
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with the error term o(y~'(»%)). From Breiman’s remark, this result is opti-
mal. When x — ¢(x)Xx2LLx)~?! is nonincreasing, Corollary 1 yields the follow-
ing Strassen’s type invariance principle:

(vLLv) ™ ** :up/| X(v8) — Y(»8)| = o(v*/y(v?)) as.

We refer to Corollary 3 in part I [Rio (1993)] for more comments about this
result. The above result and Theorem 3.1 of Bass and Pyke (1984) yield a
functional law of the iterated logarithm [see Bass and Pyke (1984)]. However,
the functional LIL has been proved by Bass (1985), by means of entirely
different methods.

On the other hand, when the moment of @ is large enough, the rate of
approximation depends only on .. Moreover, this rate of approximation is
related to the modulus of continuity I(e) of the standard Brownian process
indexed by .. However, we need to put an additional condition when the
moment is smaller than 2d(d — §)~!. Let 0 < ¢ < 1. The class .- is said to
satisfy H#({) if ./ satisfies (2.1), (2.2) and if the following holds:

H({) limiglfllog(H(s))/logel >{.
Then, the following result holds.

COROLLARY 2. Let d > 1 and let . be a family of Borel subsets of the unit
cube satisfying #({) for some { in [0,1] and (1.1) for some & in 10, 1]. Let @
be a law on R* with mean zero and positive definite variance matrix, satisfying

f x| dQ(x) < +o forsomer > 2d(d — &(1 - ¢)) "
R*

Let (X;); c 7¢ be an array of independent random vectors with common law Q.
Then, there exists an array (Y;);czq4 of independent N(0,Var Q)-distributed
random vectors such that

v™?% sup | X(v8) - Y(»S)| = 0(I(»7?)) a.s.
Se”

CoMMENTS. When .~ satisfies the uniform Minkowsky condition (.e.,
8 = 1), Corollary 2 means that in some sense, the rate of convergence in the
uniform CLT of Alexander and Pyke (1986) is of the order of I(v~1!). This
result improves a previous result by Massart (1989).

Before discussing further our results, we give a consequence of Corollaries 1
and 2.

CoRroLLARY 3. Let d > 1 and let . be a family of Borel subsets of [0,1]¢
satisfying (2.2). Assume that . is totally bounded with inclusion and has an
entropy H(-) satisfying H(e) = O(¢ %) as ¢ > 0 for some { in 10, 1[. Assume
that 7 fulfills (1.1) with 8 = 1. Let Q be a law on R* with mean zero and
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positive definite covariance matrix, satisfying
fklxlr dQ(x) < +o forsomer > 2 such that 2d(d — 1+ ¢) ™" # r.
R

Let (X,), z¢ be an array of independent random vectors with common law Q.
Then, there exists an array (Y)); 24 of independent N(0,Var @)-distributed
random vectors such that

sup | X(v8) — Y(»S)| = O(»?/" + »@-1%0/2) g g,
Se/

CoMMENT. Among examples of index families which satisfy the conditions
of Corollary 3 for some positive £, let us consider the following. If #2 denotes
the class of convex subsets of [0,1]?, Bronshtein (1976) has shown that
{=1/2. Now, if d > 1 and if J(a,d, M) denotes the class of sets introduced
in Dudley (1974), whose boundaries are images of a-differentiables mappings
of the (d — 1)-sphere into R?, with all derivatives of order up to a uniformly
bounded by M, then { = (d — 1)/a. In these cases, we prove that our result
cannot be improved. Let us now state the related result.

THEOREM 2. Let F and G be different probability laws on R with mean zero
and finite fourth-moment. Let (X));ez¢ and (Y)); <24 be two arrays of i.i.d.
random variables with respective laws F and G, and let . denote either the
class of convex subsets of [0,11* or the class J(a,d, M). Then, there exists
some positive constant C(F,G) such that

liminf »@~¢~9/2 gup | X(v8) — Y(vS)| > C(F,G) a.s.
v Se”

Before proving Theorem 1, we give another Corollary in the unidimensional
case, which is a by-product of (2.5) and of Theorem 1.

CoRrOLLARY 4. Let d =1, let 6 > 1/2, and let s be the class of Borel
subsets of the unit interval fulfilling (1.1) with 8. Let @ be a law on R* with
mean zero, with positive definite covariance, satisfying [plx|” dQ(x) < + for
somer > (1 — &)L Let (X,), . 2z, be a sequence of independent random vectors
with common law Q. Then, there exists a sequence (Y)); <2, of independent
N(0, Var Q)-distributed random vectors such that

sup |X(vS) - Y(vS)| = O(v'°(log»)®) a.s.
Se/(5)

Now, we prove Theorem 1. The proof of this theorem is based on the
methods of a common probability space previously introduced by Komlés,
Major, and Tusnady. Here, our method of construction of the two arrays of
independent random vectors is exactly the same as in Part I. Yet, we need only
recall some of its basic properties.
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3. Strong approximation. Throughout this section, § is a law on R*
with zero-mean and finite variance. (X;); . ;¢ denotes an array of independent
random vectors with common law @, and ¢ is any mapping satisfying (2.3).

In order to construct the two arrays (X,);c,¢ and (Y;);c,2 on our rich
enough space, we first construct two sequences (X; )i -1 and (Y] )l -1 of indepen-
dent identically distributed random vectors with respective distributions @
and N(0, Var X,). This construction is exactly the same as in I. And second, by
means of the one to one mapping o from Z% onto Z, which was defined in I,
we will turn the so defined sequences into arrays.

So, let o be the one to one mapping defined in part I [Rio (1993) Lemma 0,
Section 3] and set Y; =Y, and X; =X, for any i € Z%. Let v be any
positive integer and let N be the smallest integer such that 2N > v. We define
the class &/, of functions of /*Z*) with support included in 10, 2¥%] as
follows: If B is any subset of Z%, let o*B be the mapping from Z, to [0, 1]
defined by

o*B=f iff f(oi)=A[i-1,i]nB) foranyiec 7%

and, for each integer v, define the class &/, by &7 = {¢*B: B € v.}. When
- is contraction closed, (&), , is a nondecreasmg sequence of families of
elements of /%Z,). Now, given a function f in ¢ %(Z,) with finite support

and a sequence (u i o of vectors of R*, we set u(f) =X,.,f(i)u,. Clearly,
(3.1) sup | X(vS) - Y(vS)| = sup |X(f) - Y(f),
Se” fes,

where X and Y denote either the sequences or the arrays. So, throughout the
sequel, we work with the sequences (X;),., and (Y)),., defined in our
previous paper. Throughout the intervals ]/, m] have to be interpreted as
subsets of Z,. /%(Z ) is given the canonical inner product, which we denote by
(+]-),and ¢ 2(]l m]) denotes the subspace of #%(Z ) of functions with support
included in )i, m]. Let I; , =1p2/,(p + 1)27], and let e; , be the characteristic
function of I, . For any pos1t1ve integers p and j, we set é. — 2e;

J,p* j.p = Cip Jj-1,2p*
Let é; = e; ; and define the orthogonal systems %, and #; by

‘@0={e':05J<Nd}U{eoo} and g={é 20<p<2Nd_j}.

# = U }%'%; is an orthogonal basis of #*(10, Nd]). Let II; be the orthogonal
pro;ector on the space generated by U{_;%,. For any functlon bounded by 1,
the control of X(f) — Y(f) depends mainly on the quantities (L, £110; f )
Exactly as in part I, the uniform control on &7, of the above inner products is
insured via (1.1) and the perimetric properties of o.

LeMMa 1 [Rio (1993)]. Assume that 7 is a class of subsets of the unit cube
fulfilling (1.1) for some constants 0 <8 <1 and K > 1. Then, for any
element fin o, I1; f has values in [—1,1] and

#{p eN:II, f(i) + 0 for somei € I} < 2Kyd-0270-8/d),
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Now, we pass to the control of the random vector X(f) — Y(f). Let (X)),
and (X,);. , be the sequences defined by

(3.2) Xy, = Lox,impXo; and X, =X, — E(X,),

for any integer /, for any odd integer i in [2L, 2% Y. Let n = 2V9, where N is
the smallest integer such that 2V > v. Clearly,

i>0

(3.3) SU§|X(f)_Y(f)| Z|X Xl + sup|X(f)—Y(f)|
feL, i=1
First, by Lemma 2 in Part I [Rio (1993)], Z;‘=1|Xi - X,| =0y~ Yn) as.
Second, by (4.4) in Part I,
Nd-1

(3.4) Y(f) - X(f) =Do(f)+ ¥ Dy(II;f),
j=1

where the random vectors D;(f) are defined just before equation (4.4) in part
L. Let D; be the r.v.’s defined in part I, just before (4.5) (recall that D, =
Supy, |D; (H Il if j > 0). Then,

Nd-1

(3.5) sup |[Y(f) - X(f)l< ¥ D,
fe, Jj=0

First, as in Part I, equation (4.7), D, = O(¢(n)) a.s. and D, = Op(¢~1(n)).
Second, we will use (4.6b) of Proposition 1 in Part I and an oscillation lemma
to control each of the random variables D;. In order to prove Theorem 1, it is
necessary to use the entropy properties of &,. For any Borel subset B of R¢
let
(3.6) A(B) = Y o*B(i),

i€z,
where A denotes Lebesgue measure. For any Borel sets A and B, A c B
implies 0*A < o*B. Hence, the ¢'-entropy with bracketing N(e, &, P) of &
with respect to the uniform probability P on Z*n ]0, 27?] (recall N is the
smallest integer such that 2V > v) of the family &7 satisfies

(3.7) N(e, &, P) < Ny(g, .7, A).

Recall that the ¢'-entropy with bracketing related to P is the minimal
cardinality of a collection 27(¢) of functions such that, for any f in &7, there
exist 7 and f~ in &/(e) suchthat f <f<f* and P(f*'—f ) <e.

Throughout, we work with the family 7. In order to prove Theorem 1, it
will be necessary to use Proposition 1 and a chaining argument. If further-
more the entropy with bracketing is integrable, one can use a restricted
chaining argument [see Pollard (1984), page 159, for an example]. By means of
a restricted chaining, in the spirit of Bass (1985), we now control each of the
random variables D;. Here we state a general oscillation lemma.

Let (2, 1) be a finite measure space. Furthermore, assume that L is a
probability measure, and let & be the space of measurable functions taking
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their values in [—1, 1]. Let % be a family of elements of < satisfying:
(1) & contains the null function.

(3.8) (i) & has an integrable ¢'(u)-entropy with bracketing,
which we denote by N(e, ).

Throughout this section, H(e) is any nonincreasing function such that H(0) =
0, e” is with values in Z, and H(e) > log N(e, &). Define I(x) from H(-)
exactly as in section 2 (i.e., I(x) = [§VH(u)/u du) and set H,(u) = u~*H(w).
Let us define the subset %, of X % by

% ={(f g) € Fx Fsuchthat ||f - gll,, < e}

Let A be a random linear process on L*(2") with values in R. A is said to
satisfy (3.9) if and only if there exist a linear positive process A* and some
constants A, # and a < 1 such that:

() for any g € &, |A(g)| < A*(g)).

(ii) For any positive e, for any positive ¢, for any -
(3.9) (f,8) € %,PA(f-g)=(a Ae)t) <
Aexp(—260(e A a)t?(1 + ¢)~ ).

(iii) For any positive e, for any positive g in &
satisfying ||gll1,, <€, for any ¢ > 1,
P(A*(g) > et) < A exp(—0Oet).

When the random process A satisfies the above conditions, the following
lemma holds.

LEMMA 2. Let F be a class of measurable functions from 2 to [—1,1]
satisfying (3.8) and let A be a linear process fulfilling (3.9). Then, for any
positive x,

0

IP( sup A(f) > 70"?I(a) + ZH{I(—) + 2x + 7\/ax)
fe s 3

2

w
1+ —
6

<A

exp(—6x).

Proor. By (3.8), for each positive e, there exists a family Z* of positive
elements of « and a family % of elements of ¥ satisfying:

1. For any f* € &%, | f*ll;,. <e.
2. For any f in & there exists some (f,, f*)in & X Z* such that |[f — f.| <
", and the minimal cardinality of such pairs is no more than exp(H(e)).

Now, we may, by increasing H a little, assume that exp H is left-continuous
and takes entire values. For any positive x, let £(x) be the positive number
such that

(3.10) e(x) — 307 'H*(e(x)) <x < e(x) — 30~ H(e(x)).
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By definition of both processes A and A*,

(3.11) supA(f) < sup A(f)+ sup A*(f*).
fe&F fe &, freF*

&(x) &(x)

1. Ifx > 1. It is obvious that

sup A(f) < 2A*(1).
feF
So, by (iii) of (3.9), Lemma 2 holds.
2. Ifx < 1. Then there exists some &(x) in [0, 1[ satisfying (3.10). Clearly, it
is enough to control the two random variables on the right-hand side in (3.11).
First, by (iii) of (3.9) and by definition of (x), it is easily seen that

(3.12) IP( sup A*(f*)z.e(x)) < Aexp(—0x).

£ 3
freFl,

It remains now to give an upper bound on &(x). Here, it is sufficient to prove
that

(3.13) e(x) <e=x+H{(0/3).

Clearly, (3.13) follows from ¢ — 30 'H(e) > x. Now, by monotonicity of H, we
have

360"'H(e) <30 'H(H;'(6/3)) < H{'(8/3).
So, (3.13) holds true, and collecting the above inequalities, we get

(3.14) IP’( sup A*(f*)>x+ H1‘1(0/3)) < Aexp(—0x).
f*

%
eFh,

It remains to control the random variable sup c g, A(f). Set h(¢) = 2t%(1 +
)~ L First, if x > a, using the convexity of & and the definition of e(x), it is
easily seen that

IP( sup A(f) = s(x)) < Aexp(—6x).

€T

Then, we complete the proof of Lemma 2 by collecting (3.13), (3.14) and the
above inequality. Second, when x < a, we need to use a restricted chaining
argument. Let ¢, = e(x). For any integer j, we set g = 27¢,, and we define
the sequence & of approximating nets associated with the sequence (e ), as

follows: #, = &., and, for any natural j, & ,, = % if and only if H(gj, 1) =

€ J J

H(ej), and %, = , ., otherwise. Clearly, the so defined collection %, is an

g;-net. Hence, there exist mappings ¢; from &% to % ., such that
¢; = Idgg iff % =&,,, andforany(/j, f), ” f=d( f)||1M st

Now, let I = sup{jeN: ¢; < a}. For any f,, in %, define the mappings (f});.,
by fj+1 = ¢;(f) andlet J, = {j < such that & # %} U {I}. For any f, in
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F,, One can write

fo=(fo—do(fo)) + - +(f1 _‘f’j(fj)) o (fioa— )+

Starting from the above equality, it is easily seen [cf. Pollard (1984), page 142]
that, for any sequence (¢;); . , of positive numbers,

I
(3.15) P fsuP A(fo) = Xt | < < X I fSU-p (A(f‘ ¢j(f)) th)~
0€ 7o 0 ied, €%

Now, we set ¢,,,; = a. By (ii) of (3.9), for any j in J,, for any positive number
u;, for every f in &,

P(A(f— $,(f)) = ej+1uj) < Aexp(—0g;,1h(u;)).

So, setting ¢, = u;e;;, and choosing u; such that 3H(e;) + 0x =
0c;h(u;), we get

|ZIexp(—08j+1h(tj)) <|% ~% exp(—0x).
From this it follows that
i 2
T
(3.16) P| sup A(fo) = X t;| < A— exp(—6x).
foe % 0 6

It remains to bound X ;¢;. First we note that »; < 1 for each natural j. Now, it
is obvious that, for all u < 1, h(u) < Vu . Hence, using the definition of u j
and the above remarks, we get

(3.17) u, < 26,(3H(s;)/0)"" + 2(e;2) "%
Together, (3.16) and (3.17) imply that

P| sup A(f) = 707'%I(a) +H{1(g) +x + 7\/a—x)
(3.18) fe % .

T
< A? exp(—6x)
and from here on the rest of the proof of Lemma 2 is straightforward. O

To complete the proof of Theorem 1, we now control each of the random
variables D;. Clearly, there is no loss of generality in assuming that & = 1.
Define a majorlzmg positive linear random process D¥(:) associated with
DI, - ) by

n

DJ*( f)= Z 2_J(f|ej,p)(|Uj,p - Vj,pl +l§j(ej»1’)l) + Z f(i)|§{|,
0<p<2Nd i=1

where the r.v.’s U, , and &/ are defined in Part I [Rio (1993)], before (4.4). It is

easily seen that, for any f in <0, n)), D1, f) < D¥(IfD. In order to apply

Lemma 2, it then is sufficient to prove that for any mapping g from Z, into
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[—1, 1] and any positive v > 277(g|g),

P(D}(g) — E(D}(8)) = exvv (471(27)t + ¢(27)u))
(3.19) < 4k exp(t3(1 +v™1/%t) ' log ;)

+ 4k exp(—2u®log(1 +j)).

The proof of (3.19) will be omitted, since it uses exactly the same arguments as
the proof of (4.6b) of Proposition 1 in Part I [Rio (1993)]. Let P be the uniform
law on ]0, n]. Clearly,

(3.20) E(D}(g)) = O(2V 7y~ 1(27)lgly, p).

We now complete the proof of (b) of Theorem 1. The proof of (a) of Theorem 1
will be omitted, since it uses the same arguments as in the proof of (b). We
may, without loss of generality, assume, by increasing g; a little, that g; >
(1 +j)~2 Define )

Aj(g) = (4c,0(27)) "2/ N4D (11, g)
and
A%(g) = (4c,0(2)) "2/ "¥PD¥ (g).

Collecting Lemma 1, (4.6b) of Proposition 1 in Part I, (3.19) and (3.20), it is
easily seen that the so defined processes A; and A% satisfy the assumption
(3.8) of Lemma 2 with @ = 1 A 2K20 N9/ and g = — 32N~/ log B;. Hence,
by Lemma 2, setting u; = 2Nd~J there exists some positive constant c,, such
that for any positive ¢,

P((Dj > c4¢(u;1n)(@1(u;3/d)) +u Hy N uj) + uld =972 4 t)) < ¢y

Now, the end of the proof is straightforward, setting ¢ =¢; = Nd —j in the
above inequalities and using the Borel-Cantelli lemma. O

4. Lower bounds for strong approximations. In this section, starting
from techniques previously initiated by Beck (1985, 1987) for lower bounds in
the theory of irregularities of distribution, we prove that Corollary 3 is optimal
when 7 is either the class J(a,d, M) introduced in Dudley (1974) or the
class €2 of convex subsets of [0, 1]%. In fact, we derive Theorem 2 from the
more general result which is stated below.

THEOREM 3. Let 2 <r < 4 and let F and G be different probability laws on
R with mean zero and finite rth-moment and let #“={SN[0,1]%: S e
J(a,d, M)}). Let (X,);cz¢ and (Y;);c 74 be two arrays of i.i.d. random vari-
ables with respective laws F and G. Then there exist some positive constants
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C(F, @) and C such that

p(ua-dﬂ“/avz sup | X(vS) - Y(»S)| < C(F,G)) < Cy@-r/Mard=D/a,
Se”

Before proving Theorem 3, we still give another theorem whose proof also
uses the Fourier analysis techniques initiated by Beck. Let A, be the Lebesgue
measure on the unit cube and let (x;,), . , be a sequence of i.i.d. random vectors
with distribution A,. The following result is a partial converse of Massart’s
results (1989) on the strong approximation of the multivariate empirical
bridge. Let P, =n~'Y}5, denote the empirical measure associated with
(xg, ..., x,). We call the emplrlcal bridge the centered and normalized process
Zn \/;(P - Ao)

THEOREM 4. Let #= J(a,d, M). There exists a positive universal constant
Co(d) such that, for any positive integer n, for any standard Brownian bridge

Z™ on the unit cube indexed by . which is almost surely continuous on
(/’ d)\)’

(sup |Z,(S) - Z(”)(S)}) > Cy(d)n@-1-0/@dw,
Se

CoMMENTS. When .7 is the class of convex subsets of R%, Theorems 3 and
4 still hold with a = 2. In the special case of Lebesgue measure, Theorem 4

improves lower bounds for an arbitrary probability law obtained by Borisov
(1985).

PrOOF OF THEOREM 3. Throughout, R? is provided with the usual sum and
product. Let u be a signed Borel measure on [0, 1]%, absolutely continuous
with respect to A. We will give a lower bound on the variable supg . J|u(S)I.
Let the test function o: R%"! - R? be defined by o(x) = 0 if and only if
lx| > 1 and

2Vdo(x) = exp(-—(l - lez)_l) iff |x| <1

and let €= {(xy,...,%;) € R%: |xyl < o(xy,...,%x5_1). Set &€, =
v~ YA,..., A,1)¥ and let x, denote the characteristic function of ¢,. O(d) is
the group of proper orthogonal transformations in R? and dv is the volume
element of the invariant measure normalized such that [, dv = 1. Let

A(,u,,A)=f dvadI/.L*v.xA(x)|dx

where v. xo(x) = xo(v7'%) = 1. As the first step, we give the following
lower bound on the variable supg . | u(S)I.

LEMMA 3. Let A =v"Y% and let u be a signed measure with support
included in [0, 1]%. Then, there exists a positive constant C,, depending only on
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d, such that

d

sup  |u(S)] = Co(A )" F A(u, A).

Sed(a,d, M)

Proor. Let ¢ be any mapping from Z9~! into {—1, 1} and define the C*
function V¥, of R?~! into R by

V(x) =v"' X e(p)o(vA™'(x — 2p)).

pezd?

Clearly ¥, € F(R?"%, a) and ||V, ||, < llpll,. Now, we define from the functions
¥, a family of subsets of [0, 1]° with a-smooth boundaries. So, we set

€(e,y) = {(xl,...,xd) € R%: Xg =Yg <V (X; =y, %54 —yd_l)}.

It is easily seen that, if M is large enough, for all v € O(d), there exists some
S(e,y,v) in J(a,d, M) such that S(e,y,v) N [0,1]¢ = v.€(e, y) N [0, 1]%. So,
recalling that the support of u is included in [0, 1]%, we get

:uyu(s)l 2 gsup (u(v.€(e,y)) — n(v.€(~¢,)))
(4.1)

2

3L |u(o(y + 207, 0) + 4))].

pGZd_l

Let y = (y1,...,54). Then |y4l > 1 +d, y + 2v™'A(p,0) + €, does not inter-
sect the Euclidean ball B(0,d). The terms on the right-hand side then are
null. Hence, integrating, we get

2441(L + d) sup |u(S)| = (A7) [ |u(v.(x + €4))| dvdax
Se/ O(d) x R?
and from here on the rest of the proof is straightforward. O

Now, let us define the quadratic functional D(u, A) by

D(u,A) = [[

2
O(d)del'u *v.xa(x0) [ dvdx.

The signed measure u is said to satisfy the condition #(A, C) if and only if
the following holds:
HF(A,C) A(p, A) > AY=D/2CD(u, A).

If p is a random measure, we set ['(C) = {0 € Q: w(w) satisfies # (A4, C)}. We
shall see later that, when u is a certain empirical measure associated with the
difference of the two partial-sum processes X and Y,

(4.2) 1 - P(T(C)) = O(p~7/Patd=D/ay,
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Then, Theorem 3 is a straightforward consequence of the following proposi-
tion:

PropPOSITION 1. There exists some positive constant c(d) such that, for all
signed measures u,

v D(p, A) 2 (YA [ |a(we) [ dt.
, ]

Proor. By the Parseval-Plancherel identity,
2m)D(pn, A) = [ ()| dt 0 (vt)|? dv.
@m)D(u, &) = [ Ja)Fdt]  [Ra0)]
From this it follows that

A 2 . A 2
(27)*D(p, A) = f[_mldm(ym dt inf /O(d)ud|XA(v,ut)| dv.

tel—m, w4

Now, let
g(Al) = [ v 2, (vwt)|" dv.
o(d)
Proposition 1 follows from the next lemma.

LeEMMA 4. There exists some positive constant c(d) such that, for any
p<mVd, g(A,p) = c(d)A?1,

Proor. Let t =(0,...,0,p). From the rotational symmetry of ¢,, it fol-
lows that, if ds denotes the invariant measure on S¢~! normalized such that
f Sd—l ds = 1,

g(A,p) = [, v*IRa(prs)[ ds.

Let e; =(0,...,0,1),and let V. = {x € S? % |x — e | < €}. Obviously,

g(A,0) = [ v\ Ra(prs)[*ds.

€

Now, we have to show that, when e is small enough, there exists some positive
constant ¢, such that, for any s in V, v¥Rex (pvs) = ¢; A%~ 1. Clearly,

doR o0 -
viRex (pvs) = /;gAcos(pslx) dx.

Now, it is easily seen that, for any s in V, for any x in v¢, and any p < 7Vd,
(pslx) < /6 + eAmyVd . Hence, if one chooses € such that eAVd = 1/6,

ViReg (prs) = (v éy).
Recall that A > 1. So, the measure of V, is greater than c,A'~%. Then, the
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proof of Lemma 4 is achieved by noting that A(€},) > c;A?~! and by collecting
the above inequalities. O

Define now the empirical measure u associated with the difference of the
two partial-sum processes. Let

— d
Py = ( Y ]].V—llp_]l’p]Xp)V Ag. -
pelo, vl

and define py from Y in the same way. Let u = ux — uy. Then

2

)y (Xp - Yp)eipit .

pelo,v)d

d (2 ¢)?
2m)at)” = T1 (— sin —’)

Hence, for each ¢t € [—, 7],
2
em)at)’ = 2/m)Y L (X, - Y,)e?
pelo,v)®

So, by Proposition 1 and by the Parseval-Plancherel identity,
D(r, A) = (2/m)%(d)A% v ¢ ¥ (X,-Y,)"
pelo, v

Let Z(F,G) denote the class of R%-valued r.v.’s with respective marginals F
and G, and define the Wasserstein distance W(F, G) by

W2(F,G) = inf E(X - Y)?).
( ) (X,Y)eZ(F,G) (( ) )

From a result of Bartfai [see Major (1978) for a proof], it follows that
W(F,G) = j:(F‘l(u) — G Y(u)) du.

Let F, (resp., G,) be the empirical distribution function of (X,), <1, [resp.,

(Y,), e10,,1¢-] Using the above identity, we get

(4.3) D(u, A) = (2/m)%c(d)A?"'W*(F,,G,).

Now, let d(F,G) denote the Lévy distance of the laws F and G; it is easily
seen that for any laws F and G, W(F, G) > d3(F, G). Clearly,

d(F,,G,) > d(F,G) —d(F,F,) - d(G,G,).

Let b = d(F,G)/4. Starting from the Dvoretzky-Kiefer—Wolfowitz inequality
[Massart (1990)], we get

P(d(F,F,) > b) < 2exp(—2nb?).

Hence, there exists some positive constant ¢, depending only on F and G such
that

(4.4) P(W?(F,,G,) = ¢,) < 4exp(—ncy).
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So, by (4.4) and (4.3),
(4.5) P(D(w, A) = csA%"t) < dexp(—ncy)

for some positive constant c;. Hence, the proof of Theorem 3 will be achieved
if we prove that u satisfies (4.2) for some positive constant C.

Proor oF 4.2. For any signed measure B, define k(B,v, x) = |B * v. x40l
For convenience, we write £%(B, v, x) = (k(B, v, x))?. With the above notation,
for any positive a,

2aA(p, A) > D(u, A) — ffo(d)xﬂdkz(,u,v,x)]lk(mv,x»za dv dx
>2D(p, A) —4f[ (B0, 0) Ly v

O(d)xR?
+k%(py, v, x) ]lk(#y’v’x»a) dvdx.

So, in order to prove (4.2), it is sufficient to prove that there exists some
constant C; such that, setting a = C; A¢~1/2,

d—
P(wffo(d)xmk%“, 0, %) Ly, 00> o AU dx > c5 A1

_ O(V(l—r/Z)(a+d—1)/a).

(4.6)

ProOF OF 4.6. For all (x,v) € R? X O(d), there exists a family of positive
numbers (a,),, each bounded by 1, such that k(uy,v,x) = X, a,X,l.
Moreover, the cardinality of the set {p: @, # 0} is smaller than 2.39(1 +
d)A?~1, Hence, by the Marcinkiewicz—-Zygmund inequality [see Meyer (1972)],

[E(kr(/-bx, v, x)) < CGA(d—l)r/z.
From this and from Markov’s inequality, it follows that
[E(kz(l’LX’ v, x) ]]-k(ﬂ'x,v,x)>a) < ceaZ—;A(d_l)r/z.

Hence, if a = C;A?"! and if C, is large enough,

(4.7) [E(szfjo(d)wk2(ux,v,x)ﬂk(“x,v,xmdudx < cg AL,

Now, let the random variables Z(v, x) and Z(v, x) be defined by
Z(v,x) = k?(uy,v,x) Liuyvmy>a and  Z(v,x) = Z(v,x) — E(Z(v, x)).

We also set vB =(A4,...,4,0)+ (1 +d)1,...,1). Clearly, for all (v,x) in
O(d) X R? the random variables (Z(v, x + 2Bp)), <z« are independent and
with finite (r/2)th moment. Moreover, if y ¢ (3[0, 119)**4/* then Z(v,x) = 0
almost surely. So, by the Marcinkiewicz—Zygmund inequality, there exists
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some positive constant ¢y such that

r/2

E < cgrdAr-2Xd-1/2,

Y. Z(v,x + 2pB)
pGZd

Hence, by Jensen’s inequality,

r/2

E Al_df/ Z(v,x)dvdx| < cp@ATT/DAE-Dr=2)/2
O

(d)x R?

< csv(l —r/2X1+(d~1)/a)

Finally, (4.6) follows from (4.7) and Markov’s inequality applied to the above
random variable, therefore completing the proof of Theorem 3. O

PrOOF OF THEOREM 4. Let B, = VnZ™ and U, = VnZ, = L35, — nA,.
Define the real number v by »¢ = n and define A from v exactly as in'Lemma
3. Let u = U, — B,,. Using the same arguments as in the proof of Lemma 3, it
can easily be proved that

B osup [u(8)]) 2 Co(a )
Sed(a,d, M)

Define the functional D,(u, A) by

4
Dy(u, 4) = [ Jwrvxa(x)[ dvds.
By Hoélder’s inequality,

F(A(k, A)) = E(D(, A))**E(Dy(u, A)) 2.

Moreover, it is straightforward to prove that there exists a positive universal
constant ¢, such that E(D,(u, A)) < ¢;A%?~D_ Hence, Theorem 4 is a conse-
quence of the following proposition:

“E(A(k, 4)).

ProposiTION 2. E(D(u, A)) > C; A", for some positive constant C,.

Proor. First, we note that, necessarily, the Gaussian process B, (v.(&€, +
x)) is almost surely uniformly continuous on O(d) X R? and with compact
support. So, we may employ the theory of Fourier transforms. By the
Parseval-Plancherel identity,

2m)D(w, A) = [ |a(e))? dt ¢ (vt)|? dv.
(2m)D(u, 4) = [ Ja@)Fdef [Ra(0t)]
Hence, by Lemma 4,
(2m)"D(p, A) = () A= [ |awe)[*de.
[—m, 7]

Now, let k(x) be the Fourier transform of 1 ¢ and let «,(x) = k(vx). By

[—m, ™
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the Parseval-Plancherel identity,

(4.8) E(D(u, A)) > c(d)A¢! /Rd[E((,” k,(x))7) da.

Let F, , (resp., G, ,) denote the distribution of U, * k,(x) [resp., B, * k,(x)].
By definition of the Wasserstein distance,

2
fRd[E((,L*KV(x)) ) dx > fRdwz(F,,,x,Gn,x) dx.
Hence, Proposition 2 follows from:

LEMMA 5. There exists some positive constant C, such that

liminf [ WX(F, ,,G, ) dx > C,.
R

n— +o

Proor. Since G, , is a Gaussian distribution, by Fatou’s lemma, it suffices
to prove that, for all x in 10,1[¢, F, . converges in distribution to some
non-Gaussian law. Define

y X

n

X(n,x) = ¥K(v(x -x,)) and X(n,x) =X(n,x) - E(X(n,x)).

By definition, X(n,x) has distribution F, ,. Since « = (sinwt/7#)®¢, an
elementary computation gives

4.9 EX(n,x)) =
ao e f
It only remains now to study the convergence in distribution of X(n, x). Now,
by Lévy’s theorem, X(n,x) converges in distribution if and only if
E(exp(i ¢ X(n, x)) converges to a continuous function. Clearly,

]K(t) dt = (2m)% + o(1).

n

]exp( iék(t)) dt

Since k € LAR?), it follows from (4.9) that the integral [, ,,exp(iéx(2)) dt
is semiconvergent. Hence, for any x in 10, 1[¢, X(n, x) converges weakly to a
non-Gaussian infinitely divisible distribution, therefore completing the proof of
Theorem 4. O

IE(exp(ifX'(n,x))) = (1 + if

nJyx—1,x

When .~ is the class €, of convex subsets of R?, we may apply the same
techniques to provide lower bounds on the approximation. Let &7, be the
regular m-gon with vertices exp(i2kw/m) and let 9, = £,,, \ &,,. Let
c,) ={T,,...,T,} be the set of convex components of the interior of Z,,.
Then, for any signed measure u, any v in O(2), and any (7, x) in [0, 1] X R,

(4.10) 2sup [u(S) = X |u(7vT +x)].
Set, TeC(,)



1726 E. RIO

Let us show (4.10) in the case x = 0, 7 = 1, v = Id. Define T, by T =
only if u(T,) > 0 and T, = & otherwise. Let C,=2,uUuUn m .T; and
U U™ (T\T). Clearly, C, and C, are elements of €, and

r(Cy) — n(Cy) = .§1|M(Ti)|,

- if aP_d
Sy

N,Oﬁ

establishing therefore (4.10). Then, choosing m of the order of Vv, and using
the same techniques of rotation discrepancy previously introduced by Beck
(1987), one can prove the corresponding lower bounds for the approximation of
partial-sum or multivariate empirical processes indexed by €,. O
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