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Most large deviation results give asymptotic expressions for log P(Y,, >
¥,), where the event {Y,, > y,} is a large deviation event, that is, P(Y,, > y,,)
goes to 0 exponentially fast. We refer to such results as weak large
deviation results. In this paper we obtain strong large deviation results for
arbitrary random variables {Y,}, that is, we obtain asymptotic expressions
for P(Y, > y,), where {Y, > y,} is a large deviation event. These strong
large deviation results are obtained for lattice valued and nonlattice valued
random variables and require some conditions on their moment generating
functions. These results strengthen existing results which apply mainly to
sums of independent and identically distributed random variables.

Since Y,, may not possess a probability density function, we consider the
function ¢q,(y;b,,S) = [(b,/u(SNP(,(Y, — y) € S)], where b, = =, u is
the Lebesgue measure on R, and S is a measurable subset of R such that
0 < uw(S) < ». The function ¢,(y; b,,, S) is the p.d.f. of Y,, + Z,, where Z,
is uniform on —S/b,,, and will be called the pseudodensity function of Y,.
By a local limit theorem we mean the convergence of q,(y,;b,,S) as
n —» » and y, — y*. In this paper we obtain local limit theorems for
arbitrary random variables based on easily verifiable conditions on their
characteristic functions. These local limit theorems play a major role in the
proofs of the strong large deviation results of this paper. We illustrate these
results with two typical applications.

1. Introduction. The establishment of a limit distribution for a sequence
of random variables {Y,, n > 1} provides an approximation to P(Y, >y).
However, there are other aspects relating to the distribution of Y, for which
one often desires an approximation. This could be P(Y, > y,), known in the
literature as a large deviation, especially when it tends to 0 exponentially fast.
Another example is f,(y,,), the probability density function (p.d.f.) of Y, at y,.
The term, a large deviation local limit result for Y, is used when an asymp-
totic expression is established for f,(y,) and y, is in the range of a large
deviation for Y,,. Still another example is the pseudodensity function of Y,
q,(y;b,,, S), which is available even when Y, does not possess a p.d.f. and is
defined as the p.d.f. of Y, + Z,, where Z, is uniform on —S /b, . Such a result
will be referred to as a local limit result for Y,. This paper will deal with strong
large deviation and local limit theorems for arbitrary random variables.
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The theory of large deviations for sums of independent and identically
distributed (i.i.d.) random variables and its many generalizations has a long
history [see, e.g., Cramér (1938), Chernoff (1952), Ellis (1984) and Varadhan
(1984)]. However, most of these results give asymptotic expressions for
log P(Y, > y,) and so we choose to call them weak large deviation results. For
arbitrary random variables T, and Y, = T,,/a, for some sequence a, — o,
this paper gives asymptotic expressions for P(Y, > y,), which we call strong
large deviation results. These results are found in Theorems 3.3 and 3.5 which
impose conditions on the moment generating function (m.g.f.) of T,. These
extend the well-known strong large deviation results for sums of i.i.d. random
variables due to Bahadur and Ranga Rao (1960).

The proofs of our strong large deviation theorems depend on the local limit
results for Y,. These are established in this paper in Theorems 2.1, 2.2, 2.3
and 2.9 and they are in the spirit of Feller (1967) wherein can be found some
of the first local limit results for sums of ii.d. random variables. Local limit
results for extreme values are established in de Haan and Resnick (1982).
Local limit results for sums of triangular arrays of i.i.d. random variables can
be found in Jain and Pruitt (1987). The local limit results in this paper apply
to arbitrary random variables Y, and require some easily verifiable bounded-
ness conditions on their characteristic functions.

We illustrate our general results with two applications in Section 4. The
first application is a local limit result for sums of dependent random variables
given by a general model considered in Chaganty and Sethuraman (1987). The
second application is a strong large deviation result for the Wilcoxon signed-
rank statistic under the null hypothesis.

We do not study large deviation local limit results in this paper. We have
obtained such results for arbitrary random variables in Chaganty and
Sethuraman (1985) for one-dimensional random variables and in Chaganty
and Sethuraman (1986) for multidimensional random variables.

2. Local limit theorems. Let {Y,, n > 1} be a sequence of real valued
random variables which converge weakly to a random variable Y. Then
£.@) — f(t) for each t, where f.(#) and f(¢) are the characteristic functions
(c.f) of Y, and Y, respectively. In this section we show that if fn(t) satisfies
some boundedness conditions, then the p.d.f. of Y,, or more generally the
pseudodensity function of Y, converges uniformly to the p.d.f. of Y. Both the
cases where Y, is nonlattice valued and lattice valued will be considered. To
motivate the boundedness conditions used in the main Theorems 2.3 and 2.9
of this section, we begin with two theorems, using bounds on fn(t) over the
whole real line, which are straightforward and must be well known.

THEOREM 2.1. Let {Y,, n > 1} be a sequence of real valued random vari-
ables which converge weakly to a random variable Y. Let f,(t) and f(¢) be the
cf’s of Y, and Y, respectively. Suppose that there exists an integrable function
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f*(¢t) such that
(2.1) sup |£,(8)| < F*(¢)
n

for all t. Then Y, possesses a bounded and continuous p.d.f. f,, Y also
possesses a bounded and continuous p.d.f. f, and f,(y,) converges to f(y*) if

Yo =¥

Proor. Condition (2.1) implies that the c.f’s f, and f are integrable.
Hence both Y, and Y possess bounded and continuous p.d.f.’s. The inversion
formula and the dominated convergence theorem show that f,(y,) converges
to f(y*)if y, > y*asn > . O

A random variable X is said to be lattice valued with span p and displace-
ment ¢ if P(X € L)=1, where L = {c + kp, for some %k =
0,+1,+2,...} and 0 <c <p and p is the largest such number. Some
authors say that X is lattice valued only when ¢ = 0; in this paper we do not
make this distinction. A lattice valued random variable cannot satisfy condi-
tion (2.1) since the modulus of its c.f. is periodic. Hence Theorem 2.1 is not
applicable to lattice valued random variables. The following theorem will apply
to lattice valued random variables.

THEOREM 2.2. Let Y, be lattice valued random variables with span h,
converging to 0. Let Y, converge weakly to Y. Assume that there exists an
integrable function f* such that

(2.2) sup| £ (1) [1(1tl < 7w/h,) < £* ()

for each t. Then Y possesses a bounded and continuous p.d.f. f, and there
exists a constant M < « such that

1
(2.3) supsup|—P(Y,=y)| <M.
n y hn
Further, if y, is in the range of Y,, and y,, converges to y* then
1
(2.4) —P(Y, =,) = (")
asn — o,

Proor. Let y, be in the range of Y,. Then an application of the inversion
formula yields

2.5 L py, L ity,) f.(¢) d
(2.5) R P =) = o [ exp(—ity,) fu(t) d.
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The assertions (2.3) and (2.4) now follow from condition (2.2) and the domi-
nated convergence theorem. O

The conditions (2.1) in the nonlattice case and (2.2) in the lattice case are
too strong to be useful in most situations. We show in Theorems 2.3 and 2.9
that appropriate bounds on the c.f. fn(t) on increasing sequences of bounded
intervals are sufficient to obtain results similar to those of Theorems 2.1
and 2.2.

Since Y, may not possess a p.d.f., we will define its pseudodensity function
at y as the p.d.f. of Y, + Z,, where Z, is 1ndependent of Y, and uniformly
distributed on —S /bn, where b, - © and S is a set such that 0<u(SY =
uw(8S) < o, where u is the Lebesg‘ue measure on R. More directly, the pseudo-
density q,,(y, b,,S) of Y, is defined by

(26) n(y’bn7s) (bn(Yn _y) ES)

(S )
We will keep the set S fixed throughout this section when dealing with
pseudodensities. Let {y,} be a sequence of real numbers such that y, — y*.
The convergence of qn(yn, b,,S) to the p.d.f. of Y at y* will be referred to as
a local limit theorem in this paper. This is the spirit under which local limit
theorems have been studied for normalized sums of i.i.d. random variables by
Feller (1967), for normalized extreme values in de Haan and Resnick (1982)

and for normalized triangular arrays of i.i.d. random variables in Jain and
Pruitt (1987).

THEOREM 2.3. Let {Y,, n > 1} be a sequence of real valued random vari-
ables which converge weakly to a random variable Y. Let fn(t) and f(t) be the
c.f’sof Y, and Y, respectively. Suppose that there exist an integrable function
f*(#) and sequences {B,} and {b,} with B, — =, b, — », such that

(2.7) sup |£.(8) [1(1t] < B,) < f*(¢)
for each t, and
n 1
(2:8) 6.(N) =ar  sup | ()| = (b—)
B.<ltl<Ab, n

for each A > 0, where the above supremum is defined to be 0 if {t: B, < |t| <
Ab,} is empty. Then the random variable Y possesses a bounded and continu-
ousp.d.f. f. Let q,(y; b,, S) be the pseudodensity function of Y, as defined in
(2.6). Then there exists a finite constant M and an integer n,, which may
depend on S, such that

(2.9) sup[q,(y;b,,8)] <M
y
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for n = n,. Furthermore, if y, — y*, then
(2.10) 9n(¥n3 05, 8) = F()

asn — oo,

Proor. Since f () - f(¢) pointwise and B, — », condition (2.7) implies
that f is bounded by f*. Hence Y possesses a bounded and continuous p.d.f.
f. Suppose B,,/b,, is bounded. Since b,6,(A) — 0, for each A > 0, we can find a
sequence {A,} satisfying

(2.11) A, and A,b,8, >0

as n — o, where 6, =4¢ 0,(1,). Now, suppose that B8, /b, — «. In this case we
let A, =B,/b, and (2.11) is satisfied because 0, =4 6,(A,) = 0. Let U, be
the uniform distribution on the set —S/b, and u,, &, be the p.d.f. and c.f.
corresponding to U,. We also introduce another distribution function (d.f.) V,
with p.d.f. v, and c.f. ¥, which vanishes outside of [-A,b,,A,b,], to obtain
the 1mportant identity (2 14): .

n-n’

912 A,b, | sin(A,b,x/2) 2 -
. = —o0 < [o]
( ) vn(x) 217_ (Anbnx/2) ) X )
1- 4 iflt| <A b
(2.13) 0,(t) = Ab, 0 S AT
0, otherwise.

Let F, bethe d.f.of Y,,andlet @, = F, «U,, M, = @, *V,, where * denotes
the convolution operation. Notice that q,(y; b,,, S) defined in (2.6) is the p.d.f.
of @,. Let m,(y) be the p.d.f. of M. The cf m,(t) of M,, which is equal to
£.)i ,()0,(t), vanishes outside the interval [=A,b,, A, b »)- The inversion
theorem yields the following identity:

ma(y) = fm 9.(y = %;b,, S)v(x) dx

(2.14) - [_°° P(b,(Y, —y + x) € S)v,(x) dx

n(S)
1 e,
= 277-[ exp(—zty)mn(t) dt.

Relation (2.14) is the startlng point of the main part of this proof and it
relates ¢,(y;b,, S) to the integrable c.f.  ,(¢). We first show that m,(y,)
converges to f(y*) and then obtain lower and upper bounds for m ,(y,) which
depend on q,(y,; b,,S). This will then establish (2.9) and (2.10). Notice that
from (2.11) we get

nn"n

2 fﬁmtlsmn

(2.15) - 0.

exp( —ity,)m () dt| <
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From condition (2.7), the dominated convergence theorem and the inversion
formula we get

" exp(—ity*) f(¢) dt = f(5").

2.16 L e it n (t) dt !
- _ o
(216) 5 [ exp(—ity,) i (t) dt > -

This shows that

(2.17) m(¥n) = F(5%).

Let 7 > 0. Let s(x,7n) be a closed interval centered at x, that is, s(x,n) =
{y:ly —xl <m}). Let S, = {x: s(x,7) € S} and 8" = {y: |y — x| <, for some
x € S}. Since we have assumed that u(S°) = u(S) we can find n(=7n,) > 0
such that

(2.18) #(S,)>0 and [u(S")/u(S)] <2.

Note that y € S, implies that y +x € s(y,n) ¢ S if |x| <. From this, we
get a lower bound for m,(y) as follows:

by

n(S) f|x|sn/bnp(b"(Y" —y +x) €8)y,(x) dx

m,(y) =

i P es d.
(2.19) = )Pl es)[ - u(x)ds

bn
> sy PV -y € s,,)[1 aee ]

Using (2.14), (2.15), (2.19) and condition (2.7) we get
4
TALN

n P(b,(Y,
/-L(S (n( n_y)esn)[l_

A,b,0

n-n-n

1
(2.20) <m,(y) < + Ef_wf*(t) dt
< %jf £*(¢) dt

for sufficiently large n. By replacing S by S™ and using (2.18) and the fact
that S c (8"),, we get

b,
L5 POT =) € S)[l -

S7) 1 = 2
< ’;((S)) —[ s [ rra

Since A, = © as n — © we can find an integer n, so that

AN
(2.21)

by
(2.22) sgp [mP(bn(Yn -y) € S)] <M
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for n > n,, where
(2.23) M= i[“’ £*(¢) dt.
7~

This proves assertion (2.9). Note that y € S implies that y —x € S” for
lx| < n. Therefore for n > n, an upper bound for m ,(y) is given by

b o
mu(y) = gy | POV =y + %) € S)o,(x) dx

I/\

Y, y)es”)/I o U2

(S)

+M v,(x) dx
x> /b,

(2.24)

I/\

b,
—P(b,(Y,—-y) €S") +

(S) (Ba( ) )

Thus, from (2.17), (2.19) and (2.24) we get that

A

b
lim su “—P(b,(Y, -y, €S

2P sy (e =) €8.)
(2.25)

<f(y*) < liminf P(b,(Y, —y,) €8").

(S)

By replacing S by S in the Lh.s. and S by S, in the r.h.s. and using the
relations S € (S), and (S,)" € S we get that

limnsup (l?gn) P(b,(Y, -y,) €8)
(2.26)
<f(y*) < hmlnf (S )P(bn(Y —¥,) €8).

Letting 7 — 0 and using the fact u(S°) = u(S) we get the assertion (2.10). O

COROLLARY 2.4.  Suppose that the c.f.’s of the sequence Y, satisfy condition
(2.1), which is stronger than condition (2.7). Then (2.9) and (2.10) hold for
any sequence b, — .

ReEMARK 2.5. The conclusions of Theorem 2.3 hold if we replace condition
(2.8) by

(2.27) |7.()|dt -0 asn - o,

'/;3"<|t|sAb

for each A > 0. Notice that condition (2.8) is needed to obtain a sequence {A,}
satisfying (2.11) and to show that m,(y,) - f(y*). If (2.27) holds for each
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A > 0, we can find a sequence of real numbers {2}, such that A, — » and

(2.28) | 7.(6)|dt >0 asn - o.

'/;3n<|t|sAnbn

These are enough to show that m ,(y,) = f(y*), following the proof of Theo-
rem 2.3.

The next theorem provides a convenient way to verify condition (2.7) of
Theorem 2.3. In Lemma 3.3 of Section 3 we will use Theorem 2.3 and this
method of verification of condition (2.7).

THEOREM 2.6. Let {Y,, n > 1} be a sequence of random variables with c.f.’s
{£.(@®). Let {d,} bea sequence of real numbers such that d,, — . Assume that
there exists 8 > 0 such that g,(¢) = d ;% loglf,, (d,t)l is ﬁmte and twice differ-
entiable in the interval [ -6, 8], for all n>1. Suppose that there exists a > 0
such that for |t| < 6,

(2.29) —gn(t) 2 a

for all n > 1. Then condition (2.7) of Theorem 2.3 is satisfied with B, = éd,,.

Proor. By expanding g,(t) around 0 by Taylor’s theorem, we find that, for
| <8,

6(1) = £,(0) + 18(0) + ~gi(r,)
t2
—gn(r )

(2.30)

at?
< T
2
where r, is such that |r,| < [t| < 8. Let B, = 6d,. Thus for |¢t| < B, we have
for all n > 1,
| £(0)| = exp(di(e,(t/d,.)))

< exp(—at?/2),
which is an integrable function. This completes the proof of the theorem. O

(2.31)

The next theorem obtains the limit of a function related to the Laplace
transform of the positive part of Y, when (2.9) and (2.10) hold. It plays an
important role in the proofs of the strong large deviation theorems of Sec-
tion 3.

THEOREM 2.7. Let {Y,, n > 1} be a sequence of random variables converg-
ing weakly to Y, which possess a p.d.f. f. Let {b,} be a sequence of real
numbers such that b, — «. Let q,(y; b,, S) be as defined in (2.6). Assume that
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q,(y; b,, S) satisfies (2.9) and (2.10). Then
asn — «,

Proor. Let A > 0. Consider
I, = Elexp(—-b,Y,)I(Y, > 0)]

> [ ((k - 1A kh )]
Elexp(—b,Y )| ———— <Y, < +—

(2.33) o b, " b,
; E b,Y)I h Y h
= — — < — < —_
ot exp( n n) 2bn = +n Ynk 2bn ’

where y,, = (2k — 1)h/2b,,. Let k, =[1/h®]and S, = [—h/2, h/2). We now
get lower and upper bounds for I, as follows:

kn h h
I,> Y exp(—kh)P(—— <Y, -y <
1 20, 2b,
(2.34) . |
= —b—- Z exp(hkh)qn(ynk;bn’sh)
n k=1
and
IL<Y k- )mP[-2 <y h
nsk=lexp(_( - ) ) —ans n ynk<2_bn
h F
(235) = —b—- Z exp(—(k - 1)h)qn(ynk;bn7sh)
nk=1
h )
t3- L exp(=(k = 1)A)qu(Yur; bus Si)-
nk=k,+1
Using (2.9) and (2.10) after noting that y,, — 0 as n — » for each %, we get
kp
liminf(b,1,) = f(0)h ). exp(—kh)
n k=1
(2.36)
- £(0) h(exp(—h) — exp(—(k, + 1)h))
1—exp(—h)
and
ky
limsup(b,1,) <f(0)h Y. exp(—(k — 1)h)
n k=1
(2.37) +Mh ), exp(—(k—-1)h)

k=k,+1
h(1 — exp(—k,h)) . exp(—k,h)

O "M T T epon)
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Letting 2 — 0 in (2.36) and (2.37) we get
(2.38) lim(b,1,) = £(0).

This completes the proof of the lemma. O

REMARK 2.8. The conditions used in Theorem 2.3 can be satisfied by both
nonlattice and lattice random variables. For a lattice valued random variable
Y, with span A, condition (2.7) can be satisfied only if 4, converges to 0 and
condition (2.8) can be satisfied only if b, %, converges to 0. We will now extend
Theorems 2.3 and 2.7 to the case where 0 < liminf, b, h, < . Thus we might
as well take b, = 1/h,,. We can also take S = (—1/2,1/2) and notice that

1
(239) qn(y;~bn’ S) = h——P(Yn =y)’

where y is in the range of Y.

THEOREM 2.9. Let{Y,, n > 1} be lattice valued random variables with span
h, converging to 0. Let Y, converge weakly to Y. Let fn(t) and f(t) be the c. f.’s
of Y, and Y, respectively. Assume that there exists an integrable function f*
such that

(2.40) sup| £, (I(1¢l < B,,) < F*(2)

for each t, and

(241) 0: =def Sup |fn(t)| = O(hn),
B.<ltl<m/h,

for some sequence of real numbers {B,} such that B, - » and B, < mw/h, for
all n > 1. Then Y possesses a bounded and continuous p.d.f. f, and there
exists a constant M such that (2.3) holds. If y, is in the range of Y, and y,
converges to y* as n — », then (2.4) holds.

Proor. Let y, be a possible value of Y,. Then an application of the
inversion formula yields

L py, L [/ ity,) F.(t) dt
 PT=ya) = g [T exm(ity) Fi(t)

n -/
1 . A
(2.42) T o fmq3 exp( —ity,) /,(t) dt
1 A
*5-1 exp(—ity,) f(t) dt

B.<ltl<w/h,
=I,+1,, say.

It is easy to check that condition (2.40) and the dominated convergence
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theorem imply that I, converges to (1/2m)/ exp(—ity*) f(¢) dt = f(y*). Next,
1 A
I <— sup |f,(2)l
h’n B.<ltl<m/h,
0*
=25

n

(2.43)

which converges to 0 by condition (2.41), as n — ». This completes the proof
of (2.4). Next, from (2.42) and (2.43) we get

*

1 1 . 9
sup| —P(Y, = < — £ () dt + —
yp[h,, ( y)] - ItlsB,,f() 3

2.44 L nar s
(2.44) s;[_wf() o

< lf” fE(t)dt =M
- TYy—
for n > n,. Hence (2.3) holds. This completes the proof of the theorem. O

THEOREM 2.10. Let Y, be a lattice valued random variable taking values in
the lattice {kh,: k=0, + 1, + 2,...}, where h,, > 0 for n > 1. Assume that
the span h, of Y, converges to 0 as n — . Let Y, converge in distribution to
Y. Let {b,} be a sequence of real numbers such that 0 < liminf,(b,h,) = b < .
Suppose that Y possesses a p.d.f. fand Y, satisfies the conditions (2.3) and
(2.4). Then

(1 - exp( _bnhn))
h

n

(2.45)

E[exp(-b,Y,)1(Y, = 0)] - f(0)
asn — .

Proor. Consider
I, = E(exp(—b,Y,)I(Y, = 0))
2.46 >
(246) ~ Y exp(—kb,h,)P(Y, = kh,).
k=0

Let N > 1 be fixed. A lower bound for I, is given by
N-1

(2.47) Y. exp(—kb,h,)P(Y, =Fkh,)
k=0

and an upper bound is given by

N-1 ™
(2.48) Z exp(—kb,h,)P(Y, = kh,) + Mk, E exp(—kb,h,),
k=0 k=N

wherein we have used (2.3). Combining (2.46), (2.47), (2.48) and using (2.4) we
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get
liminf[ (- exp’f—b”h”))In} > f(0) liminf (1 — exp(—Nb,%,,))
(2.49) " " "
= f(0)(1 — exp(—~Nb))
and
lim sup[(1 — exp(—bnhn))In] < f(0) + limsup (M exp(—Nb,h,))
(2.50) n h, n

= f(0) + M exp( —Nb),

where b = liminf,(b,k,). We let N — o« in (2.49) and (2.50) and conclude
that

-b,h
)

n

(2.51) lim [ (1- exp’f ] — £(0).

This completes the proof of the theorem. O

3. Strong large deviation theorems. Let {T,, n > 1} be a sequence of
random variables. Let {a,} be a sequence of real numbers and {m,} be a
bounded sequence of real numbers. Weak large deviation results give asymp-
totic expressions for log P(T,/a, > m,) where the event {T,,/a, > m ,} repre-
sents a large deviation. A number of authors, including Sievers (1969),
Steinebach (1978) and Ellis (1984) have obtained such results under suitable
conditions on the m.g.f. of T,. Strong large deviation results give asymptotic
expressions for P(T,/a, > m,). One of the earliest strong large deviation
theorems was obtained by Bahadur and Ranga Rao (1960) when T, is the sum
of i.i.d. random variables. In Theorems 3.3 and 3.5 of this section we obtain
strong large deviation limit theorems for arbitrary sequences of random
variables {T),, n > 1}, under some conditions on the m.g.f.’s of T),’s. In Remark
3.6 we demonstrate that Theorems 3.3. and 3.5 are sufficient to establish the
strong large deviation results for sums of i.i.d. random variables obtained by
Bahadur and Ranga Rao (1960). This shows that the generalization to general
random variables in Theorems 3.3 and 3.5 has not been obtained by introduc-
ing unnecessary or restrictive conditions. The proofs of our strong large
deviation results depend heavily on the local limit theorems of Section 2. We
use the notation A, ~ B, if A, /B, — 1. We shall develop some more nota-
tion before stating the main theorem.

Let {T,, n > 1} be a sequence of random variables with m.g.f. ¢,(2) =
Elexp(2T,)], which is nonvanishing and analytic in the region Q = {z € ¢
|z| < a}, where a > 0 and ¢ is the set of all complex numbers. Let {a,} be a
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sequence of real numbers. Let
(3.1) U (2) =a,'log¢,(z), forzeQ,
(3.2) Yo(w) = sup [us—¢,(s)], foruecR;.

|sl<a, seR;
Note that ¢, is a convex function on (—a,a). Let {m,} be a bounded
sequence of real numbers such that there exists a sequence {7,} satisfying

(3.3) g (r,)=m, and 0<r71,<ay,<a, foralln>1.

Under these conditions we can see that y,(m,) = m,7, — ¢,(7,). Let K, be
the d.f. of T,. We will use the left continuous version of the distribution
function which will enable us to write the identities in (3.5). Let

(3.4) H,(y) = [ exp(ut, — a,,(7,)) dK,(u)
—o<u<y

and let T be a random variable with d.f. H, (y). Let T, =T} —a,m,,
Y,=T,/d,, d,=ya,¥,(7,) and b, = 7,d,. Note that if T, is a lattice
valued random variable with span p, > 0, we can assume, without loss of
generality, when considering P(T,/a, > m,), that m, is in the range of
T,/a,. In this case we can easily verify that Y, is a lattice valued random
variable with span %, = p,/d, and displacement 0. The study of the strong
large deviation properties of T, is carried out by relating them to local limit
results for the random variables Y, previously defined and using the identity
(8.5) which follows. This identity is easily verified:

{Zwm] - [

an a,my

[

= Xp(—yT T,)) dH
(3.5) anmne p(—y7, + @, ¥, (7,)) dH,(¥)

= exp(a,¥n(7,)) E(exp( 7, T (T > a,m,,))
= exp(—a,y,(m,)) E(exp( ~7,T}) I(T; = 0))
= exp(—a,7,(m,)) E(exp( ~b,Y,)I(Y, = 0)).

This is usually called the use of the Esscher transformation, and is the starting
point of most investigations in large deviations.

LemMma 3.1.  Let {T,, n > 1} be a sequence of random variables. Let {m )} be
a bounded sequence of real numbers such that there exists a sequence {r,}
satisfying (3.3). Let d,, = y/a ¢, (7,) and let a, — «. Let the random vari-
able Y, be as defined following identity (3.4). Let fn(t) be the c.f. of Y,,.
Assume the following conditions for T,:

(a) There exists B < » such that |¢,(2)| <B foralln > 1,z € Q.
(b) There exists a > 0 such that ¢,(1,) > a foralln > 1.
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Then Y, converges in distribution to the standard normal and there exists
& > 0 such that

(3.6) sup| £ ()I(1¢l < 8d,) < exp(—at?/2).

Proor. The cf. of Y, is given by
A ita,m, \ ¢ (7, +it/d,)
At -
Since ¢,(2) = a;,;* log ¢,(2) is a finite and analytic function in Q, and 0 < 7, <
a,, using a Taylor series expansion, we can write, for |t| < (a — a)/2,
(3.8) U (7, +1t) = ¥,(7,) + ity (r,) = (¢2/2)¥,(7,) + R, (7, +i2),
where the remainder term R, satisfies

Blt?

((a—ag)/2)’
from condition (a) and Cauchy’s inequality [see Apostol (1974), page 451].
From (3.7), (3.8), (3.9) and condition (b) we obtain, for any fixed ¢, that

log /u(2) = —(ita,m,)/d, + a,[w,(7, + it/d,) — ¥,(7,)]
= —(ita,m,)/d, + a,[ity,(r,)/d,

~ (9 (7,))/(2d2) + R, (7, + it/d,)]
= —t2/2 + a, R, (7, +1it/d,)

(3.9) IR, (7, + it)| <

(3.10)

and
Blt® .
ad,((a — ag)/2)°

Hence Y, converges weakly to the standard normal random variable. The
conclusion (3.6) will follow from Theorem 2.6, if we verify that Y, satisfies
condition (2.29). Let

gn(t) =d;*loglf,(d,t)

(3.11) |a,R, (7, +it/d,)| <

0, asn — o,

3.12 1
(3.12) = iy Beal(u(m + it) = (7))
Thus
Y _ “Real(l/’Z(Tn + lt))
)

_ —Real(y;(7,) +it£,)
(3.13) - Un ()

= —1 - Real(it£, /¥!(r,))

1€,
<

-1+ |t|—,
a
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where ¢, is an appropriate complex number depending on the third derivative
of ¢,,. From condition (a) and Cauchy’s inequality for derivatives we get

3!B
S5
((a—ae)/2)
Therefore we can find § > 0 such that § < §, and for |¢| < §,
(3.15) gn(t) < —(1/2) foralln > 1.
This verifies condition (2.29) of Theorem 2.6 and the proof is complete. O

(3.14) €, orn > 1.

LemMmA 3.2. Let {T,, n > 1} be a sequence of random variables. Let {m ,} be
a bounded sequence of real numbers such that there exists a sequence {r,}

satisfying (3.3). Let d, = \/a,¥,(7,) and b, = 7,d, for n > 1. Suppose that

a, - © such that 7,\/a, — ». Let the random variable Y, be as defined
following identity (3.4). Suppose that T, satisfies conditions (a) and (b) and
the following condition (c):

(c) There exists 6, > 0 such that
o, (7, +it) 1
=o0o|——

for any given & and A such that 0 < 8 < 6, < A. Then

(3.16) sup

8<|tl <A,

(3.17) b, E(exp(—b,Y,)I(Y, = 0)) - %

Proor. Lemma 3.1 shows that Y, converges weakly to the standard
normal and there exists a § > 0 such that (2.7) holds with B, = 8d,. Using
condition (c) we get that for fixed A > 0,

" o, (7, +it)
t = [ ——
5dnil|;|ll).bn|fn( )I 5<Ttlllspm,, ¢.(7,)
(3.18) ( !
. =0
Va,

This verifies condition (2.8). The assertion (3.17) now follows from Theorem
2.3 and Theorem 2.7. O

We are now in a position to state the main theorem of this section.

THEOREM 3.3. Let {T,, n > 1} be a sequence of random variables. Let {m}
be a bounded sequence of real numbers and {7,} be a sequence satisfying (3.3).
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Suppose that a, — « such that 7,\/a, — . Assume that T, satisfies condi-
tions (a), (b) and (c). Then

T, 1
(3.19) P(;; > mn) ~ Tnm exp(.*an‘)/n(mn))'

ProorF. The conclusion (3.19) follows from Lemma 3.2 and the identity
(3.5). O

REMARK 3.4. We will now examine the class of lattice valued random
variables {T,} satisfying conditions (a), (b) and (¢). Let T, be a lattice valued
random variable with span p, and m, be in the range of T,/a,. Then the
random variable Y, is lattice valued with span h, = p,/d, and displacement
0. The c.f. of Y, is periodic and its absolute value achieves the value 1 at
multiples of 27 /h ,,. When (a) and (b) hold, Lemma 3.1 shows that (3.6) holds,
which implies that p, is bounded. Again, when (c) holds, p,7, = 0 as n — .
Theorem 3.5 considers the case where the p,’s and 7,’s are bounded below by
a positive number, and obtains the strong large deviation conclusion (3.20) by
replacing condition (¢) with condition (¢’). When p,r, = 0 condition (c')
implies condition (c) and the conclusion (3.20) of Theorem 3.5 agrees with the
conclusion (3.19) of Theorem 3.3.

THEOREM 3.5. Let T, be a lattice valued random variable with span p,,. Let
m, be in the range of T,/a, and let {r,} be a sequence satisfying (3.3).
Assume that 0 <p* <p, <p**and 0 <d <71, <ay,<aforalln >1. LetT,
satisfy conditions (a) and (b) of Lemma 3.1 and the following condition (c'):

(¢') There exists 8, > 0, such that for 0 < § < §,,

¢, (7, + it) ( 1 )
su =0 .
8<ltls?r/pn d’n(Tn) \/ZI,:
Then
Tn Pn exp(—anYn(mn))
(3.20) P(an Zm") Vera, () (1—exp(-7,p,))

Proor. Let Y, be as defined following identity (3.4). Then Y, is a lattice
valued random variable with span k, = p,/d, and displacement 0. Let b, =
7,d,. Since p, and 7, are bounded above and below by positive numbers we
have 0 < liminf, b,h, < . Lemma 3.1 shows that Y, converges weakly to
the standard normal and there exists a & > 0 such that (2.40) holds with
B, = 8d,. Using condition (c') we can easily verify that Y, satisfies (2.41). The
conclusion (3.20) now follows from Theorems 2.9 and 2.10. O

REMARK 3.6. Bahadur and Ranga Rao (1960) obtained a strong large
deviation result for sums of i.i.d. random variables, which included a result of
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Blackwell and Hodges (1959) in the lattice case. We will now show that the
result of Bahadur and Ranga Rao (1960) can be obtained from our Theorems
3.3 and 3.5. Let X, X,,... be ii.d. nondegenerate random variables with
m.g.f. #(z) and let ¢(z) = log(¢4(z)), be finite for |z| <a. Let T, = X, +
+++ +X,. The m.g.f. of T, is given by ¢,(2) = ¢"(2). Let m be a real number
such that there exists 0 < 7 < a satisfying ¢'(7) =m.Let m, =m anda, =n
for all n > 1. Conditions (a) and (b) are trivially satisfied since ¢, = ¢ and
7, =7 forall n > 1.

If X, is nonlattice valued, then ¢(r + it)/¢(7) is the c.f. of a nonlattice
valued random variable and hence its supremum on an compact interval not
containing 0 is less than 1. This verifies condition (c). Let y(m) = sup [ms —
¥(s)]. The strong large deviation result

T, 1
(321) P(—;l_ = m) ~ TT—W;(—T)—GXP(—H‘Y(m))

follows from Theorem 3.3. Bahadur and Ranga Rao (1960) established (3.21)
by considering separately the two cases where X, satisfies Cramér’s condition
and where X, is nonlattice and does not satisfy Cramér’s condition. The above
application of Theorem 3.3 shows that it is not necessary to separate these two
cases.

If X, is lattice valued random variable with span p, then ¢(r + it) /¢(7) is
the c.f. of a random variable with span p. It follows that

¢(7 +it)
sup T <~ )
s<l|ti<m/p #(7)
for any & > 0. This verifies condition (¢’). The strong large deviation result
Tn p exp( - n’Y( m ))
3.22 P(—— > m) ~
(3:22) n V2rny”(r) (1 - exp(—7p))

follows from Theorem 3.5. Thus we have verified that all cases of Theorem 1 of
Bahadur and Ranga Rao (1960) follow from our Theorems 3.3 and 3.5.

4. Applications. In this section we give two typical applications to illus-
trate the large deviation limit theorems and strong large deviation limit
theorems of the previous sections. The first example is a local limit result and
illustrates Theorem 2.1. The second example is a strong large deviation result
for a lattice valued random variable and illustrates Theorem 3.3.

ExampLE 4.1. This example applies to a general class of sums of dependent
random variables considered in Chaganty and Sethuraman (1987). Though it
was proved in that paper that the limit distribution could be both normal and
nonnormal, our example applies only to the case where the limit distribution is
normal. We first present a particular application and then state a more general
application referring to conditions found in Chaganty and Sethuraman (1987).
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Let {X{™, X{™,..., X"} be a triangular array of random variables with
joint density function

s, \1" noox?
(4.1)  dQ*(x) =z;'(2m) " cosh(—)] exp| — ¥ 1| dx,
Bn j=1 2
where x = (x;,...,%,), s, =%, + -+ +x,, B> 1 and 2, is a normalizing

constant. Such dependent random variables arise in generalized Curie-Weiss
models used to describe ferromagnets Using Theorem 3.7 of Chaganty and
Sethuraman (1987) or using (4.3) we can show that Y, = (X{™ +

+X™)/Vn converges 1n distribution to a normal dlstrlbutlon
w1th mean 0 and variance o = 82/(8% — 1) [Example 4.4 of Chaganty and
Sethuraman (1987) considered the case B =1 and obtained a nonnormal
distribution under a different normalization]. We will now show that Theorem
2.1 applies to Y,. Since

(4.2) (cosh w)n= Zc exp(wy)A,(y)
yeC,

with A,(y) = ((n+y)/2)2‘ and C, ={-n,-n+2,...,n}, the cf. of Y, is
given by
fu(?) = E(exp(itY,))
1
(277')'1/2

=z, X

(4'3) yECn

ool 2~ £ 8

t? ity y? )
=exp| — — |2, * exp| —= + —5—|A,(»).
( 2) yezcn (Bﬁ 267 |1
Since £,(0) = 1, we have

(4.4) | £.(t)| < exp(—¢2/2) forall n and ¢.

Thus from Theorem 2.1 we get, if y, — y,

4.5 L ¥
(45) fuom) > Tz = 33
where f,(y) is the p.d.f. of Y, and 2% = 82/(B% — 1).

From the preceding discussion and from a full use of Theorem 3.7 of
Chaganty and Sethuraman (1987) we have the following application which we
state without proof.

Let {X{™, X{™,..., X{"} be a triangular array of random variables whose
joint distribution is as given in (3.13) of Theorem 3.7 of Chaganty and
Sethuraman (1987). We will impose conditions on the probability measure P
and the index r appearing in that theorem. Let P be the standard normal
distribution and let r = 1. Under these conditions, Theorem 3.7 of Chaganty
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and Sethuraman (1987) shows that there is a sequence of constants {m ,} such
that

n
(4.6) Y, = ( > Xm - nmn)/\/i
j=1
has a limiting normal distribution with mean 0 and variance o2. Let fn(t) be
the c.f. of Y,. For this case, if we proceed as in the previous application, we can
establish (4.4) for all n and ¢. This shows that (4.5) is true with the appropri-
ate o.

ExamMpPLE 4.2. We now obtain a strong large deviation result for the
Wilcoxon signed-rank statistic under the null hypothesis. This strengthens the
well-known weak large deviation results for this statistic [see Klotz (1965)].

Let {X,, n > 1} be a sequence of i.i.d. continuous random variables symmet-
ric about their median m. Arrange |X,|,1X,|,...,X,| in increasing order of
magnitude and assign ranks 1, 2, ..., n. The Wilcoxon signed-rank statistic W,
is defined as the sum of the ranks of positive X,’s. The statistic W,. is used to
test the null hypothesis Hy: m = 0 versus H;: m # 0. Let T, = U,/n. The
random variable T, is a lattice random variable with span p, = 1/n. The
m.g.f. of T, under the null hypothesis H, is given by

(4.7) #u(2) = T1 [(explhe/m) +1) /2], z< 4.

It is easy to check that ¢,(z) is analytic and nonvanishing in the region
O ={z2e ¢ |zl <m/2}. Let

(4.8) ¥,(2) =n"'log ¢,(2).

It is easy to check that there exists g > 0 such that |y (2)| < 8 for |2| < 7 /2.
Straightforward calculations show that () is bounded below by a positive
number « for real 7 such that || < 7/2. Thus T, satisfies conditions (a) and
(b). Next we first note that ¢/(s) > [Mx)/(1 + exp(—sx))dx and that the
range of ¢,(s) for real s contains the open interval (0,1/2) for all n > 1. Thus
if {m )} is a sequence of real numbers such that 1/4 <m, <m < [{x)/(1 +
exp(—mx/2)) dx, then we can find a positive number a, and a sequence {r,}
satisfying 0 < 7, <a, < 7/2 and ¢,(r,) = m,, for all n > 1. From the analy-
sis in Example 3.1 of Chaganty and Sethuraman (1985) it can be seen that
there exists n, and &, > 0 such that for 0 < 6 < §,,

(4.9) ¢, (1, +it) ( na62)
. sup |[————| <exp|-—
é<|tl<m/p, d’n(Tn) 4

for n > n,. Since p, — 0 this verifies condition (c). Therefore Theorem 3.3
shows that the conclusion (3.19) holds.
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