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SOME LIMIT THEOREMS IN LOG DENSITY

By I. BErkEs! anD H. DEHLING

Hungarian Academy of Sciences and Groningen University

Motivated by recent results on pathwise central limit theorems, we
study in a systematic way log-average versions of classical limit theorems.
For partial sums S, of independent r.v.’s we prove under mild technical
conditions that (1/log N)L, . x(1/k)I{S,/a, € ‘} > G(-) (a.s.) if and only
if (1/log N)X,, . N(1/E)P(S,/a; € -) - G(-). A functional version of this
result also holds. For partial sums of i.i.d. r.v.’s attracted to a stable law,
we obtain a pathwise version of the stable limit theorem as well as a strong
approximation by a stable process on log dense sets of integers. We also give
necessary and sufficient conditions for the law of large numbers in log
density.

1. Introduction. In recent years many interesting extensions of classical
probability limit theorems involving log average and log density have been
obtained. The basic result and starting point of these investigations is the a.s.
central limit theorem discovered by Brosamler [5] and Schatte [23] for i.i.d.
r.v.’s having finite (2 + 5)th moments and later proved by Fisher [13] and
Lacey and Philipp [15] to hold assuming only finite variances:

THEOREM. Let X, X,... be i.i.d. r.v’s with EX, =0, EX? =1 and set
S,=X,+ - +X,. Then

1. (8, 1,2 2
1.1) i —I{——=€cA}l= [ et 5.
(1.1) Lim Tog N kgzv Z {\/E € } (2m) fAe dt a.s.,

for any Borel-set A c R with AM0A) = 0. Moreover, the exceptional set of
probability zero can be chosen to be independent of A. Here I denotes the
indicator function.

Certain special cases of (1.1) have been known for almost 40 years; for
example, Erdés and Hunt [10] proved that

1
li —
Nt log N ng k

1
IS, >0} = 5 as

holds for any i.i.d. sequence (X,,) having a continuous symmetric distribution
function. (For a related local limit theorem assuming only EX,; = 0, see Chung
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and Erdés [6].) The limiting behaviour of the two-parameter process

A L Zl(Isk< ® ) <x< 40,0<t<l1
- _ = — — 0,0 <
Y (log N)V2 S k {‘/’? x} ), * O=t=D
was investigated by Csérgs and Horvath [7]. In particular, their results yield
the precise rate of convergence, both in the a.s. and distributional sense, in
(1.1) as well as functional limit theorems related to (1.1). (See also Weigl [27]
and Peligrad and Révész [20].)

An interesting ‘‘log’’ version of Strassen’s a.s. invariance principle was
proved by Fisher [13] who proved that if X, X,... are iid. r.v.’s with
EX, =0, EX? =1, then {X,}7_, can be redefined on a suitable probability
space together with a Wiener process W such that with probability 1 the
relation

(1.2) iXi—W(n)=o(1/r7) asn — o
i=1

holds for “almost all” n in the sense that for a.e. » there exists a set N, cN
of integers of logarithmic density 0 such that at w, (1.2) holds for N & N, . [For
a set A C N of positive integers, the log density u;(A) of A is defined by

1
pwr(A) = lim —
L( ) Now 1OglvksN,keAk

provided that the limit exists.] Recall that Strassen’s classical a.s. invariance
principle (see [26]) says that for all n we have the approximation

n
(1.3) Y X, - W(n) =o(nloglogn)"’? as.asn — o
i=1
(with a suitable construction of W). Moreover, as Major [17] proved, assuming
only finite second moments the remainder term o(n loglog n)!/% in (1.3) is the
best possible.

The purpose of this paper is to study, in a systematic way, ‘“log”’ analogues
of further classical limit theorems of probability theory. In Section 2 we prove
a general version of the a.s. central limit theorem and its functional version for
independent, not necessarily identically distributed random variables. In fact,
under mild growth conditions on the partial sums S, of an independent
sequence (X,,) such as

(1.4) E(logloglS,/a,l)' ™ < (loglog n)’, 0<68<se,

we give necessary and sufficient criteria for the generalized a.s. central limit
theorem

1.5 lim — Y L[5 G
(15) nglwlogNksNE a, ¥ =Glx) as.

and its functional version in terms of ‘“weak” characteristics of (X,). An
immediate consequence of these criteria is the fact that under (1.4) the a.s.
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central limit theorem (1.5) is a consequence of the weak limit relation
(1.6) S,./a, =>4 G.

Thus we see that, despite its pointwise character, the a.s. central limit theorem
is [under (1.4)] a weaker statement than the distributional result (1.6). In [2]
we constructed examples showing the crucial difference between (1.5) and
(1.6). We found, for example, i.i.d. sequences (X,) satisfying (1.5) with a
simple G (e.g., stable or mixed stable distribution) such that (1.6) fails badly;
in fact, under (1.5) it is possible that S, /a, has many different limit distribu-
tions along different subsequences which do not even resemble G.

In Section 3 we investigate the ‘“log” analogues of the strong and weak laws
of large numbers. Noting that the validity of the a.s. central limit theorem
(1.5) is not affected by the behaviour of S, /a, on a set of n’s with log density
zero, it is natural to define the logarithmic version of laws of large numbers by
admitting exceptional sets of log density zero in the usual definitions

(1.7) S,/a,—0 as. or S,/a, —p 0.

[Actually, in the strong law of large numbers we shall admit an exceptional set
depending on  as in Fisher’s invariance principle (1.2).] In Section 3 we shall
prove the surprising result that in the presence of such exceptional sets the
weak and strong law of large numbers are equivalent. This result shows again
that despite its “‘strong’’ character, a.s. convergence on a set of log density 1 is
much weaker than ordinary a.s. convergence and in the context of normed
sums of independent r.v.’s it is even weaker than convergence in probability.
The equivalence of the log versions of the weak and strong law of large
numbers also enables us to give simple necessary and sufficient criteria for
them in terms of individual r.v.’s X,,.

Finally, in Section 4 we extend Fisher’s a.s. invariance principle (1.2) to
arbitrary i.i.d. sequences (X,) with EX2 = + belonging to the domain of
attraction of the normal law or an a-stable law, 0 < a < 2. That is, we show
the analogue of Fisher’s result for any i.i.d. sequence (X)) such that for some
numerical sequences a, > 0 and b,

(1.8) i( ixi—b,,) e @

n\i=1

with a nondegenerate distribution G. Again, permitting exceptional n-sets of
log density zero changes the nature of the problem essentially, leading to the
simple and all-covering “log” a.s. approximation results in Section 4, in
contrast to the highly complicated and implicit ordinary a.s. invariance princi-
ples existing under EX? = + (see e.g., [14], [18] and [19] for such results). In
fact, we shall see that under (1.8) the “log” a.s. approximation of ¥7_; X; with
Wiener or stable processes holds with the same remainder term as ordinary
approximation in probability, another example of the phenomenon observed in
Section 3.
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2. The a.s. central limit theorem.

THEOREM 1. Let X, X, ... be independent r.v.’s and a, > 0, b, numerical
sequences such that setting S, = X; + -+ +X, we have

n

(2.1 Ef( = ) < (loglog n) ' °f(e®™™'™),  n>n,

n

for some € > 0 where f > 0 is a Borel measurable function on (0,x) such that
both f(x) and x /f(x) are eventually nondecreasing and the right-hand side of
(2.1) is nondecreasing for n > n,. Assume also that

(2.2) a,/a,>C(l/k)", 1=k

for some constants C > 0, y > 0. Then for any distribution function G the
following statements are equivalent:

(a) For any Borel set A ¢ R with G(0A) = 0 we have
]. { Sk - bk

(2.3) lim Y —1I

N-oowx IOgNkSNk

GA} =G(A) a.s,
ay

where the exceptional set of probability zero is independent of A.
(b) For any Borel set A ¢ R with G(0A) = 0 we have

2.4 I v 1p S8 4\ gea
. - € = .
(2.4) Nowlog N S & a (4)
CoroLLARY 1. Let X, X,,... beindependent r.v.’sand a, > 0, b, numeri-

cal sequences such that setting S, = X; + -+ +X,,, (2.1) and (2.2) hold. Then
for any distribution G the a.s. central limit theorem (2.3) holds provided

(25) (Sn - bn)/an g9 G

To clarify the meaning of (2.1) let us write out its special cases for
f(x) = xP, f(x) = (log x)?, f(x) = (loglog x)'*°, respectively:

S, —b,[

(2.1a) E < elogm'™, 0<p=<1l,0<e<l,
a

n

n

(2.1b) E(log

y
: ) < (log n)y’, 0<y <y,

n

n

a

1+6
(2.1c) E(loglog 2 ) < (loglogn)®, 0<#& <.

n

[Here, and in the sequel, log x and loglog x are meant as log(x V e) and
loglog(x V e®), respectively.] Clearly, the slower the function f in (2.1) grows,
the weaker type generalized moments of (S,, — b,))/a,, appear on the left-hand
side of (2.1), but the more restrictive growth rates are required for these
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generalized moments. The choices f(x) = x? and f(x) = (loglog x)'*? repre-
sent the limits for reasonable choices of f; for f(x) = loglog x the right-hand
side of (2.1) tends to zero and thus (2.1) implies (S, — b,)/a, =, 0. We do
not know if Theorem 1 holds under

n

S,
E loglog T—

) - 0(1)

or even without (2.1). At any rate, (2.1c) is a rather mild restriction that holds
in most standard situations; in fact, even if we replace the right-hand side by
O(1), condition (2.1c) is not much stronger than the stochastic boundedness of
(S, — b,)/a,, anatural assumption in problems concerning the limit distribu-
tional behaviour of (S, — b,)/a,. [With the right-hand side tending to + o,
(2.1¢c) does not even imply the stochastic boundedness of (S, —b,)/a,.]
Condition (2.2) is satisfied, for example, if

(2.6) n~a, is nondecreasing for some y > 0
or
(2.7) a, =nfL(n) where p > 0and L is slowly varying.

[The last statement follows from the fact that by the representation theorem
for slowly varying functions, L(l)/L(k) > C(l/k)~¢ for any ¢ > 0 and [ >
k > k(e).] As the examples at the end of this section will show, (2.6) cannot be
essentially weakened; neither n~7a, — « nor (log n)~Ya, 1=, y > 0, suffice in
Theorem 1.

In the first version of this paper we proved Theorem 1 under the simpler
but more restrictive moment condition

4

=0(1), p>0

n n

E

n

instead of (2.1). The observation that the theorem remains valid, with only
minor changes in the proof, under generalized moment assumptions of the
type (2.1) is due to T. F. Méri who also constructed the examples at the end of
this section.

Corollary 1 shows, as we already pointed out in the introduction, that the
a.s. central limit theorem (2.3) is [under (2.1)] a weaker statement than the
distributional result (2.5). In [2] examples are constructed to show that even in
the ii.d. case (2.3) can hold while (2.5) fails badly. The examples of [2] also
show that while for iid. r.v.’’s (X,) the limit distribution G in (2.5) is
necessarily stable, this is not valid in the case of (2.3).

Our next theorem is the functional version of Theorem 1.

THEOREM 2. Let X, X,,... be independent r.v.’s and a, > 0, b, numeri-
cal sequences such that setting S, = X; + -+ +X,, (2.1) and (2.2) hold. Let,
for each n>1, 0=¢,,<t, < -+ <t,, =1 be a division of [0,1] and
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define the normed partial sum process {s,(¢), 0 <t < 1} by
5. () = (.SJ-—I')J-)/an, fort=¢,;,0<j<n,
linear in between .

Let finally u be a probability measure on D[0, 1]. Then the following statements
are equivalent:

(a*) For any Borel subset A of D[0, 1] with u(dA) = 0 we have

2. li
(2.8) Nt log N,

)y ;le‘l{sk(') €A} =u(4) as,
<N

and the exceptional set of probability zero does not depend on A.
(b*) For any Borel subset A of D[0, 1] with uw(dA) = 0 we have

1
(2.9) dm e w I, p Pl () € 4) = u(a).

Similarly to Corollary 1, a sufficient condition for the a.s. functional central
limit theorem (2.8) is

(210)  lim P(sy() €A} = u(4), A cD[0,1], u(94) =0,

that is, the ordinary functional central limit theorem. It is also worth noting
that criterion (2.9) is equivalent to u, — p weakly where w, denotes the
probability measure on D[0, 1] defined by

1\7! 1
un(4) = ( by ;) L o Plsi() =4}, AcDo,1].
k<N k<N
Thus (2.9) holds if and only if it is valid for finite dimensional sets A and {u 5}
is tight which is true, for example, if {s,} is tight.
We mention one more consequence of Theorem 2 concerning the i.i.d. case.

CoroLLARY 2. Let (X,) be an i.i.d. sequence and a, > 0, b, numerical
sequences such that setting S, = X; + -+ +X,, we have

(211) (Sn—bn)/an ~g G

with G nondegenerate (necessarily a-stable for some 0 < a < 2). Let {£(¢),
0 <t < 1} be the uniquely determined process with independent, stationary
a-stable increments such that £(0) = 0 and £(1) =, G. Then (X,) satisfies the
a.s. functional central limit theorem (2.8) with t,, = k/n, 1 <k < n, where
u is the measure on D[0, 1] corresponding to &.

In fact, (2.11) and the results of [8] easily imply that the ordinary functional
limit theorem (2.10) is valid.

We turn now to the proof of Theorem 2; the proof of Theorem 1 is very
similar (in fact simpler). Replacing X, by X, — ¢, where ¢, = b, — b, _;, we
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can assume b, = 0. Let x, > 0 denote a number such that f(x) and x/f(x)
are nondecreasing for x > x,; clearly f(x) is continuous on [x,, ) and f(x) =
®. Moreover, we can assume, without loss of generality, that x, =0 and
f(0) = 0. In fact, observe that

x
—f(xy), for0 <x <ux,,
Xo

fx) =

f(x), for x > x,,

satisfies these stronger properties as well as (2.1) with an additional term
+0(1) on the right-hand side, which can be absorbed into

(loglog n) ™"~ f(exp(log n)" )
by replacing ¢ with a smaller number. [Recall that the right-hand side of (2.1)
was assumed to be nondecreasing.] We next prove the following simple lemma.
LemMma 1. Under the assumptions of Theorem 2 we have, setting My =

maxlskleskl,

(2.12) Ef(My/ay) < C*ln}zaxNEf(ISkl/ak), N >N,
<R<
for some constant C* > 0.

Proor. Set p(N) = max,_,_y Ef(1S,l|/a,) and choose A >0 so that
f(A) = 4p(N)/C where C is the constant in (2.2). Clearly we can assume
without loss of generality that C' < 1 and thus observing that a, > Ca, for
any 1 <k < N by (2.2), we get

P(IS,1 2 day) < P(IS,| = CAa,) < f(CA) 'Ef(1S,l/a,)
<1/4, 1<k<N,

by the choice of A and the fact that f(CA) > Cf(A) by the assumptions made
on f. Thus

P(ISy —Sil>2ray) <1/2, 1<k<N,

whence by a maximal inequality of Skorohod (see, e.g., Breiman [4], page 45)
we get

P(My > xay) < 2P(ISyl > xay/2) for x > 4
that is,
P(¢>x)<2P(n>x), x>0,
where
§=My/ay - K{My/ay >4}, 7 =2[Syl/ay I{21Syl/ay > 4A}.
Thus an integration by parts yields Ef(¢) < 2Ef(n) whence we get, observing
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that f(ax) < af(x) for any a > 1, x > 0 by the assumptions made on f,
Ef(My/ay) < Ef(§) +f(4X) < 2Ef(n) + 4f(A)
< 4Ef(ISyl/ayn) + 16C~p(N) < C*p(N)
where C* = 4 + 16 /C, proving Lemma 1. O

Let BL(DI[0,1]) denote the set of functions g: D[0,1] » R such that for
some K > 0,

(2.13) lg(x) —g(y)l < Kd(x,y), lg(x)l<K forallx,y < D[0,1],

where d is the Skorohod metric (see, e.g., [3] page 111). By Theorem (8.3) of
Dudley [9], statements (a*) and (b*) in Theorem 2 are equivalent, respectively,
to the following:

(a') For all g € BL(D|0, 1)),

(2.14) lim

N-w log N 2 kg(sk( ))_fgdll« a.s.

(b’) For all g € BL(D|0, 1])

I\II—m logN Z Eg(sk( ) _fgd,u,

[Note that by the separability argument in the proof of [9], Theorem (8.3), in
statements (a') and (b’) it suffices to consider g’s from a suitable countable
subset of BL(DI[0, 1]), whence it follows easily that if (a’) holds then the
exceptional zero set in (2.14) can be chosen to be independent of g.] Hence to
prove Theorem 2, it suffices to show that for any g € BL(DI[0, 1)) we have

1
li —£,=0

(2.15)

where
& =8(sx(7)) — Eg(su("))-
To prove (2.15) we first show that
Ef(M,/a,)
f(a,/a;) '

where K denotes a constant such that (2.13) holds. Define, to this end, the
function s:’ ;:10,1] - R by

. 0, if0<t<t,,
Sk’l(t)= (SJ_Sk)/al, iftl,j"<—t<tl,j+1? ijSl—l.

(2.16) E(£,£,)] < 4K? 1<k<l,

Clearly
d(s;,sk,) <lls; — 8% e <M, /a,
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and thus by (2.13),
M,
8(s;)) —8(si, )l < K— A 2K.
!

Also, s} ; is independent of s, and thus setting A = a,/a, and using x/y <
f(x)/f(y) for x <y, we get

lE(&x€)| = |COV(g(3k),g(sl))| = |C°V(g(sk)’g(sl) _g(st,l))l

M 1(M
< 21{2}3(—’e A 2) = 41{‘4’}2(;(—’e A A

a, 2a,
i 4K2 (Mk ) 4K2E (Mk
=T f(A)
proving (2.16).
Now
1
(2.17) ( > §k) <2 Y 21 ECEén)l-
ksN l<k=<I<N

By (2.1), (2.2), (2.16) and Lemma 1, the contribution of those terms in the sum
of the right-hand side of (2.17) where I/ > exp((log N)'~¢/?), is

f(e®s™'™) 1
f(Cevtog M™% lskzs:lsN kL
< 16K2C*(loglog N) ' ~°(log N ).

On the other hand, the trivial estimate |E(£,¢,)| < 4K? shows that the
contribution of those terms where I/k < exp((log N)'~¢/2?), is

< 8K?2C*(loglog N) ' ~°

N 1 kexp(log N)L-¢/2 1 1
<8K?Y — Y — < const. Z —(logN)1 /2
k=1 k l=Fk l

< const.(log N)>~*/%,

Hence setting Ty = (log N)™'L, _ vk ", we get
ETZ < const.(loglog N) ™',
whence for N, = exp(exp(k!~¢/2)) we have
ETy, < const.k~17°

for some p > 0. By the Beppo Levi theorem we have Y7 _ Ty, < + as,
implying Ty, — 0 a.s. Now for N, < N < N,,,,; we have

N o1 log N,
Tyl < |ITy| + ——= — <|Ty|l+|1- .
Tyl < 1T, logNi=NZk+1i T ( logN)
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Since log N, , ./log N, — 1, it follows that T, = 0 a.s., completing the proof
of Theorem 2. O

ReMARK. For C > 1, condition (2.2) of Theorem 1 requires that n~"a, be
nondecreasing. The following two examples, due to T. F. Méri, show that upon
replacing this condition by either n~7a, — « or (log n) " ?a, 1%, y > 0, Theo-
rem 1 becomes false.

ExampLE 1. Let X, X,,... be independent, normally distributed r.v.’s
with EX, =0, EX?=1/i,i=1,2,... and set S, =X, + - +X,, a, =
(log n)*/%. Then S,/a, 24 N(0,1) and thus (2.4) holds with b, = 0 and
G = N(0,1). Further E|S,/a,|® = O(1) and thus (2.1) is satisfied with f(x) =
xP, 0 <p < 2. It is also easily seen that (X, ) obeys the Lindeberg condition
and thus it satisfies the arc sine law (see, e.g., [22]), that is, P(ny <x) —
27 larcsinyx, 0 < x < 1, where

1\ 1
”7N=(Z _) Y. SI{S, > 0}.

kst kst

Thus ny — 1/2 a.s. is not valid, that is, (2.3) does not hold.

ExavmpLE 2. Let X, X,,... be independent r.v.’s such that Xy is
N(,22""") distributed, n = 1,2,... and X, =0 for all other indices. Let
Sy=X,+ - +Xy and a, = 22" for 22" <k < 22""; clearly VEk < a, <k,
Sy/ayn =4 N(0,1) and also E|Sy/ayl? = O(1) so that (2.1) and (2.4) hold
with f(x) =x7,0<p <2, b, =0and G = N(0,1). If relation (2.3) were also
valid, then

ny = (log N)™" ¥ k7 1g(S,/a;)
k<N

would converge a.s. to a constant for any bounded Lipschitz-1 function g on
the real line. But for N = 22" — 1 we have

NN = Z 3(322"/2?))‘;',1\“

where
22!{'1
Ay =(ogN)™" X jt=2""40(27");
i=2%
moreover, S,z/22 = X,2/22 + ¢, where E(¢2) = O(2~%). These remarks im-
ply easily that the distribution of 1y converges, as N runs through the above
special values, to the distribution of the r.v. n = L7_,27'g(¢§,), where ¢; are

iid. N(0,1) r.v.’s. Choosing a g such that the distribution of 7 is nondegener-
ate [e.g., g(x) = ¢(x) will do], we get a contradiction.
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3. The law of large numbers.

DEFINITION. Let £, &,,... and ¢ be r.v.’s. We say that

gn _)P § (].Og),

if there exists a set H C N of log density 1 such that ¢, —»p £ as n — o,
n € H. We say that

¢, — ¢ as. (log),
if for a.e. w there exists a set H, C N of log density 1 such that ¢,(w) = &(w)
asn—>o,neH,

We can now formulate the main result of this section.

THEOREM 3. Let X, X,,... be independent r.v.’s with partial sums S, =
X, + - +X, and let (a,) be a positive numerical sequence such that (2.1)
and (2.2) hold with b, = 0. Then the following statements are equivalent:

(a;) S,/a, — 0 a.s. (log)
(bp S,/a, —p 0 (og.

Moreover, if X, /a, —p 0 also holds then a third equivalent condition is:
(c;) We have

1
logN ‘_é' 71Gi(a) A1} >0 asN -
and
1
logngNz{Hk(ak) A1} >0 asN - o,
where
y 2
Gr(A) = El [flxIZAdP}(x) +A” {fqu dF(x) — (flxmxdFj(x)) ”
) = Z [ FAE)

and F; is the distribution function of X .

Applying Theorem 3 to X, = X, — ¢,, where ¢, =b, —b,_,, we get the
analogous result for (S, —b,)/a,. In particular, it follows that under the
assumptions of Theorem 1 the relations

(S,-b,)/a,—0 as.(log)
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and

(Sn - bn)/an -p 0 (log)
are equivalent.

CoroLLARY 3. Let X, X,,... be i.i.d. r.v.’s with distribution function F
satisfying either

(3.1) li%iffx(l - F(x) + F(—x)) >0,

or )

(3.2) x(1 - F(x) + F(-x)) < exp((log x)l_e), x> X
for some € > 0. Then setting S, = X, + -+ +X, we have

(3.3) S,/n—>0 a.s.(log)

if and only if the following three conditions hold:

1 1
— dF(x) A =) > 0,
IOgNkEN{flxlzk (=) k}

1 1 2l
S 2 — —
(3‘4) IOg N kEN { k? [‘/I‘xkkx dF(x) ('/|‘x|<kxdF(x) " k } - 0,
1 1 1
IOgngN{Z jl‘xkkxdF(x) A E} - 0.

The assumptions of Corollary 3 require that the tails 1 — F(x) + F(—x) be
either big [cf. (3.1)] or small [cf. (8.2)]. The only case excluded is when
x(1 — F(x) + F(—x)) fluctuates irregularly between small and large values. It
seems likely that Corollary 3 holds without any restrictions on F, but we
cannot prove this.

For the proof of Theorem 3 and Corollary 3 we shall need the following
lemma.

LemmA 2. Let x,, be a numerical sequence. Then the following statements
are equivalent:

(i) There exists a subset H C N of log density 0 such that x, > 0 as
n—>on¢H.
(ii) For all & > 0, the set A(e) = {n: |x,| > &} has log density 0, that is,

1
li —I >e} =0.
Nl-rfloo log N ng k el > e}

Moreover, if x, is bounded then (i) and (ii) are equivalent to
1 1

i
(i) Nlinoo log N kEN k

|xk| = 0.
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For the equivalence of (i) and (ii) see Lemma (4.9) of Fisher [13]; the
equivalence of (ii) and (iii) is obvious from the inequality eI{|x,| > ¢} < |x,| <
e + Cl{|x,| > €} where C = sup,lx,|.

Proor or THEOREM 3. We first show the equivalence of (a;) and (b)).
Clearly, in the case when b, = 0 and G is the distribution concentrated at the
origin, statements (a) and (b) in Theorem 1 reduce to

1
(3.5) l\lll_l;nw og N ngEI{ISk/akI >¢} =0 as.foranye >0
and
1
(3.6) lim Y., —P{S,/a,l >} =0 foranye >0,

Noxlog N Ty k

respectively. By Lemma 2, (3.5) is equivalent to (a,;) while (3.6) can be written
equivalently as .
(3.7) pr{n: P(IS,/a,l >¢)>8} =0 foranye>0,8>0.
Setting
x, = inf{p > 0: P(|S,/a,l > p) <p},
(3.7) implies
pr{n:x, > e} <pfn: P(S,/a,l >c)>e}=0 forale>0

whence we get, using Lemma 2, that x, — 0 along a sequence H c N of log
density 1. But then by a well-known property of convergence in probability we
get S,/a, »p 0as n —» o, n € H, that is, (b,) holds. Conversely, (b,) trivially
implies (3.7) and thus (3.6).

To prove the equivalence of (b,) and (c,) we first note that by (2.2) we have
ay > Ca, for any 1 <k < N and thus X,/a, —p 0 implies

P(X,| > 0 fi > 0.
 max (X, = eay) — or any

Hence by the standard degenerate convergence criterion (see, e.g., Loéve [16],
page 317) for a fixed set H C N of integers we have

(3.8) (X, +--+X,)/a,>p 0 asn—->o,neH
if and only if

(3.9) X, = Zf dF,(x) >0 asn —>o,neH,

r=1"lxlza,

3.10 —a=? ¥
(310)  y,=a; H[[

| xzaﬂa(x)-(4;<a;xdﬁk(x))} -0,

x|<a,

asn—->o,neH,
n

(8.11)  z,:=a," Zf xdF,(x) >0 asn—>o,neH.

h=17lxl<a,
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[Note that in [16] one has ¢a,, instead of a, in (3.9) but since (3.9), (3.10) and
(8.11) together trivially imply (3.8) by truncation and the Chebyshev inequal-
ity, (3.9), (3.10) and (3.11) together are equivalent to (3.8).] Thus we see that
statement (b,) holds if and only if

(3.12) x,—0, y,—0, z, > 0 (log),

where for a numerical sequence c, the relation ¢, — 0 (log) means that
¢, — 0 on a set of log density 1. By x, > 0, y, > 0, (3.12) is equivalent to

(3.13) (x, +¥,) A1 >0 (log) and [z,/A1—0 (log).
Applying Lemma 2 it follows that (8.13) is equivalent to (c,). O

ProOOF OF COROLLARY 3. Assume first that (3.2) holds for some ¢ > 0; set
Y(x) = exp((log x)' %) and ¢, = n exp((log n)*~¢/2). It is easy to see that

(3.14) n dF(x) > 0 asn — o,
lxl=¢,
(3.15) nc;lf xdF(x) > 0 asn — o,
|x|<e,
(3.16) nc,jzf x2dF(x) >0 asn — .
|x|<c,

In fact, by (3.2) the left-hand side of (3.14) is < nc,, 'y(c,) < nc;, 'y(n?) = o(1);
on the other hand, an integration by parts shows that the absolute value of the
left-hand side of (3.15) is bounded by

nc;1(6 + fcn‘/f(x)/xdx) +ny(e,)e, " < Bne; (e, )log e,
3

< 8nce;, 'y(n?)log n® = o(1).

The proof of (3.16) is the same. Relations (3.14)-(3.16) evidently imply (by
truncating the r.v.’s X;, 1 <i < n at ¢, and applying the Chebyshev inequal-
ity) that S, /c,, —p 0 and since

1+
Conn/Cp < mHTW,

where 7(n) = const.(log n)"¢/2 — 0, the proof of Theorem (6.1) of [1] shows
that E|S, /c,I” remains bounded for any 0 < p < 1 and consequently

(3.17) E|S,/n|"? < K exp{(log n)"' ~*?}

for some constant K > 0. Since X, /n —p 0 trivially, Theorem 3 applies to the
sequence (X)) [see (2.1a) in Section 2], proving the equivalence of (3.3) and
(3.4). [We replace the two relations in (c,) again with three relations; see
(3.9)-(3.11) in the proof of (b;) < (c;) in Theorem 3.]

To complete the proof of Corollary 3 it suffices to show that if (3.1) holds
then (3.3) and the first relation of (3.4) fail. To this effect, let us observe that
(8.5) trivially implies (3.6) by the bounded convergence theorem and thus the
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implication (a,) = (b,) in Theorem 3 holds without any assumption on (X,)
and (a,). Similarly, the proof of Theorem 3 shows that the equivalence of (b )
and (cl) holds without (2.1), that is, assuming only (2.2) and X, /a, —p 0 for
the independent sequence (X,). Now (2.2) trivially holds for a, =n and
X,/n —p 0 holds for any i.i.d. sequence (X,), hence in Corollary 3 relation
(8.3) implies (3.4) for any i.i.d. sequence (X,). Since under (3.1) the first
relation of (3.4) trivially fails, it follows that under (3.1) both (3.3) and (3.4) are
false. O

We formulate one more corollary of the proof of Theorems 2 and 3 which we
shall need in Section 4.

CoROLLARY 4. Under the conditions of Theorem 3 the following two state-
ments are equivalent:

(d) a;! max IS, = 0 a.s. (log)
(e) a;! max. IS, =5 0 (log).

Moreover, (d) and (e) follow from S, /a, —p 0.

Proor. By Lemma 2 and an argument used in the proof of (a;) « (b,) in
Theorem 3, (d) and (e) are equivalent to

(3.18) Egl—NkSN%I{ mjax IS; I/ak>s}—>0 a.s.forall e > 0
and

1 1
(3.19) mkSN ZP{ llzl;ix IS;1/a; > s} -0 foralle >0,

respectively. Let up denote the probability measure on D[0, 1] Wlth mass

k~'L(N)~! at the points s,(-), 1 <k < N, where L(N) = X, _yk~! ~ log N.
Then (3.18) is equivalent to the statement that uy(A,) — 0 a.s. for all £ > 0
where A, = {x € D[0, 1]: llx|l. = &} and hence to

(3.20) Wy —, 6y a.s,

where —, denotes weak convergence. (Note that the sup functional is
continuous in the Skorohod topology.) By Theorem (8.3) of Dudley [9] and the
separability argument in its proof, (3.20) is equivalent to

J&(x) dun(x) - £(0) as.forall g e BL(D[0,1]),
that is,

(3.21) %g(sk(-)) — g(0) as.forall g € BL(D[0,1]).

L(N) <y
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In a completely similar fashion, (3.19) is equivalent to

) ng%Eg(sk(-)) - g(0) forall g € BL(D[0,1]).

Now relation (2.15) in the proof of Theorem 2 implies the equivalence of (3.21)
and (3.22) and hence that of (d) and (e).

Assume now S, /a, —p 0; observing that a, > Ca, for 1 <k < n by (2.2),
it follows that

P(S,l = €a,) <1/4 forl<k <n,n=ngy(e),

(3.22)

that is,
P(S, — Sl > 2ea,) <1/2 forl <k <n,n>ny(e).
By Skorohod’s maximal inequality (see, e.g., Breiman [4], page 45) the last
relation implies
P( max |S,| > 48an) <2P(S,| = 2¢a,) >0 asn >,

l<k<n

that is, (e) holds. O

ExampLE 3. To conclude this section, we construct a sequence (X,,) of i.i.d.
symmetric r.v.’s such that setting S, =X, + --- +X,, we have S,/n - 0
a.s. (log) but S,/n »p 0. To this end, let Y be a symmetric r.v. taking the
values +3, + 4,... such that

P(Yl=i)=p,=Ci~%(logi)™"', i=38,4,...,

for some (uniquely determined) constant C > 0. Let G denote the distribution
function of Y. Clearly

(3.23) P(Yl = n) ~Cn '(logn)™' asn — =,

(3.24) f x2dG(x) ~Cn(logn)™" asn — .

|x|<n
Let w be the atomic probability measure on N defined by u({n}) =p,, n =
3,4, ... and construct a new probability measure i from u by concentrating,
for each % > 1, the total mass of u on the interval I, = [2%* 2%*+%*] onto the
single point ¢, = 2% *1¥*/2] Let X be a symmetric r.v. such that the distribu-
tion of |X| is &' and let F denote the distribution function of X. Set also

H= UIk.
k=1

Letting % = kE(N) ~ const.(log N)!/* denote the largest integer such that
I, c [0, N], we have

Y itls Y Yitls ¥ 2r?log2=0((log N)**,

i<N,ieH r<k+1liel, r<k+1
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and thus H is of log density zero. We also claim that

(3.25) nP(X| >n) >0 asn—->w,ne¢H,
(3.26) n~t f|x|5nx2dF(x) -0 asn—->o,né¢H,
(3.27) ,}1_120 sup nP(IX| > n) = +o,
(3.28) E(|XleViesXT) < 4 oo,

Equation (3.25) follows from (3.23) since by the definition of i/ we have
P(X| = n) = P([Y| > n) for n & H. To show (3.26) observe that

1 C- 2k4+k2+0(1)
2dF = ¢2 —p, = ——————
/;kx (x) kiezlk zpz 2k4 lng )
1 C- 2k“+k2
x2dG(x) = —i’p, ~ ——,
J,x*d6(x) i§,k 2" 77 BhTlog2

whence by the definition of &' and H we get

)

x|<n

x?dF(x) = [ x?dG(x) asn—w,n¢H,

lx|<n

where the symbol = means that the ratio of the two sides remains between
positive constants. Hence (3.26) follows from (3.24). To prove (3.27) it suffices
to observe that

k4 -
2% k*log?2

Finally, letting ¢, = P(IX| =i)and r, = X, ;q, ~ C - 2 %'k~ 4(log 2)~! we get
that the expectation in (3.28) equals

+ o0,

Y e VleEiCi—2(logi) '+ Y e ViBtp, < oo
ieH k=1
since the above asymptotics for r, show that the kth term of the second sum
is less than or equal to exp(— const. £2). Let now X, X,, ... beii.d. r.v.’s with
distribution function F and set S, = X; + -+ +X,,. Truncating the r.v.’s X,,
1 <i <n at n and using the Chebyshev inequality, (3.25) and (3.26) imply

(3.29) S,/n—>p0 asn—>o,ne¢H.
Also, letting ¢(x) = x exp(— ylogx) and c, = n exp(2ylogn), we have

Li2nCi 2 = O(ne,?) by Lemma 3 in Section 4 since exp(— y/log x ) is slowly
varying; further ¢(c,) > n for n > n, and thus using E¢(|X]) < +o we get

Y P(Xl>¢c,) < X P(y(Xl) =n) < +.

n>1 nx>1
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Hence applying Theorem 18 in Petrov [21], Chapter 9, Section 3 we get
S,/c, >0 as.

whence, as in the proof of Corollary 3, it follows that

E|S,/n|'? < Kexp(\/log n )

Hence Theorem 3 applies to the sequence (X,) [cf. (2.1a)] and thus (3.29)
entails S, /n — 0 a.s. (log). Finally, using (3.27) and the classical degenerate
convergence criterion (see, e.g., [16] page 317) it follows that S, /n », 0.

4. A.s. invariance principles. Before we formulate our results, we re-
call a few classical facts from probability theory. Let X;, X,,... be i.id. r.v.’s
with distribution function F. By the classical theory (see, e.g., Feller [12],
pages 540-547 and also pages 302-306) there exist numerical sequences
a, > 0 and b, such that (1.8) holds with a nondegenerate G if and only if
there exists a slowly varying function L(x) such that

(4.1) " #dF(t) ~ x> L(x) asx-w

with 0 < @ < 2 and when a < 2 then also
1-F(x) F(-x)
—)p,
1-F(x) +F(-x) 1-F(x)+ F(—-x)
for some p >0, ¢ > 0. (Clearly p + ¢ = 1.) If @ = 2 then the limit distribu-

tion G is normal; for 0 < a < 2 the above necessary and sufficient condition is
equivalent to

(4.2)

—q asx > ®

x *L(x), F(-x)~gq

(43) 1-F(x)~p 2 oL(x), x -

o
In this case the limit distribution G is nonnormal stable and satisfies

2-a 2-a
x”e, G(—x) ~q x79, x = oo,
o

(44) 1-G(x)~p

In all cases the norming factor a, in (1.8) satisfies
(4.5) a, ~nL(a,) asn — .
Moreover, the sequence L(a,) is also slowly varying, that is, a, is regularly
varying with exponent 1/a. Further, if for « > 1 we center F to 0 expectation

[note that for a > 1, F has a finite expectation by (4.1)], then in (1.8) we can
take b, = 0 for all a # 1. Finally, (4.1) is equivalent to

. x*(1-F(x)+F(-x)) 2-a
(4.6) Jim, [ t2dF(t) T e

We can now formulate our results.
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THEOREM 4. Let X;, X,,... bei.i.d. r.v.’s such that (1.8) holds where G is
the standard normal distribution. Assume, without loss of generality, that
EX, = 0. Then the sequence {X,} can be redefined on a suitable probability
space together with a Wiener process W such that

(4.7 max f‘, X; — W(a%)

l<k<n i=1

=o(a,) a.s.(log).

THEOREM 5. Let X, X,,... bei.i.d. r.v.’s such that (1.8) holds where G is
an a-stable distribution, 0 < a < 2. In the case a > 1 assume also, without
loss of generality, that EX1 = 0. Then after suitably enlarging the probability
space there exist i.i.d. r.v.’s Y,, Yz, ... with distribution G such that setting
A;=L(a)Y*[L is the slowly varying function in (4.3)], we have for a + 1

(4.8)

1<k<n

Z(X Ain)[ = o(a,) a.s. (log).

The result remains valid also for o = 1 except that in this case a centering
constant c, should be subtracted from the sum on the left-hand side of (4.8).

As the example at the end of this section will show, the centering c, is really
necessary in (4.8) in the case a = 1.

We formulated Theorem 4 and Theorem 5 separately only to give Theorem
4 a more traditional form. As the simple calculation at the end of the proof of
Theorem 4 shows, (4.7) is equivalent to (4.8) with Y,,Y,,... iid. N(0,1) r.v.’s
and A; = L(a;)"/* where a = 2 and L(x) = [* t*dF(¢). Hence defining L
un1versa.lly for all 0 < a < 2 by (4.1), Theorem 5 holds in a unified form for all
nondegenerate limits G (stable or normal) in (1.8).

We now turn to the proof of Theorems 4 and 5. In what follows, we shall
make repeated use of the following well known property of regularly varying
functions (see, e.g., [12], pages 272-274):

LEMMA 3. Let the function Z > 0 be regularly varying with exponent 7.
Then

jZ(t) dt ~ ¥ Z(k) ~

k<x

le(x) asx > o if y> —1,

fZ(t)dt~ Y Z(k) ~

xZ(x) asx > o if y < —1.
k=x 1|

+

Proor oF THEOREM 4. Let W be a Wiener process and a, > 0 a numerical
sequence. By the functional a.s. central limit theorem for the Wiener process,
in the case a, = Vk we have

N

1
i I (W@} = a,(4) as.
Am 1ogNk§1kIA{W b=u(4) as

(4.9)



SOME LIMIT THEOREMS IN LOG DENSITY 1659

for any Borel set A c C(0, ») with A,(dA) = 0; here A, is the Wiener measure
and W@# is the scaled process defined by

(4.10 W@n(t) = a;'W(a2t), ¢t=0.
k k

The simple proof of this fact given in [15] shows that (4.9) remains valid for
arbitrary a, with a,/ vk —» +. [In fact, the faster a, tends to infinity,
the better the covariance estimates used in the proof of (4.9) become.] In the
sequel, we will use (4.9) in the case when a, is the norming factor in Theorem
4; clearly then a, = vk L(k), where L is slowly varying and lim, . L(k) =
+ o,

Let X,, X,,... be iid. r.v.’s with distribution function F such that for
some numerical sequences a, > 0 and b,, (1.8) holds where G is the standard
normal distribution. Then X, has a finite expectation and thus without loss of
generality we may assume EX, = 0. Let

X, =X, I1(X,| <a,), X, =X, I1(X,| = a,).
We first note that
k

L X/

i=1

(4.11) max

l<k<n

=o(a,) a.s.(log).

Indeed, by the classical facts summarized above the function L(x) =
/% t2 dF(t) is slowly varying at infinity and setting U(x) = 1 — F(x) + F(—x),
we have

(4.12) x2U(x)/L(x) > 0 as.x > +.
Now using Lemma 3 and (4.12) we get

EX; = [

|x|2ak

x| dF(x) = [ U(x)dx +a,U(ay)

= o(fmx_zL(x) dx +a,'L(a,)

ay

=o(a;'L(ay)).
Since a} 'L(a,) varies regularly with exponent —1/2, Lemma 3 and (4.5) yield

n
Y a;'L(a,) ~ 2na;'L(a,) ~ 24,
k=1

and thus

1 n
(4.13) E(——— Yy IX};I) - 0.

Qn p=1
Equation (4.13) and the implication (2.7) = (2.2) observed in Section 2
show that the sequence |X}| satisfies the assumptions of Theorem 1 (and thus
of Theorems 2 and 3) with f(x)==x, b, =0; further, (4.13) implies

n
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a,'L7_,1X;] »p 0 and thus Theorem 3 yields
n
Y Xl =o(a,) as.(log)
k=1
which clearly implies (4.11).
By the Skorohod embedding theorem the sequence {X,} can be redefined on
a suitable probability space together with a Wiener process W such that
n
(4.14) Y (X, —EX,))=W(T,+ - +T,), n=x=1,
k=1
where T, T,, ... are independent r.v.’s with
’ 1\2 Gn 9 %n ’
ET, = E(X, - EX,)* = j x2dF(x) — f xdF(x)
-a, -a,
and
ET? < 4E(X, - EX,)" < 64E(X;,)* = 64 " x*dF(x).
—a,

Now for any & > 0 there is x, = x4(¢) such that [ dF(x) < ¢ and thus using
[12x2 dF(x) = + we have for n > n,,

‘fanxdF(x) <|[" xdF(x)
1/2 1/2
+ x2dF(x ( dF(x )
('/;coslxlsa,, ( )) '/I‘xlzxo ( )
1/2
s2£1/2(f xzdF(x))
lx|<a,
and thus

ET, ~ [ x*dF(x) = L(a,).
Moreover, by (4.12), (4.5) and Lemma 3 we get

[ atdF(x) = 4[""U(x)x? dx + a4 U(a,,)
a, 0

= o(/:"xL(x) dx + aiL(an)) =o(a%L(a,)).

Set D, = X7_,T;. Since a2 L(a,) is regularly varying with exponent 1, using
the above estimates, (4.5) and Lemma 3 we get
n
EDn ~ Z L(ak) ~ nL(an) ~ azn
k=1
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and
n n
ED,-ED,)>< Y ETZ = o( D a‘iL(ak))
k=1 k=1
=o(na?L(a,)) =o(a}),
that is,
(4.15) E|D,/a% — 1| - 0.

Since a? is regularly varying with exponent 1, (4.15) and the implication
(2.7) = (2.2) observed in Section 2 show that the independent sequence (X;*)
whose nth partial sum is D, — a? satisfies the assumptions of Theorems 1-3
with f(x) =x, b, = 0 and a? in place of a,. Also, D, /a% —p 1 by (4.15) and
thus Corollary 4 yields

4.16 D, — =o(a? .s. (log).

(4.16) jmax D, —aj| =o(a7) as. (log)

Further, (4.13) and EX; = 0 imply X}_,|EX;| = X7 _,|EX}| = o(a,) which,
together with (4.14) and (4.11), yields

ZX W(D,)
i=1

=o(a,) a.s.(log).

1<k<n
Hence to prove Theorem 4 it remains to show

max [W(D,) ~ W(a})l = o(a,) as. (log),

which by Lemma 2 is equivalent to

1
lim su _I{ max |W(D;) - 2~|Zea}=0 a.s.
(417  nN- logngN 1<j<k (D;) = W(a3) k

for every ¢ > 0.

For any & > 0, the indicator function in (4.17) is bounded by

1{ max |D, — ¥ > 6ak} +1]  sup  IW(¢) - W(t)l = ea,
l<j<k O<t<t'<2a%
[t—t|<8a}

(Note that max, _,_, a, ~ a, by a well-known property of regularly varying
functions; see, e.g., Seneta [24], pages 19-20, Property 4°). By (4.16) we have

1 N1

I —1{ D —a?>5 }_0 ,
N‘f‘mlogNkzlk max, ID; = ajl > da; as.
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and thus the lim sup in (4.17) is bounded by

1 N 1
lim sup Y -I{ sup |W(t)—W(t) >ca
N-w 108N 71k {Ostst’sZa?, *

(4.18) lt—¢|<8a}
N

1
= limsup —I(We» e A
N-oow logngl k ( 8)

for any 6 > 0, where W» is defined by (4.10) and

A; = {x € C(0,»): sup |x(¢) —x(¢)l > s}.
O<t<t'<2
lt—#<s
It is easily seen that the boundary of A, has Wiener measure 0 and thus by
(4.9) the limsup in (4.18) equals A,(A;). But A, (A;) > 0 as & — 0 by the
continuity of the sample paths of W. Thus the lim sup in (4.17) equals 0 for
each ¢ > 0 and the proof of Theorem 4 is complete. O

Let d, = ¥;_;L(a;). By Lemma 3 and (4.5) we have d, ~ nL(a,) ~ a?
and thus the above argument yields
max W(d,) — W(a})l =o(a,) aus.(log).
<R=<n
1,2,..., wehave W(d,) = L?_,A,Y;, and thus (4.7) can be equivalently written
as (4.8) with Y,,Y,,... iid. N(0,1) r.v.’s.

Proor or THEOREM 5. Let X, X,,... be iid. r.v.’s with distribution
function F satisfying (4.3) where 0 <a <2, p>0,9>0,p +q=1and L is
a slowly varying function. Enlarge the probability space to carry an i.i.d.
sequence {Z,} independent of {X,}, with distribution function ®. Since a, in
(1.8) satisfies a,/n” > 4+ for any 1/2 <y < 1/a, the law of the iterated
logarithm shows that it suffices to prove (4.8) for the sequence X} = X, + Z,.
Hence without loss of generality we may assume that F' is continuous. We
show that the conclusion of the theorem holds with Y, defined by the standard
quantile transform, that is,

(4.19) Y, = G"Y(F(X,)), k=1,2,...,
where G~ is defined by
G~ Y(x) = inf{t: G(¢t) = x}.

Since F' is continuous, F(X,) is uniform over (0,1) and G~Y(F(X,)) has
distribution G. We show that (4.8) holds with A, = L(a,)'/® for any a # 1
and in the case @ = 1 with an extra centering constant c, on the left-hand side
of (4.8).
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From the standard representation formula for slowly varying functions (see,
e.g., [12], page 274) it follows that if ¢, | 0 sufficiently slowly then
L( a;x)
L(a, )

Fix such a sequence ¢,; we can also assume that ¢, is slowly varying. We shall
prove the following lemma:

(4.20) lim sup -1 =0.

0 —
b‘kaﬁek

LEmMMA 4. There exist numerical sequences d,,,e,, f, such that

(4.21) Z (X — MY I(X,] < £4a,) —d, 25 0,

QI._. Q|

(4.22) Z‘, (X, = MY I(X,] =2 e, %a,) — e, =5 0,

n

1
(4.23) ;_ Z (Xk - /\kYk)I(skak < |Xk| < Ek_lak) _fn —)P O
n k=1
Moreover, for a #+ 1 we haved, +e, +f, = 0.
Clearly, Lemma 4 implies

1 n
(4.24) — X (Xp —MY,) — ¢, ~2p 0,

a, k=1
where c, is a centering sequence vanishing for a # 1. Since X, —1,Y, are
independent by (4.19) and a, is regularly varying with exponent 1/«, (4.24)
and Corollary 4 imply the statement of Theorem 5 if we show that for some
p>0,
4

= 0(1).

(4.25) E ai( T (X, - /\kYk) —c,

k=1
By Theorem (6.1) of [1] we have

1 n

E _( Z X k - bn)
n\k=1

where b, is the centering constant in (1.8). On the other hand, using the

canonical form of the characteristic functions of stable distributions (see, e.g.,
[12], pages 540-543) it follows that a;(X}_;A,Y;, — b,) =, Y, and thus

P
=0(1) forany0 <p <a,

1 (2 N\
E a_( Y ALY, —bn) =0(1) forany0 <p <a
k=1
for some other sequence b,. (In the case a # 1, b, = 0.) The last two

relations show that ¢, in (4 24) must satisfy c, = (b b )/a, + O(1), but
then (4.25) is also valid.
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To prove Lemma 4 we first observe that (4.4) implies

a 1/a
G‘l(x)~(pT) (1-x)""" asx11

and

2 —a )\
G (x) ~ —(q———) x~1/% asx |0,
o

whence using (4.3) we get

(4.26) G Y(F(x)) ~ as |x| - .

L(lxl)l/a

We also note that if L; > 0 is slowly varying at infinity and L,(x) = 1 in some
interval 0 < x < x,, then for any y > 0 we have

(4.27) jf It"L (1t]) dF(t) < CLy(x) jj l¢” dF(t)

for some constant C > 0. The proof of this relation is similar to those in
Lemma 3.

Now using (4.1), (4.19), (4.26), (4.27), A, = L(a,)'/* and the inequality
(x +y)? < 2(x2 + y?) we get that the square integral of the kth term of the
sum in (4.21) equals

exas L e
f (x— (%) xz(1 + o(1))

210

2

dF(x)

(4.28) < [ x2dF(x) + L(a,)™* [ $L(lxl) "/ dF(x)

—£,0a, €Ay

< ,[Skak x?dF(x) ~ (Ekak)z_aL(ekak)’

TERQ

where < means the same as the big O notation. [Note that since the validity
of (4.3) depends only on the values of L(x) for large x, we can assume that
L(x) =1 for 0 <x < 1.] Now a2 *L(a,) is regularly varying with exponent
(2 — a)/a and thus Lemma 3, L(e,a,) ~ L(a,) [cf. (4.20)] and (4.5) imply

kil(skak)z_“L(skak) = o(kilai_"‘L(ak)) =o(na®% *L(a,)) = o(a?).

Thus the variance of the normalized sum in (4.21) tends to 0 and consequently
(4.21) holds with d, denoting the expectation of the normed sum.
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To prove (4.22) let us write the sum as S; + S, where

S1= X (X — MY I(IX,l = &%) (X, = a,),
k=1

S,= Y (X, — MY I(X,] > sk_lak)I(|Xk| <a,).
k=1

By (4.3) and (4.5) we have
P(X, > e;'a;) < (ex'ay) "L(e;'ay)
~ (Sk-lak)_aL(ak) ~ep/k

and thus for any ¢ > 0 we have

n

P(S;#0) < ) P{X,| >¢;%, Va,)

k=1
< Y PIXl=za,}+ ¥ ei/k
k<en en<ks<n

< ena;°L(a,) + (en) 'n sip ey
en<kR=<n

<e+o(l)y<e

for n > ny(e). Here (and in the sequel) the constants implied by < do not
depend on ¢. In the sum S, all terms with & > en vanish [provided n >
n ()], since the regular variation of @, with exponent 1/« and &, — 0 implies
that for such terms we have ¢;'a, > a,. On the other hand, for 2 <en
the absolute value of the kth term of the sum is less than or equal to
1X, — 2, Y,II(X,| <a,), whose square integral can be estimated as in (4.28)
except that the integral should be taken on the interval (—a ,, a,). Thus using
(4.1), (4.5), (4.27) and Lemma 3 we get

L(ay)™" ,

VarS, < ) |a27*L(a,) + a?°L(a,)

2
k<en L(an) /e
< ena®L(a,) + L(a,) *“a2*L(a,)enL(a,.  )**
n n n n n [en]
< ena?*L(a,) < sad?

for n > n(¢), completing the proof of (4.22) with e, = a;, 'E(S,).
Finally, to prove (4.23) let us note that by (4.19) the sum in (4.23) can be
written as X% _, X, (X)) where the function ¢,(x) is defined by

xP(x) =x — A,G Y F(x)) foreza, < lxl <e;la,
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and by ¢,(x) = 0 otherwise. By (4.26) we have

L 1/a
n -1 (7)o

uniformly for ¢,a, < x| <e;'a, which implies, in view of (4.20), that
SUP,,q, <x <& la,/¥x(¥)] = 0 and consequently sup, . zl¢,(x)] — 0. Choose a
sequence J, — 0 such that |¢,(x)| < §,; clearly we can assume that §, > ¢,
and that §,, is slowly varying. Write the sum X} _; X, ¢,(X,) as T, + T, where
n
T, = ) X (X)) I(1X,] > 5;1‘1,1),
k=1

Ty = X Xun(X)I(X,] <5, %a,).
k=1

By 6, > ¢, and (4.20) we have L(§,'a,) ~ L(a,) and thus using Lemma 3,
(4.1), (4.3) and (4.5) we get )

n n
P(T,#0) < ¥ P(X,|>8;%,)< ¥ (6;%,) L(5,'%,)
k=1 k=1
~néja,"L(a,) = o(1)

and

Var T, < Z‘,[ x2y2(x) dF(x)
k=1ll<d;a,

n n

< ¥ o¥(5;%,)" "L(8;%a,) ~ (8;%a,)" "L(a,) ¥ 8
k=1 k=1

~ 85 %% *L(a,)nd2 = o(a?),

completing the proof of (4.23) with f, = a;, 'E(T,).
Finally we prove that for « # 1 we have d,, + e, + f, = 0 in Lemma 4. In
view of the above arguments, this will follow if we show that for & # 1 we have

L E((% - A ¥ 1% < 5,0,)

(4.29) .
+ kZ E(Xkd’k(Xk)I(lel < 5;1‘%)) =o(a,)
-1
and
(4.30) S B((X, - MYy I(s7%ay < Xl < a,)) = o(a,).
k=1

Assume first @ < 1. Similarly as in (4.28) it follows that the absolute value of
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the k-th term of the first sum in (4.29) is bounded by

L(a,)"*
il + (ar)

ixl<esa Ly A1+ o) | dF ()

< |x| dF < 8kaka dx +e,a,U(e.a
(4.31) LG [0 (x) dx + 6,0, U(e,as)

R _ 1-a
<2+ [ x °L(x) dx + L(£,a,)(£,a5)
1

< L(gkak)(gkak)l_a < L(ak)(gkak)l_a’

where U(x) = 1 — F(x) + F(—x). Since L(a,Xe,a,)' "¢ is regularly varying
with exponent (1 — a)/a, using Lemma 3 it follows that the first sum in (4.29)
is

< kéL(ak)(ekak)l_“ <nL(a,)(e,a,) “=o0(ay,).

The second sum in (4.29) and the sum in (4.30) can be estimated similarly,
using || < §, in (4.29) and estimating

Z E(le - /\kYk|I(|Xk| < an))
k<en
in (4.30). [Note that for n > n(e) all terms of (4.30) with 2 > en vanish.]
In the case a > 1, F is assumed to be centered to 0 expectation; moreover,
we have b, = 0 in (1.8) whence it follows, using Theorem (6.1) of [1], that
EY, = 0. By the definition of ¢, the left-hand side of (4.29) equals

Y E((X), - MY )I(X,] <e;la, A8 a,).
k=1

Since E(X, —1,Y,) = 0, the absolute value of the last sum equals
n
L E(X, — MY I(X, 2 65 'a, A S May)
k=1

n
< Y E(X, - M YI(X,] = g5 %a,))
=1

n
+ ) E(IX, — MY, I(1X, > S;Ian)),
k=1
which can be estimated exactly as in (4.31), replacing the interval of integra-
tion by |x| > £, 'a,, respectively, |x| > &, 'a, and using the “outside’” version
of (4.27). The estimation of the sum in (4.30) is the same, noting again that for
n > nye) all terms with & > en vanish and bounding the kth term by
E(X, — A\, Y,II(X,| > ¢; 'a,)). This completes the proofs of Lemma 4 and
Theorem 5. O
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ExampLE 4. Let X, X,,... be iid. r.v.’s with distribution function F
satisfying

1

1= F(x 2x +xlogx’
for x > x,. Then (4.3), (4.5) hold with a« = 1, p = ¢ = 1/2, L(x) = 1, that is,
(1.8) is valid with @, = n and some b, . Actually, [* .tdF(¢) ~ loglog x, x — o,
and thus the classical theory gives (see, e.g., [12], page 305) that b, =
n%a, % tdF(¢) ~ nloglog n. The limit distribution G satisfies (4.4), that is,
it is symmetric Cauchy. Let Y;,Y,,... be any ii.d. sequence of r.v.’s with
distribution G defined on the same space as the X,’s. Given & > 0 choose
¢ >0 so large that G(c) — G(—c) > 1 — . Corollary 1 implies that with
probability 1 we have

1
F(—x) = %

b 12

b,
—Z—c< =YX, <= +e¢

n n,/= n

on a set of n’s with log density > 1 — . Since n™'X7_,Y, =, G for all n,
another application of Corollary 1 yields that with probability 1,

1 n
—c<—YY.<ec
i=1
on a set of n’s with log density > 1 — £. From these relations it follows that
for any joint construction of {X,} and {Y,} on the same space the inequality

Y (X, —Y) > ~logl
- : — 1;) > S loglogn
n,; 5 2

holds on a set of n’s with log density 1.

REMARK. The proof of Theorem 5 depended on the weak approximation
result (4.24) where A, = L(a,)"/* and c,, is a centering sequence vanishing for
a # 1. In fact, using the equivalence of the log versions of the weak and strong
law of large numbers and the fortunate fact that by the construction (4.19) the
rv.’s X, — A,Y, are independent, (4.24) directly implies the a.s. conclusion of
Theorem 5. It should be noted, however, that even (4.24) is new; it is the
weighted version of a result of Simons and Stout (Theorem 3 of [25]) which is
not applicable for our purposes. In the case of Theorem 4 the situation is
different: in this case the corresponding weak approximation result

(4.32) Y. X, -~ W(a%) =o(a,) in probability
i=1

is known (see the last remark on page 7 in Mijnheer [18]) but the a.s. result
(4.7) is not a consequence of (4.32) since the process on the left-hand side does
not have independent increments. Still, as our proof shows, (4.7) is valid and
with the same remainder term as (4.32); the key to the proof is again Theorem
3 used several times in the Skorohod embedding argument.
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