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A NECESSARY AND SUFFICIENT CONDITION FOR THE
MARKOV PROPERTY OF THE LOCAL TIME PROCESS!

By NATHALIE E1SENBAUM AND Havya Kasp1

Université Pierre et Marie Curie and Technion—Israel Institute
of Technology

Let X be a Markov process on an interval E of R, with lifetime ¢,
admitting a local time at each point and such that P,(X hits y) > 0 for all
x,y in E. We prove here that the local times process (L%, x € E) is a
Markov process if and only if X has fixed birth and death points and X has
continuous paths.

The sufficiency of this condition has been established by Ray, Knight
and Walsh. The necessity is proved using arguments based on excursion
theory. This result has been proved before in Eisenbaum and Kaspi for
symmetric processes using the existence of a zero mean Gaussian process
with the Green function as covariance.

1. Introduction and preliminaries. Let X be a diffusion with values
in R that starts and dies at fixed points. For each x € R, let L} be the
accumulated local time at x. Since X is assumed to be transient, L7 is almost
surely finite for all x € E. The Ray-Knight theorem asserts that (L}), . is a
time inhomogeneous Markov process, which after a scale and a time change is
composed of squares of various Bessel processes. This Markov property in the
space variable of (Lf) stems from sample path properties of X, namely the
continuity and the fixed birth and death points [see Walsh (1978)].

In this study, we are asking the opposite question. Given a transient Hunt
process X with values in R that admits a local time at each point, and
assuming that (L}), . is a Markov process under the measure governing X,
does this imply that X is a diffusion with fixed birth and death points? The
answer is generally, no. If X is a Poisson process starting from 0, then the
local time at points not in N is 0, and at points in N the local times are i.i.d.
random variables with an exponential distribution, so that (L}),.p is a
Markov process.

In Eisenbaum and Kaspi (1991), we assumed that X was a symmetric
process, defined P,, to be the law of X that starts at a and is killed at the last
exit from b, and assumed further that the potential densities g(x,y) were
strictly positive and continuous in both variables. Using a connection, estab-
lished by Dynkin and used by Atkinson, with a Gaussian field having g as
covariance function, we have shown that the Markov property of (L) in [a, b]
is equivalent to the continuity of X restricted to [a, b].
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In the present study, we relax the assumptions of symmetry and continuity
of g. Here is our result: [We shall use here and in the sequel the notation of
Blumenthal and Getoor (1968).]

TueorREM 1.1. Let X = (Q, &, %, X,,0,, P*) be a transient Hunt process
taking values in an interval E C R, with cemetery A and death time ¢, such
that:

(1) All points of E are regular for themselves.
(i) Fory € Elet T, = inf{t > 0; X, = y}. Then for every x, y, PX(T, <) >0
and (x,y) > E*(e”Tx) is &X & measurable.

Let L7 be a local time at x, normalized so that E7[§ e " dL¥ = E¥(e™Tx),
Suppose that there exists a probability measure w on E, such that under P*,
(L%; x € E) is a Markov process. Then, almost surely:

(a) X has continuous paths.

(b) w is concentrated at one point.

(¢) X dies at a fixed point (which may be +o or —o when these are
accumulation points of E).

The proof of this result is composed of several steps and we defer it to the
next section. We end this section with a preliminary result that we shall need
for that proof.

Recall that a measure A on & which is a countable sum of finite measures is
a reference measure for X provided that a set A € & is of potential
0 [U(x, A) =0 for all x € E, where U(x, - ) is the potential] if and only if
A(A) = 0.

LemMA 1.2. Under the assumptions of (1.1), X has a reference measure.

Proor. Let A(A) = U(x,, A) for some x, € E. Since X is transient U(x, - )
is a o-finite measure [see Getoor (1979)]. By the strong Markov property of X,
for every x,y € E,

(1.3) U(x, A) = E*[ "1,(X,) dt + P*(T, < =)U(y, A).
0

Now since P*(T, < ) > 0 for all y, it follows from (1.3) that U(x,, A) = 0
implies U(y, A) = 0 for all y € E. The converse is trivial. O

COROLLARY 1.4. Let A be a continuous additive functional of X, and let u,
be its Revuz measure with respect to A defined above. Assume condition (ii) of
Theorem (1.1) and let u'(x,y) be the jointly measurable version of the
Radon-Nykodim derivative of U'(x, ) with respect to A. Then up to an
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evanescent set (P* evanescent for all x € E)

A, = [pa(dz)u(x, %) L}

In particular, for D € &,
[1p(X,) ds = [ AM(dx)ul(x, x) L3,
0 D

Proor. This is a direct consequence of (75.12) of Sharpe (1988) and the
fact that (LY) are normalized so that

B ["etdLy = B¥(e™™). 0
0

2. Proof of Theorem 1.1. The proof of Theorem (1.1) is based on the
following consequence of the Markov property of (L7) under P*: For every
x,y,z in E, such that x <y <z, P*(L} € ‘)-ae. l € R, and (A, 1) € R%,

P#(e—/\lLf e—/\zL§|ng = l)
(2.1)
= P(e ™MLy = 1)P#(e MLy = 1).

StEP 1. We shall compute each member of (2.1) in terms of the excursion
laws (*P*), . p from the points of E.
By the strong Markov property at T,

Pp.(e—)\lL’l‘—/\2L§~)\L§; Lf S O)
(2.2)
_ P,L(e—,\ILJ%fMLZTy; Ty < {)Py(e—)\lL’l‘ﬂ\sz—/\Lg);

For the second term on the right-hand side of (2.2), we use excursion theory
from M = {t: X, =y}~ (A~ the closure of A):

Py(e—,\lL;—AQLg—ALf)

2.3 x z y x z
(2.3) _ Py( y Lr, 0, e~ MLE-ALE-ALY e—/\lL{oos—/\leoos)’
se@
where G is the set of left endpoints of intervals contiguous to M. By the key
formula of excursion theory [see Revuz and Yor (1991) or Maisonneuve
(1975)], the right-hand side of (2.3) is equal to

0
Py(f e MA-MLE-A5L% *Py(Ty = oo, e—AlL;—,\ZLg) dLg),
0

where *P” denotes the excursion law from y. This, after the time change via
u =LY and 7, = inf{u > 0; L2 > s}, is equal to

_ _ LY _ _ x _
(2.4) *Py(Ty = o; e ML AzL?)ny to=As =M LT — M LT Jo
0
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Using now the exponential key formula [see Revuz and Yor (1991), page
434],

Py(l(Lg>s) e_'\lLﬁs_/\zLi‘*)
(2.5)
= exp{ -s *Py(l - e‘)‘leTy"‘szTyl(Ty<w))}.
Inserting now (2.5) in (2.4) we obtain
*Py(Ty = oo; e—Ale—Ang)

Py(e—AlLf—Ang—AL‘;) = )
A+ *Py(]_ — e Ml ~ALT,] )
{Ty <o3}

Finally we get

a )
@p el o) - SO0
where
(2.7) a(Ay, hy) = PH(e MR Aalhy, T < £} *PY(T, = w; ¢~ MlE—hald),
(2.8) B(Ay,A) = *PY(1 = 1p, oy e~ MiFR 0T,

As on one hand we have
P/L(e—/\lL‘z—)\sz—)\L';; Ly> 0)
= [CemMPr(emMU-MEILY = 1) Po(LY € di),
0,

and on the other, we have
o
Pr{eME MMM Ly > 0) = a(Ay, A,) [ e POl gy,
0,

it follows that
(2.9) P#(LY € dl) = a(0,0) e PO g, [ > 0,
a()‘l’ )‘2)
«(0,0)
Substituting (2.9) and (2.10) back in (2.1) we obtain
a(Ay,0)a(0,A;)
a(0,0)

(2'12) B(’\l’)‘z) - B(O’O) = (B()‘l’o) - B(O’O)) + (B(O’)‘Z) - B(O’O))'

(2.10) Pr(eMli-MlLy = |) = e~ (B, A9)—=B(O, 0

(2.11) a(Ag, Ag) =
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STEP 2. We are now going to use (2.12) to prove the continuity of X.
Toward this end we shall prove the following:

LeMMA 2.13. Letx <y < zbein E, then
PX(T,<T,)=0, P¥T,<T,)=

Proor. For x <y <z in E, (2.12) is equivalent to
*PY (1, <1 — e MPR) (1 — e7heEh) | = 0,
which is also equivalent to
(2.14) *PY(T, <o; T, <T,;T,<T,)=0.
Hence, by the strong Markov property under *P?,
= *P¥(T, < T, A T,) P*(T, < T,) P*(T, < =)
(2.15) + *P¥(T, < T, A T,)P*(T, < T,) P*(T, < ).

By our assumptions,

0 < P¥(T, <°°)<Py(21(:r 00, <(TyAT)-0) T Zl(T 0,<T,°0,<T, os))

seq@
-ny *P¥(T, < T, /\T)dLy+ny *PY(T, < T, < T,)dL}

Suppose now that P*(T, < T,) > 0. Then by (2.15),
=*P'(T,<T,AT,),
0 =*P¥(T, < T, A T,)P*(T, < T,) = *P*(T,< T, < T,),

and consequently PY(T, < ») = 0, which is absurd.
Repeating the same argument now with 0 < P¥(T, < »), we can show that
P*(T, < T,) = 0, which completes the proof of our lemma. O

Let & be the set of intervals in E with say, rational end points. Since X is

assumed right continuous with left limits, Q; = {0 € Q: 3 ¢t € (0, ) X, () #

X,(w)} is the set on which X doesn’t have continuous paths. Further, if we
define, for measurable B, Ty = inf{t > 0: X, € B}, then

Qq = U U {we‘Q:O<TA°(osw) < o, XTAC°93w€E—3A}.
A0 seqQ,

Since each A € # is an open interval, all we need to show is that for any
x €A, 0=P* (X €E\JA). Let A=(a,b) and x €A. Since X is right
continuous, it follows that on Xp,. € {a,b,A}, X will spend some time in
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E\[a, b] before hitting a or b or dying. Consequently, on {T,. < ¢, Xr,. &
{a, b}}’

f:‘"””lze( X,)dt > 0,
but
Tia, 2
fo‘ "1x(X,) dt=j:PLT(a’b)u1(z,z))\(dz),

where A, as was defined in Lemma (1.2), is the reference measure we work
with. But we have seen that for any x < b <z (z < a < x),

P¥(T,<T,) =0, (P¥(T,<T,) =0),

and so

P[[ (X di = [ P*(Li, ,Ju'(2, 2)A(de) = 0.

. Tia, )

Hence, P* a.s. on {Ty < ¢}, Xr,. € {a, b}, and our result follows. .

STEP 3. We shall use (2.11) to show that:

(1) p is concentrated at one point.
(i1) X dies at a fixed point (which may be + or — if these are accumula-
tion points of E).

Equation (2.11) is equivalent to
PH(e M, elin| T < ) #PY (e MEMM|T) = o)
(2.16) = PH(e M|T, < [)PH(e *M|T, < )
X *P?(e MHT, = o) *PY(e M| T, = ),
where for A € 7,
“PY(AIT, = =) = "P(4; T, = ) *P(T, = ).

Let P} = P*(:|T, < ¢{) and 7, be the last exit from y, which is finite since the
process is transient. A simple use of the key formula of excursion theory
[Revuz and Yor (1991)] yields

(2.17) Pp(e k0 = PY(LY) *P?(e 1y ),
2.18 PY(LY)*P*(T, = ©) = P¥(r, < ) = 1.
¢ y y

For x € E, write A, (resp., B,) for L}, (resp., L} 8.,). Then (2.16) [via (2.17)
and (2.18)] amounts to the statement that A, + B, and A, + B, are P}-inde-
pendent for x <y < z. Also, it is clear that A,A, = 0= B_B,, as. P}, and
that A, and B, are P)-independent, as are A, and B,, A, and B,, A, and
B,. Since all these random variables have finite moments (of all orders), we
can use the facts cited above to compute P}((A, + B, XA, + B,)) in two
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different ways. What one obtains is the identity
Pr(A,)Pr(A,) + P}(B,)P}(B,) =0,

whence

(2.19) A, =0 as. P! or A,=0 as. P}
and

(2.20) B,=0 as. P} or B,=0 as.P}.

By varying x, y and z (2.19) implies that u is a one point mass, while (2.20)
implies that X,- has a degenerate law. O

3. Remark. If instead of assuming that E is an interval contained in R,
one assumes that E is any ordered set, then Theorem (1.1) remains true,
except that the continuity has to be interpreted as the property described in
Lemma (2.13), and the birth and death occur either at a fixed point or at two
neigbouring points. Note that the Poisson process becomes continuous with
this interpretation. The following example illustrates, however, that property
(ii) in Theorem (1.1), namely that points communicate, is essential for it to
hold.

Consider a discrete state Markov process with state space the integers and
infinitesimal generator satisfying

qi,is1=1, Qiiv2 =1, q;;= —2.

This process is clearly not continuous even with the interpretation of Lemma
(2.13), and for i <j, Pi(T; < ©) = 0. Nevertheless, as can be easily checked, its
local time process (L': i € integers) is a discrete time Markov process.
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essential for this result is due to John Walsh. We would like to thank the
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